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Microscopic simulation of a strongly coupled hydrogen plasma
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Results of "molecular dynamics" simulationk are reported for a model of a fully-ionized strongly coupled hydrogen
plasma. Quantum effects are taken into account through the use of effective pair potentials; at short distances, these
differ significantly from the bare Coulomb potential. Static properties of the plasma are shown to be well described
by hypernetted chain theory. The ion- and electron-velocity autocorrelation functions have been computed and the
electrical conductivity turns out to be roughly twice that expected on the basis of the electron self-diffusion
coefficient. The predictions of Vlasov theory for the damping and dispersion of the plasmon mode are found to be in
generally poor agreement with the results of the computer "experiments", but the collective dynamical properties
are successfully described by a memory-function scheme in which explicit account is taken of ion-electron
correlations. Prospects for future work are briefly reviewed.

I. INTRODUCTION

Models of highly compressed plasmas corre-
sponding to electron densities of order 10 4 cm '
or more are of considerable interest because of
their relevance to the study of matter under ex-
treme conditions, particularly those encountered
in astrophysical problems and in inertial confine-
ment experiments. " Under such conditions, the
mean kinetic and potential energies of particles in
the plasma are typically of the same order of
magnitude, and the plasma is said to be strongly
correlated or strongly coupled. The microscopic
dynamics of ions and electrons in a strongl. y
coupled plasma are dominated by collisions and
standard kinetic theoretical treatments3 based,
for example, on the Vtasov approximation are in-
applicable. At the same time, because the col-
lision rate is high, a strongly coupled plasma ap-
proaches thermodynamic equilibrium much more
rapidly than in the low-density. case, so that the
study of equilibrium properties becomes of great-
er physical significance.

In attempting to characterize the thermodynamic
state of a strongly coupled plasma, it is possible
to distinguish between two quite different regimes
of density and temperature. Let n N/IV be the
number of ions of charge Ze per unit volume; the
corresponding electron number density is nS. A
convenient scale of length is the "ion sphere"
radius a defined by

a' =3/4mn.

If m, is the electron rest mass, the Fermi de-
generacy temperature is

a'(3+nZ)2"
2m, k~

Provided the electron density is sufficiently high
for T& to be much greater than the temperature
of the plasma, the electrons form a degenerate
Fermi gas. The latter may be treated independent-
ly of the ionic fluid if the Thomas-Fermi screen-
ing length ~» exceeds the mean interionic spac-
ing as measured by the quantity a, i.e., if

i/6

em

Apart from ionic quantum corrections, which are
important only at extremely low temperatures,
the system is then reasonably well described as
a classical "one-component plasma, " (OCP), in
which the degenerate electron gas plays the role
of a uniform neutralizing background. The static
and dynamic properties of the OCP have been ex-
tensively studied over the past decade and can,
by now, be considered as well known. '

This paper is concerned with the opposite re-
gime, in which the temperature is of the order of
T~, or higher. The electron gas is now non-
degenerate and the plasma may be treated as an
almost classical two-component fluid the "two-
component plasma" (TCP). In the TCP, quantum
diffraction and symmetry effects become sig-
nificant only when two particles approach each
other closer than the de Broglie thermal wave-
length. Such effects can be handled by the use of
effective pair potential. s. These differ from the
bare Coulomb potentials only at short distances,
but prevent the collapse characteristic of purely
classical systems of particles of opposite charge.

The present work is restricted to the study of a
fully ionized nearly classical hydrogen plasma
made up of equal numbers of protons (Z = I) and
electrons. The "experimental" basis of the work
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II. THE MODEL

An equil. ibrium state of the plasma we have just
described is fully characterized by two indepen-
dent thermodynamic variabl. es. Obvious choices
include the temperature T and the ion (or electron)
number density n. It is more convenient, how-
ever, to work with dimensionless variables. To
that end, we define a couPling constant or PEasma
parameter 1" as

I'=l a,
where

l = e'/keT

(4)

is the Landau length, and introduce a dimension-
less length parameter r& by taking the ratio of
the ion-sphere radius to the Bohr radius ao, i.e.,

a Cps~ 8
aQo

(6)

Note that if n is measured in A ', its numerical
value is 1.61/r~.

The coupl. ing constant I" is roughly the ratio of
the mean potential energy of a pair of neighbor-
ing ions (or electrons) to the mean kinetic energy
of a particle in the plasma. Low-density plas-
mas are those for which I'&& 1, whereas in the
present work we are interested in the strong cou-
pl. ing regime, i.e., I -1.

Another length parameter is the Debye-screen-
ing length A~, where

is provided by the results of microscopic simula-
tions carried out by the method of "molecular
dynamics" (MD), a technique borrowed from the
field of classical liquids. ' Simulations have been
performed for three thermodynamic states of the
model plasma described in Sec. II. Results for
the static properties are analyzed in Sec. III;
the self-diffusion of the electrons and protons and
the electrical conductivity of the plasma are dis-
cussed in Sec. IV; Sec. V is devoted to the results
obtained for the longitudinal collective motions,
primarily to the charge-fluctuation (plasmon)
modes. The collective modes are' further analyzed
in Sec. VI in the framework of a memory-function
approach which takes explicit account of the cou-
pling between the microscopic partial densities of
the two charged species. Some concluding re-
marks and prospects for future work are con-
tained in Sec. VII. A preliminary account of parts
of this work has been published elsewhere. '

is the quantity & defined as

e = =4m&61' '.
D B

In order to understand the physical significance of
the parameter e it is sufficient to note that the
mean number of particles in a Debye cube is
2nAL), i.e., e '. lt follows that the concept of a
Debye-screening length loses its meaning in the
strong coupling regime, since in that case the
number E ' is less than one. Under such con-
ditions, the assumptions underlying the mean field
approach typified by the Vlasov approximation (or
its static analog, the Debye-Huckel theory) cease
to have any validity.

A measure of the importance of quantum effects
for either ions or electrons is given by the ratios
of the corresponding de Broglie thermal wave-
lengths, i.e.,

k
(2vm, k T)"" ' (2',k, T)~"

to the ion-sphere radius. Ionic quantum correc-
tions are in general completely negligible
(X;/a« 1), but the very low mass of the electron
means that electronic quantum effects remain
important up to relatively high temperatures. It
is well known' that inclusion of quantum-diffrac-
tion effects and electron Fermi statistics is es-
sential in order to guarantee the thermodynamic
stability of a plasma. In the nondegenerate elec-
tron gas, however, quantum effects come into
play only for pair separations which are small
compared to a, since k, /a & 1 for T/TJ, a 1. Note
that

The condition X, & a therefore imposes a restric-
tion on the values which can be taken simulta-
neously by I' and r, .

In order to treat the nondegenerate hydrogen
plasma by classical statistica1 mechanics, use
is made of effective pair potentials, which ac-
count for diffraction and symmetry effects in an
approximate way. Effective pair potentials may
be derived by expressing the quantum-mechanical
Slater sum

in a form reminiscent of the classical Bol.tzmann
factor, ' i.e., as

W=exp — v i,j )
(12)

and an alternative choice3 of plasma parameter In Eg. (11), g„and E„are the eigenfunctions and
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eigenvalues of the full Hamiltonian of the system,
j r&} denotes the set of all position vectors of the
N electrons and N protons of the plasma, and
v(i, j}represents the effective pair potential be-
tween particles i and j. In the classical (high-
temperature} limit, v(i, j) must reduce to the
bare Coulomb potential between the two particles,

2

v ~(r) = 1 —exp~
p~g j

with a, P=i (ions), e (electrons), and

k
(2~g~~k~T)" '

(14)

(15)

where p, z
—(m '+mz') ' is the reduced mass of

an o.-P pair. The fact that the potentials v ~(r)
remain finite as y 0 is a consequence of the un-
certainty principle and prevents the collapse to
which we have already referred. At the tempera-
tures of interest ~;;&&a. Thus the effective ion-
ion interaction is virtually identical to the bare
Coulomb potential at all separations.

To take account of symmetry effects (i.e., the
Pauli principle) for the electrons, a term must
be added to the effective electron-electron poten-
tial. It has been shown" that in the high-tempera-
ture limit

lim v(i, j) = r;-rz '

where e~, e&
——+ 1 (ions), or -1 (electrons). An ef-

fective potential determined in this way is usually
dependent both on temperature and density. Ef-
fective pair potqtitials appropriate to the low-
density limit have been derived for the hydrogen
plasma by Barker' and by Deutsch and collabora-
tors"'" from an exact numerical computation of
the two-particle Slater sum for electron-electron
and electron-proton pairs. At sufficiently high
temperatures (k~T & 1 Ry}, the contribution of
bound states to the electron-proton Slater sum can
be neglected. If, moreover, the scattering @tates
are limited to s waves, and if symmetry effects
are neglected for electron-electron pairs, the
following very simple effective potentials can be
der1ved

finitely heavy ions (m;/m, -~), &;,-&„and
4;]-0.

An important approximation made throughout
this paper is the neglect of the density dependence
of the effective pair potentials, even at electron
densities of order 10'4 cm '. We believe this to
be a reasonable approximation so long as 4 z/a
« 1, i.e., for a sufficiently nondegenerate plasma,
since there are some theoretical indications that
the density dependence of the v ~(r) is indeed
weak. We have also implicitly assumed that the
effective potential for clusters of three or more
particles is pairwise additive. The reason for
restricting the calculations to the simplest set of
effective potentials lies in our special interest in
the collective dynamical modes of the plasma:
We assume the character of these to be dictated
primarily by the long range of the potential and
therefore insensitive to details of the behavior
at short range. For the same reason, the numer-
ical simulations have been carried out with the
pair potentials defined in Eq. (14), i.e., uitkout
the symmetry part vt,'l(r) of the electron-elec-
tron potential. It will become clear from the
theoretical analysis given in Sec. VI that the col-
lective dynamics are largely unaffected by this
simplification. In order to avoid the difficult
problems associated with ionization equilib. -
rium, ' our calculations have been restricted to
temperatures of order 1 Ry (160000 K) or higher.
Figure 1 shows the region of the n-T plane of
interest in the present work, i.e., that corre-
sponding to a nondegenerate fully ionized and
strongly coupled hydrogen plasma.

In our MD calculations, we have simulated a
system consisting of 125 protons and 125 electrons
for the three thermodynamic states indicated in

= —1 —exp—
20 22 24 28 30

2

+k T(ln2)exp' (16)

where the first term vt4~(x) arises from quantum-
diffraction effects, while the second v„' (r) takes
care of symmetry. Note that 4„=&2%,, andforin-

In n

FIG. 1. Part of the density-temperature. plane; n is
in cm" and T is in kelvin. The shaded area represents
the region of approximate validity of the models de-
scribed in the text. The dots denote the thermodynamic
states for vrhich MD calculations have been made.
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Fig. 1 and Table I; similar cal.culations have al-
ready proved to be of value in the study both of
the OCP (Refs. 13 and 14) and of binary ionic mix-
tures. " Note that the condition g, (a is satis-
fied in all three cases whereas the condition T
&T& is satisfied only for I'=0.5, r, =1. Clearly
the approximations underlying the use of Eqs.
(14) and (16}are poorest for the case 1 =2,

A natural time scale in a MD simulation is the
inverse of the electron plasma frequency m~,
defined as

(u~ = (4sne'/m, )". (17)

TABLE I. Details of the molecular-dynamics calcula-
tions. &t is the time step in the numerical integration
and N& is the total number of steps in the simulation.

s
z(~
+(cm-')
~~(s ')
(d~t
Ãs

0.5
0 4
1.58 x 106
2.5 x10»
2.8 x 10~~

0.03
5.6 x 104

0.5
1
6.32 x 105
1.6 x1024

7.2 x10«
0.03
7.3 x104

2
1
1.58 x 10
1.6 x1024

7.2 x10
0.08
4.8 x 104

The coupl. ed equations of motion for the 250
particles in the system were integrated numer-
ically by a standard finite difference algorithm
with a time increment &t which is given for each
run in Table I. The time increment was chosen
to be as large as possible subject to an acceptable
degree of conservation of the tota1. energy and of
the total linear momentum of the system. Per-
iodic boundary conditions were used throughout
and the total force acting on a given particle from
all other particles in the basic cel.l, as well as
from the infinite array of their periodic images,
was summed according to a standard Ewald
procedure. "'" The total number of time steps
generated for each of the three thermodynamic
states is shown in Table I. It should be noted that
in practice each of the runs was broken up into
two parts of comparable length, and that overall
averages were taken over the total length of the
two parts.

A potential source of difficulty in such a simu-
lation is the large difference in time scales of the
electronic and ionic motions. The microscopic
dynamics scale roughly as the inverse of the
electron- and ion-plasma frequencies, co~ and
co~;, i.e., as the square root of the masses.
[Note that co~; is defined analogously to &o~, Eq.
(17).] Thus the time scale of the protons exceeds
that of the electrons by a factor of approximately
(m; jm, )' '(=43), the choice of at being dictated
by the electronic motion. Each of our runs covers

several thousand electron plasma oscillations,
but only of order 100 ion-plasma oscillations;
the statistics on the electronic motion are there-
fore correspondingly greater. However, despite
the large ion-to-electron mass ratio, we ex-
perienced no particular difficulty in either reach-
ing or maintaining thermal equilibrium.

Finally, it is useful to contrast the present MD
calculations with more standard simulations of
one- and two-dimensional plasmas, namely, those
based on a calculation of the forces from a nu-
merical solution to Poisson's equation on a grid
of finite mesh size." The latter technique is well
suited for nearly collisionless plasmas, since
close encounters between particles are not treated
correctly; it allows the simulation of relatively
large systems (N 104 particles) in the weak-
coupling limit (many particles in a Debye cube),
and has been applied successfully in recent years
to the study of plasma turbulence. The present
technique, on the other hand, is compl. ementary to
the former, since it is particularly efficient for
the simulation of strongly coupled plasmas in or
near, thermodynamic equilibrium. Since the num-
ber of particles in a Debye cube is of order one,
or less, the simulated system need not be so
large as in the previous calculations. The ex-
tension to nonequilibrium situations appears to be
feasible, and work in that direction is in progress.

III. STATIC PROPERTIES
'

The static structural information which we have
extracted from the simulations is contained in the
three partial pair distribution functions g;;(r},
g,,(r), and g„(r). We should stress from the out-
set that the computation of static quantities was
not the primary goal of the present work. Had
we been interested only in time-independent sta-
tistical averages, it would have been much more
efficient either to simulate a hypothetical plasma
in which ions and electrons have the same mass or
to use a Monte Carlo method. In fact, we ran one
equal mass simulation at j."=0.5, r, =0.4, which
allowed us to compute g~q(r) with considerably
more accuracy than in the three runs listed in
Table I. Since the effective potentials are as-
sumed to be pairwise additive, knowledge of the
pair distribution functions is sufficient to de-
termine both the pressure P and excess internal
energy U. Thus

P =1-—,'xngg g ~(r) r'dr,dv s(r),
B . a 0 0 dr

(18)
U r"
~ =xnPg j) g q(r) v, (r)-TS v q(r) ~r'dr.

(19)
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S z(k) = —(p (k)p (-k)), (20)

where n, P =i, e and
N

p (k) = P exp(ik ~ rt l
) . (21}

They are related to the Fourier transforms of the
pair correlation functions h z(r) =g z(r}-1 by

S z(k) =5 z+h z(k)

",

"sink~=5 z+4zn, ' h z(r)r'dr.
p

(22)

A linear combination of the partial structure fac-
tors which is of particular importance is the
charge structure factor, defined as

Szz(k) = (—p (k)p ( k))-SZ

where

[S,)(k) +S„(k)—2S(,(k)], (23)

Note that Eq. (19}differs from the usual expres-
sion' for the internal energy by terms related to
the temperature dependence of the effective po-
tentials (14) and (16).

The partial structure factors of the system are
defined as the static (equal-time} correlation
functions of the Fourier components of the micro-
scopic partial densities, i.e., as

for the pair distribution functions of fluids, the
most successful for ionic systems is the so-called
hypernetted chain (HNC) equation. " For the
binary system of interest here, the HNC approx-
imation for the three pair distribution functions
may be written as

g, z(r) = exp[-pv„z(r) +h, z(r) —c z(r) j, (29)

which supplements the three coupled Ornstein-
Zernike defining relations for the direct corre-
lation functions c z(r). In k space, the Ornstein-
Zernike relations take the form

h„z(k) =c z(k)+ Qh, „(k}6„z(k),
'y

CO ~

& z(k) = 4zn J c(r)r 'dr .
'0

(30)

(31)

We have solved the coupled Eqs. (29), (30), and
(31}numerically for several thermodynamic
states by a standard iterative procedure. Since
the c z(r) behave like Pv -z(r) for Large r, their
Fourier transforms are singular ( k '} in the
k-0 limit, and some care is needed if numer-
ical errors are to be avoided. In the present work,
we have adapted to the two-component case, the
procedure developed by Springer et al." and Ng"
for the OCP. We find that for I'=1, excell. ent

p'(k) =p"'(k) —p" (k) . (24) 2.0

The long-wavelength limit of the partial structure
factors is related" to the isothermal compres-
sibility by 1.5

(s~ ~

limS z(k) =nkzTlfr =kzT~
k~0 k~& r)

(25)

while the charge neutrality and perfect screening
conditions imply"" that

li.m~2Szz(k) = 1
~

Ok
(26)

1 k2.(k)
='-

k
'"".

Note that in the weak coupling (Debye-Htickel)
limit

(2V)

lim, , = limSzz(k) =
k2r~o ~k~/ r~0 + g)

(28)

Among the usual approximate integral equations

where k~ = I/AD is the inverse of the Debye
length (V), often called the Debye wave number.

The static dielectric function e(k) is directly
related to the charge structure factor by the fluc-
tuation-dissipation theorem'0 in the form

1.0—
I

IXL

Ql

0.5—

05—

0.5 1.0

r/a
1.5

FIG. 2. HNC results for partial pair distribution func-
tions. Full curves: Based on the potential model defined
by Eq. (14). Dash curves: Based on potential model
which incorporates electron symmetry, defined by Eq.
06)
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TABLE II. Thermodynamic properties. MD: molecular-dynamics results; HNC(l}: results
of HNC calculations based on potential model defined by Eq. (14); HNC(2): results of HNC
calculations based on potential model incorporating electron symmetry defined by Eq. (16).

PV
2N&g T 2nkg TXg

MD HNC(l) HNC(2) HN C(l) HN C(2) HN G(l) HNC(2)

0.5
0.5
2

0 4
1
1

0.91
0.89
0.63

0 ~ 940
0.928
0.737

1.394
0.966
1.089

-0.206
-0.243
—0.962

+0.044
-0.187
-0.435

1.082
1.101
0.754

0.788
1.012
0.728'

numerical convergence is obtained with very few
(-10) iterations. The three resulting pair distri-
bution functions are shown in Fig. 2 for I' =0.5
and rs =0.4. The qualitative features of the g s(r)
are as expected, and the agreement between the
"exact" MD data and HNC results is excellent;
similarly good agreement is observed for the
other thermodynamic states (see, in particular,
Fig. 1 of Ref. 6).

Figure 2 also illustrates the influence of the
Pauli exclusion principle on the three g„z(r}.
When electron symmetry effects [represented
by the term v„' (r} in Eq. (16}]are included in the
effective electron-electron potential, g„(r) is.
considerably depleted at short distances. In
particular, the obvious inequality g„(r=0)-; is
violated when v„' (r) is omitted, but is automat-
ically satisfied, at least in the low-density limit,
when it is included. The other pair distribution

functions g;;(r) and g;, (x) are much less sensitive
to electron symmetry considerations.

In Table II we compare selected thermodynamic
data from the MD simulations with the results
of HNC calculations for three thermodynamic
states. The HNC results have been obtained both
with and without the incorporation of symmetry;
as is to be expected, the additional repulsion be-
tween electrons arising from the Pauli principle
has the effect of considerably increasing the pres-
sure, especially at the lower temperature (I' = 2}.
The equations of state along three isochores, as
ca).culated from the HNC equations with the full
effective electron-electron potential [Eq. (16)j,
are shown in Fig. 3. The ion-electron attraction
manifests itself in a negative minimum of the
excess compressibility factor (P/2nksT -1)as a
function of coupling (or inverse temperature) at the
two lower densities. In Fig. 4 we show the in-

0.4
1.0 —,.

0.5
0.5

~ 0.2
I

C
C4

CL
m. O.l

D
0

GO

0
I

12

-O.l

r~ = l.5

FIG. 3. HNC results for the equation of state for the
model which incorporates electron symmetry, defined
by Eq. (16).

FIG. 4. Inverse static dielectric function for wz =1,
I'=0.5 (above) and I" =2 (below). Full curves: HNC
results for the potential model which incorporates elec-
tron symmetry, defined by Eq. (16). Dash curves: Deb-
ye-Huckel approximation.
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verse static dielectric function 1/e(k) as a func-
tion of the reduced wave number q =ak for r& =1,
I' =0.5 and 2. The HNC results (which are vir-
tually indistinguishable from the MD data) are
compared in Fig. 4 with the predictions of mean-
field (i.e. , Debye-Hiickel) theory embodied in
Eq. (2V}. The breakdown of mean-field theory is
particularly evident at 1"=2 where, as a con-
sequence of the strong correlations between par-
ticles, e(k) exhibits a negative region for q &3.

IV. SELF-DIFFUSION AND ELECTRICAL
CONDUCTIVITY

The self-diffusion of both ions and electrons
has been studied by computing the corresponding
normalized velocity autocorrelation functions
(ACF's), defined as

(v" (t) ~ v" (0))
0( ) &[~(N)[2) (32)

where v (f) is the velocity at time f of a given
ion (a=i) or electron (o.=e}. The MD results
for Z, (t) at I' = 0.5 and r~ = 0.4 and 1 are shown in
Fig. 5 and results for both Z~(t) and Z, (t) at
1 =2, r=1 can be found in Fig. 2 of Ref. 6. The
two diffusion coefficients D, and D; are then ob-
tained from the standard relation

(dv=~ J(t)dt,
4w

where ~& = ~&,. + ~~ is the square of the total
plasma frequency (note that &a~= m~, }. The nor-
malized ACF J(t) is defined as

( ) & j(f) j (o))
&I Il' (35}

with

j(t) = j&(t) —j,(t),
where

(36)

statistics on the ionic motion are those obtained
for the state point 1 = 2, r& = 1. In that case it is
found that Z, (t*) decays somewhat faster than
Z, (f*) at large times, ' and D;* is in consequence
some 20 to 25% smal. ler than DPI''. should be
noted that neither of the two velocity ACF's ex-
hibits any oscillatory behavior of the type ob-
served, under conditions of stronger coupling
(I' & 10), in MD simulations" of the OCP. In-
stead, the decay is roughly exponential, as can
'be seen from the inset to Fig. 5.

The electrical conductivity per unit volume o',

can be determined from the time integral of the
electr'ical current ACF J(t}, by the standard
Green-Kubo formula'

D =-B z tent
N O j (t)=gv; (f). (3'I)

0.8
00

0.6

0.4

0.2

0 25 50
I

100

~&, t

FIG. 5. Electron velocity ACF for j. =0.5, r&=0.4
(fu11 curves) and r& =1 (dash curves).

and results for the absolute and reduced
(D =D /a's&~ ) diffusion coefficients are listed
in Table III. Although the statistics on Zq(t) are
poor, it is clear that the functions Z;(f) and Z, (t)
are almost identical when plotted on the appropri-
ate reduced time scale (i*=&a~ t}; the two reduced
diffusion coefficients are therefore approximately
the same for given values of I' and r~. The best

Since the total linear momentum is conserved,
~.e.,

p(t) =m, ~, (t)+m, j,(t)
= P(0) (38)

it follows. that J(t) can also be written as

J(f) = 1
3

'P T &1 (f) ~jt(0)) ' (39)
B

Since fluctuations in j,(t) are much more rapid
than those in j;(t), it follows from Eg. (39) that
J'(f} should decay on roughly the same timescale
as Z, (t). This is true, as we have shown else-
where' for the case I'=2, r& =1, but it is also a
fact that the lifetime of J(t) is significantly longer
(by a factor of two or more) than that of Z, (t). We
have found similar results at 1"=0.5, r& =0.4 and
1, though in these two cases the runs were not
of sufficient length to yield reliable values for the
conductivity.

If the correlation between the velocities of dif-
ferent particles were negligible at all times, the
electrical conductivity could be determined from
the self-diffusion constants of the two species by
applying a relation of the Nernst-Einstein form,

f
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TABLE III. Results for self-diffusion coefficients and electrical conductivity. Starred
quantities are in units in which (d~=a=1 and either cu&, =1 (for D,*. , 7$*,, and ~$*;) or ~~=1 (for
other starred quantities).

I"= 0.5, xs = 0.4 I =0.5 vs=1 I"=2 rs =1

De(cm's ')

Dz(cm s ~)

$4

0'(mhocm ~)

12.3

15.7

0.489

0.333

0.643

3.6

17.2 x 105

0.274

0.284

7.2 a

14.5

0.349

0.515

0.732

2.15

1 7x105

0.182

0.451

1.23 '
2.47

0.910

0.409

1.01

0.047

0.36

0.686

1 la

0.9x105

0.60

' Results of molecular-dynamics calculations; other results obtained in the manner ex-
plained in the text.

namely,

or

— (Dt +Dd),
B

(40)

tation of the two ACF's in terms of Fourier-
Laplace transforms is obtained by writing

Z, (tr) fr Z(t)d=t"'
0

dZ„(t) =1- Z&u', ,f'+O(t'),
where

(42)

gg
QP~

3r -Im I

= —( ' D,.*+Dp . (41}4~ ~m,.

The slow decay of J(t) relative to that of Z, (f}
means that the true conductivity is considerably
larger than the estimate provided by E(l. (40).
This contrasts with the situation found for molten
sal.ts, which may be regarded as "pl.asmas" con-
sisting of ions of comparable mass and finite size,
where the measured conductivity in a typical case
has been found'3 to lie approximately 20% beloN)
the Nernst-Einstein value. Deviations from the
Nernst-Einstein relation in molten salts may be
explained in terms of short-lived positive correla-
tions in the motion of neighboring ions of opposite
charge, but the reasons for the behavior found
for the plasma are at present unclear.

The two velocity ACF's may be expanded in
power series about t =0. Thus

1
-i (o+ m z'" ((o) ' (44)

mi'~(t) =(o', exp(-f'/r, )

or, equivalently, by

mi'J((o) =&u', r, [4,((or, )+iC, ((or, )],
with

4, (x) = —,
'

Wv exp(-x'/4),
x/2

4,(x) = exp(-x'/4) exp(y2) dy .
0

The relaxation time v, is related to the self-
diffusion coefficient D by

k, T
D = e &((o =0}

mN

(45)

(46)

(47)

(48)

where mi'~((o) is the transform of a first-order
memory function mi'J(t). A single relaxation-
time approximation for m, ' (f) which incorporates
correctly the short-time expansion (42) is given
by

tr*„= - Z, fZ„(r)r'r„r(r)d r,
~O 0 Q~C V

(48)

with +=i, e and n(& ) =eo, i An exact. represen-
k~T
mtz PW 4Pztzrttl

(49)
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If we determine v;& and 7~ by forcing agreement
with the MD values of D; and D„ the resulting
ACF's reproduce the results of the simulations
to better than 5% over the whole range of t.

A similar analysis can be made of the electrical
current ACF. The relevant short-time expansion
ls now

p l(k, t) = g exp[ik r( (t)]. (55)

be the time-dependent microscopic density of
species e; the Fourier components of the density
are

J(t) =1——'(d«t'+0(t e) (50)
%e now define the three partial density-density
time correlation functions as

with
E «(k, t)= —(p~ i(k, t)p ( k-, 0)). (56)

[g;,(r) —I]&'v;,(r) d r
mime v

(51)

If we approximate the first-order memory func-
tion in a manner similar to Eq. (45}, the corre-
sponding relaxation time 7'~ turns out to be re-
lated to the electrical conductivity by the formula

te +OO

S «(k, (d) = — e'"'E «(k, t)dt.
23 et

(57)

As in the static case [see Eq. (20)], these are
functions only of the length (as opposed to direc-
tion) of k. Note also that E„.(k, t}and E;,(k, t) are
identical. The corresponding dynamical structure
factors are the Fourier transforms given by

o' = ~J((d0)
4m

~OP ].
4w m'"((0=0)

~co 1
2W V ti' (d)gTd

(52)

p"(k, t) =Mp ' (k, t) + p
' (k, t),

P'(k, t) =P'"(k, t) —P"(k, t),
(58)

(59)

Another set of correlation functions are those
defined in terms of the dimensionless microscopic
densities of mass and charge:

By again imposing the MD value for the transport
coefficient, a reasonable fit to the observed ACF
is obtained in that case (I' = 2, rz = 1) for which re-
liable results on J(t) are availa'ble out to large
times. In the other two cases (I'=0.5, rz ——0.4
and 1}, we have inverted this procedure. That is
to say, we have fitted the theoretical expression
for J(t} to the early part of the decay, i.e., down
to J(t}= 0.3, and h'ave then extended the curves to
large t in order to extract estimates for o. The
results, together with values for the other pa-
rameters entering both here and in the analysis
of Z (t), are listed in Table III. The conductivities
quoted in Table III differ markedly from the values
given'~ by the formula of Spitzer, i.e.,

1,.53 x 10 4 T'~'
o/(mhocm ') = (53)

ln v31' '"
where T is in kelvin. Indeed, at the l.ower temper-
ature (I'=2), Eq. (53) predicts a negative con-
ductivity. This breakdown of the formula is not
unexpected, since it was derived under the con-
dition I'&& 1.

V. COLLECTIVE LONGITUDINAL MODES

%'e now turn our attention to the wave-number
dependence of the longitudinal collective motions
of the ions and electrons. Let

where M =m;/m, = 1836 is the ion-to-electron
mass ratio. (Thus we have arbitrarily chosen the
electron rest mass as our mass unit. ) The as-
sociated correlation functions are defined as

E,&(k, t) = —(p'(k, t)p (-k, 0)}, (6o)

where a, b =M, Z and the corresponding dynamical
structure factors are given by

(63}

S««(k, &) = 2[S;;(k, («) —2S~, (k, &u}+S„(k,~)]. (64}

As is well known, the short-time expansion of
any of the functions E «(k, t) is intimately related
to the frequency moments of the corresponding
dynamical structure factor. Thus,

(-))"e™~~(k,t = 0) =f ups (e, v)de
m ()0

The latter quantities are linear combinations of
the partial dynamical structure factors. On
writing out the relations explicitly, we find

S»(k, co) = —,'[M'S;, (k, v) + 2MS„(k, &o) +S„(k,(d)],

(62)

Sdez(k) (d)) = «[h1Scs(k) (d))+ (1 —M)S&e(k~ (d)) -See(k, (d)],

p (r, t)= +6[r-r; (t)]
&=1

(54) —g (2n)
NS (65)
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(66)

where E '«(k, t} is the (2n)th derivative with re-
spect to t. The frequency moments are in turn
expressible in terms of purely static properties.
A straightforward calculation shows that

Qtg«(k) =S «(k),

trical conductivity o(k, (()}, which relates the in-
duced electric-current density to the external
electric field, can be determined" from a know-
ledge of the charge-fluctuation spectrum via the
expression

n&»(k)=6 ' k', (6V) e(k, (()) = 1 ——. o(k, (d) .4n
2 I'd

{74)

(»( )
kzTk ~(3k k«T

60 k =—

,I.& 1(&)}, (88)
(m, m« '"

In particular, the static conductivity o introduced
in the preceding section is the long-wavelength
low-frequency limit of the real part of u(k, &()),

with
o = lim lim &'(k, («) .

ao~p Q~p
(75)

Ko„=— V' v~„r g~p r drQ f'

~

v"„(r)+-v'„(r) g «(r)r'dr, (69)

l,(k)=n Je. p((ized. r) ()r()( f))tv, (r)di

=1+,kzTXzz(k, &«)
&k, m

(V3)

which generalizes the static result (2V). Finally,
the wave-number and frequency-dependent elec-

=4wn v "p r kr 'j, kr —j~ kr
p

+(2/r)v'«(r)(kr) 'j,(kg)g„«(r)r'dr,

(7o)

where 0 is a unit vector parallel to k, j„is the
spherical Bessel function of orde'r n, and primes
denote differentiation with respect to r.

For several. reasons, the most interesting of
the various dynamical structure factors is the
charge-fluctuation spectrum Szz(k, &u}. The
linear response of the plasma to an external el.ec-
tric field can be described in terms of the charge-
response function (or generalized susceptibility)

Xsz(k, ~) = Xzz(k, ~)+&X" (k, ~}, (Vl)

which is related to Szz(k, (d) through the fluctua-
tion-dissipation theorem2P

f&+OO

Xzz(» &) =-
k T ~'Szz(k, ~')

~ ~oo

x iP, +«z6((d- &o') id'&',
1

co'- v

(V2)

where P denotes the principal value. The wave-
number and frequency-dependent diel. ectric func-
tion is expressible" in terms of the response func-
tion by

q = (6z'/N)". (n' n+'+s')'" (76)

where n„n„n, are integers, of which one at least
is nonzero. For the size of the system simulated
in our work (f(I' = 125 electrons or ions), the smal-
lest accessible wave number is therefore q
=O.V80. Results on E «{q, t) have been obtained
for the five small. est possible values and for
q =3q = 2.340; numerical Fourier transformation
is then used to determine the three dynamical
structure factors and hence the linear combina-
tions (62)-{64).

Results for Szz(q, &()) at the four smallest wave
numbers are shown in Fig. 6 for the case I' =0.5,
r~ =0.4, in Fig. 7 for I'=0.5, r&-—1, and in Fig. 8
for l =2, r~ =1; the zero-frequency values,
Szz(q, (() =0) are listed in Table IV. Examination
of the spectra reveals a general. pattern. In all.
cases there are two rather well-separated com-
ponents; a sharp low-frequency (or "central" )
peak linked to the slow ionic motions, and a broad
peak, or shoulder, at frequencies of the order of

e~, which is clearly a manifestation of the much
faster electronic motions. In fact, in the high-
frequency range, Szz(q, (d} is almost entirely de-
termined by S«(q, &u) alone, the contributions from
S«(q, (v) and S;,(q, (d) having practically disap-
peared. The main difference between Szz(q, (v)

and S„(k, («} is the presence in the latter of a

From Eqs. (V2}-(74}it is clear that all wave-
number and frequency-dependent electrical. proper-
ties of a plasma in or near thermodynamic equi-
librium can be determined from a knowledge of
the equilibrium charge-fluctuation spectrum
Szz(k, (d). The latter quantity is directly mea-
surable in the course of MD simulations. From
the configurations generated in the MD runs de-
tailed in Table I, we have computed the three
partial density-density correlation functions
E «(k, t) for wave numbers compatible with the
periodic boundary conditions. In reduced units the
latter are of the form



MICROSCOPIC SIMULATION OF A STRONGLY COUPLED. . .

9 = 0.780
10-

~ ~

5

q
= 1.102

q =0,780

II

I

II

q
= 1.102

3.

N

~01
q =1.350 q =1.559

~ ~

I-
5$

I

I

3
C7 I

N

10.
'

q =1.350 q =1.559
~ ~

~ ~

central peak which is considerably more pro-
nounced than in the former. This difference is
particularly noticeable at small q, a detailed
comparison is made in Fig. 3 of Ref. 6.

The high-frequency peak in S„(q, (o) and Szz(q, &u)

represents a mode corresponding to a propagating
charge fluctuation or, put more simply, a plasma
oscillation. The damping of the propagating mode

10-
q

= 0.780 q = 1.102

E
~

3
O

N
H

M q =1.350
10-I

CI
= 1.559

FIG. 7. Same as in Fig. 6, but for I' =0.5, rz =1.

2
GD/GD pe

FIG. 6. Spectrum of charge-density fluctuations (mul-
tiplied by 100) for I' =0.5, rz =0.4 and four values of q.
Dots: MD results. Full curves: Calculated from memory-
function theory described in text. Dash curves: Vlasov
theory.

FIG. 8. Same as in Fig. 6, but for I'=2, rz=1.

increases rapidly with q. In fact, for the two
high-temperature runs (1 =0.5, xz =0.4 and 1),
the mode is well defined only at the smallest ac-
cessible wave number. In the ease of stronger
coupling (I' =2), the plasmon peak is considerably
sharper and shifted to lower frequencies (see Fig.
8). The MD spectra shown in Figs. 6-8 are seen to
differ significantly from the standard mean-field
(Vlasov) results, ' particularly in the strong cou-
pling case. The failure. of mean-field theory to
reproduce the MD results reflects the importance
of collisional damping; only at the largest wave
number investigated (i.e., q =2.340) are the pre-
dicted spectra everywhere in reasonable agree-
ment with the MD results.

Before turning to a theoretical analysis of the
data generated in the simulations, it is instructive
to make a brief comparison with results obtained
for related systems. In the OCP, one of the com-
ponents is "smeared out" to form a uniform neu-
tralizing background. Hence there is only one
characteristic (plasma} frequency, the charge-
fluctuation spectra exhibit no trace of a central
peak, ""and the high-frequency region of the
spectrum (i.e., the plasmon peak} bears only a
qualitative resemblance to that seen in the present
calculations. A more detailed comparison (for
the same value of the coupling constant) is made
in Ref. 6. On the other hand, molten alkali halides
are true two-component systems with some fea-
tures in common with the hydrogen plasma. The
most important differences are that the masse's
of the two components in the molten salt are of
the same order of magnitude, and that under lab-
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TABLE IV. Values of S«(q, =0). MD: molecular-dynamics results; mft: results of mem-
ory-function theory described in text; V= predictions of Vlasov theory.

MD

&s =0-4
S (q, ~=0)

mft

~=0.5, y's=l
S (q, (d=0)

MD mft ' V

I =2 ys=l
S„(q,~=0)

mft V

0.780
1.102
1.350
1.559
2.340

0.26
0.86
1.20
1.45
2.52

0.32
0.79
1.26
1.60
2.48

0.39
0.80
1.17
1.38
1.91

0.33
0.85
1.28
1~ 80
2.10

0.40
0.83
1.22
1.51
2.23

0.39
0.80
1.17
1.38
1.91

0.02
0.07
0.21
0.40
1.84

0.025
0.045
0.15
0.32
1.70

0.064
0.16
0.29
0.39
0.90

oratory conditions the coupling constant is much
larger (I'= 50) than for the plasma. In earlier
calculations" on a simple symmetric (eciual-
mass) model for molten salts, the charge-fluc-
tuation spectrum was shown to have a rather
strongly damped plasmon peak. Because of the
strong coupling, the plasmon mode is found to
persist to wave numbers which, in reduced units,
are somewhat higher than in the plasma. The
central peak, however, is broader and less pro-
nounced in the molten salt calculations than it is in
the present work„where it describes what has
been termed an "interspecies momentum relax-
ation" mode. " ' It is clear that in molten salts
there is no clear cut distinction between short-
and long-time scales of the type found here.

It should be noted, finally, that the MD simula-
tions so far undertaken do not yield reliable re-
sults for the mass-mass and mass-charge dy-
namical structure factors since, as shown by
Eqs. (62) and (63), these are dominated by the
slow ionic motions. However, the theoretical
analysis sketched in Sec. VI does give some in-
formation, concerning the sl.ow modes of the sys-
tem.

VI. THEORETICAL ANALYSIS

We have seen in the preceding, section that
Vlasov theory is inadequate for the description
of the charge-fluctuation spectra obtained in the
MD calculations. To this we should add that a
rigorous kinetic theoretical analysis" shows that
ion-electron collisions cause the plasmon mode
to be damped and shifted even at long wavel. engths.
Such effects are neglected in the Vlasov treatment.
Furthermore, since the Vlasov equation contains
no collision term, the spectrum at a particular
wave number depends onl.y on the coupling con-
stant F, not on the parameter rs,. in fact, com-
parison of Figs. 6 and 7 reveals a weak but non-
negligible dependence on xs in the MD results.

To describe the results of the MD calculations,

where the p '(k, t) are the Fourier components
of the partial densities, defined by Eg. (55}.
However, it may be physically more appropriate
to consider two independent linear combinations
of the partial densities, such as the mass and
charge densities introduced in Egs. (58) and (59}.
Following Abramo et al,"we define the following
combinations, characterized by a single wave-
number-dependent parameter 8(k}:

p'"(k, t) =M'~p'"(k, t) sin8(k)

+ pi'i(k, t) cos8(k), (76)

p
' (k f) =M' 'p '

(k, t) cos8(k)

—p
'

(k, t) sin8(k),

where M=m;im, . The choice of 8(k) will be
specified later, but for certain values of 8(k)
some simple rel.ations are obtained. Thus,

8(k) =~w p
' (k, t) =M"p' (k f)

p(2) (k t) p(8) (k t)
(80)

it is necessary to develop a strong coupling theory
which takes proper account of static correlations
and, in particular, of the coupling between the
microscopic densities of ions and electrons. In
doing so, we have adopted a Mori-Zwanzig mem-
ory-function approach of the type employed by
Abramo et al.29 for the analysis of collective mo-
tions in ionic liquids. By proceeding in this way,
we obtain explicit expressions for the three partial
dynamical structure factors S z(k, ru), whereas
Vlasov theory yields only the function S»(k, &o).

In view of the importance of ion-electron corre-
lations, it is natural to attempt a description of
the col.lective motions in the plasma in terms of
the equation of motion of the two-component vector
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8(k) =sin '
M+ 1)

1 i]h
p' (ic, t}=( p"(ic, t),

j.h
P'*(& ()=(M ( u*(& ').

(81)

matrix. Writing the latter as

M ' (k, z) = m ' (k, z) [E(k, t = 0)] ', (90)

m ' (k, z) = —[p. ' (k)+z 'p ' (k)+O(z ')]

it follows from Eq. (87) that the high-frequency
expansion of m ' (k, z) is given by

We now consider the description of the dynam-
ical properties of the system which results from
choosing for the components of [A(t}) the linear
combinations defined by (V8} and (79}. The in-
formation we require is contained in the 2 x 2
correlation function matrix defined as

with

(k) =Q 2 (k}=(AA *),

P ' (k) = Q ' (k) —Q ' (k) [Q(' (k)] 'Q ' (k)

(91)

(92}

F(k, t) =(A(t) A*(0)),

with elements (a, k =1, 2):

E,o(k, t) = (A, (t)A,*(0))

= -(p '(k, t)p "(-k, 0)),

(82)

(83)

The matrix elements of p, ')(k} are

~(2)(k) p(2)(k)

(93)

(94)

the Fourier-Laplace and Fourier transforms of
which are given, respectively, by

1
=Q(,2~(k)+

( )
Q(„')(k)Q(„')(k)Q(", (k), (95)

E,()(k, z) = e'"F,o(k, t) dt (84) (96)

and

E,o(k, &o) = —
J

e'"'F,
(,(k, t) dt

where

(k) = Q(o) (k)Q(o) (k) —[Q o) (k)]

=M(S;;(k)S„(k)—[S;,(k)]') . (9V)
1-,= —E'o(k, z = &u) .r" '

From the spectral representation

f CO

Z —40

(85)

(86)

it is straightforward to derive the high-frequency
expansion of F,o(k, z) in terms of the frequency
moments of P„(k, o)}, viz. ,

;~Q(2.)(k)F.o(k, z) = -~
Z yt- p

(8V)

The elements of the frequency-moment matrices
Q '" (k} are linear combinations of the moments
Q(f), the first three of which are given explicitly
by Eqs. (66)-(68). Note that the form of Eqs. (V8)
and (V9) means that

Q(2) (k) =Q,",'(k}=0,

i.e., the second frequency-moment matrix is
diagonal for any choice of 8(k).

The correlation function matrix satisfies a
generalized Langevin equation' of the form

[M(') (k, z) -iz] F (k, z) =F (k, t = 0), (89)

where M(') (k, z} is a first-order memory-function

In obtaining these results, use has been made of
Eq. (88).

The memory-function hierarchy can be trun-
cated at first order by making a simple ansatz
for m, ~o (k, t). As an example, we could write
the memory functions in Gaussian form, i.e., as

m(', )(k, t) =m(,"(k, t =0) exp(-[t/~, ((k)]'}
= ((t(o(,

) (k) exp(-[t/7„(k)]'] (98)

or

and determine the three relaxation times 7„(k),
7, (k)[= r»(k)], and r»(k} in terms of the quantities
p, ,noby identifying the high-frequency expansion of
(98) with the exact expansion given by Eq. (91).
Such a procedure was in fact adopted for binary
ionic mixtures (mixtures of OCP's) in Ref. 30. In
the present case, the resulting charge-fluctuation
spectra are in fair agreement with the MD re-
sults, but significant improvement can be achieved
by passing to next order in the memory-function
hierarchy. The second equation in the hierarchy
relates the first-order memory-function matrix
to a second-order matrix M ' (k, z) in a form
analogous to (89), i.e.,

[M ' (k, z)-iz]M ' (k z) =M " (k, t =0) (99)
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[M(')(k, z)-iz]87' (k z) =% ' (k, t =0). (100) m(', (k, t) = p.,',) (k) exp(- [t/7„(k)]2) . (104)

m ' (k, z) =-[jtL ' (k)+O(z ')].z (102)

This result follows from Eqs. (91) and (100); the
matrix elements of p,

' (k) are given explicitly
by Eqs. (94)-(9V).

We now proceed by making an exponential or
Gaussian approximation for m(', )(k, t) on writing
either

The normalized second-order memory-function
matrix is defined by the equation [cf. Eq. (90)],

M(' (k z}=m ')(k z) [m(' (k, t=0)] ' (101)

and has a high-frequency expansion starting as

(105)

This leads immediately to an equation for tan8(k}
in the form

Adopting the approach of Abramo et al. , we
choose the disposable "mixing parameter" 8(k)
so as to diagonalize the matrix p(' (k); this has
the effect of diagonalizing m(' (k, z) within either
of the approximations represented by Eqs. (103}
and (104). If follows that the resulting dynamical
structure factors will depend, for a given wave
number, on only tyro independent relaxation times
7»(k) and r»(k). From Eq. (95) we see that the
condition for diagonalization is

Q'„'(k)Q,", (k)Q(;2)(k) =-t (k)Q(»" (k).

or

m(, 22) (k, t) = p(2) (k) exp[-t/v, 2(k)] (103) tan28(k}+ Q(k) tan8(k) —1 =0,
where

b(k) Q(4()k) +S„(k)[ Q,(()k)]' M(h-( k) Q; ((k)+S(((k)[Q„' (k)]'}
M'"(6(k)Q'„"(k)+S,(k) [Q,',"(k)]') (10V)

limtan8(k) =M'', (108)

From the known limits for small and large k of
the various static quantities appearing in Eq.
(10V), it is easily shown that

Q(»(k) and Q( )(k)/Q (k) by imposing the require-
ment that for k- the resulting values of the
dynamical structure factors at zero frequency
should reduce to their known independent particle
limits, i.e.,

lim(an8(k) =~. (109) m,.lim E» (k, (d = 0) = lim MS(; (k, (o = 0) =
k~~ O

By comparing these results with those contained
in (80) and (81) we find that in the l.ong-wavelength
limit the linear combinations p ' (k, t) and p ' (k, t)
reduce (apart from constant factors) to the mass
and charge densities (58) and (59), whereas in
the limit k- they reduce to the partial densities
defined by Eq. (55). From a physical point of
view, this limiting behavior is very satisfactory.
In the limit k-0 we expect the dynamical behavior
to be dominated by two well-defined longitudinal
modes linked to mass and charge fluctuations,
i.e., a sound-wave mode and a plasmon mode. On
the other hand, the l.imit k- corresponds to
ideal-gas behavior, and the particles are expected
to move independently; the approach to the ideal-
gas limit necessarily involves a decoupling of
fluctuations in. the densities of the individual
species.

We are left finall. y with the problem of deter-
mining the two relaxation times T«(k) and r22(k).
Here again we follow the same lines as Abramo
et al. ,"adopting a prescription suggested earlier
by Lovesey"; r„(k) (a =1, 2) is calculated from
the characteristic squared frequencies Q ' (k)/

(110)

lim E»(k, &u = 0) = lim S (k, (o = 0) =
k ~ 2 k &B

The resulting expressions for the two relaxation
times associated with the Gaussian memory func-
tions (104}are

Q(4) (k} Q(2) (k)Q(0) (k)) 1/2

Q'" (k) &(k)

Q ' (k) Q (k)Q (k)&

Q,'2) (k) &(k) i

(112)

(113)

The corresponding relaxation times for the ex-
ponential memory functions differ from these only
by a factor (w/4)'~2.

To determine the long-wavelength behavior of
the two relaxation times, it is necessary only to
replace the quantities appearing on the right-band
side of (112)and (113)by their limiting values for
k- 0. In this way it it easy to show 7»(k} diverges
as k- 0, but that v22(k) remains finite. Since in
the small-k limit, p ' (k, t) and p

' (k, t) go over,
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TABLE V. Values of the frequency moments and relaxation times appearing in the memory-
function analysis described in the text. All results are based on HNC calculations for poten-
tial model defined by Eq. (14). Starred quantities are in units in which co~=1.

s5e g(4) g
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(a) I =0.5, y'g =0.4

0.307
0.767
1.074
1.381
1.534
2.301

0.5461
0.5803
0.6256
0.6823
0.7117
0.8368

0.5235
0.4386
0.3600
0.2813
0.2454
0.1185

0.5630
0.6590
0.7390
0.8117
0.8424
0.9386

0.2364E —07
0.2607E —06
0.7651E—06
0.1825E—05
0.2665E —05
0.1209E—04

0.3646E —04
0.2092E —03
0.3765E —03
0.5626E —05
0.6578E —03
0.1109E—02

0.7759E—01
0.8104
0.2360E + 01
0.5665E- 01
0.8314E+ 01
0.3879E+ 02

101.1
45.8
33.4
26.2
23.7
15.9

2.18
1.07
0.785
0.616
0.556
0.374

0.307
0.767
1.074
1.381
1.534
2.301

0.5620
0.6159
0.6662
0.7191
0.7447
0.8494

0.5344
0.4608
0.3944
0.3270
0.2952
0.1709

0.5681
0.6468
0.7142
0.7790
0.8080
0.9106

0.2593E —07
0.2751E—06
0.7936E—06
0.1873E—05
0.2724E —05
0.1223E—04

0.4103E —04
0.2487E —03
0.472 9E —03
0.7521E—03
0.9085E —03
0.1797E—02

0.8659E- 01
0.8985
0.2574E+ 01
0.6066E+ 01
0.8828E+ 01
0.3997E+ 02

93.9
43.6
32.4
25.7
23.3
15.8

1.73
1.00
0.756
0.602
0.546
0.370

(c) I =2, &&=1

0.307,0.7033
0.767 0.5638
1.074 0.5131
1.381 0.5065
1.534 0.5171
2.301 0.6493

0.7130
0.5816
0.5000
0.4274
0.3937
0.2495

0.7393
0.7191
0.7382
0.7766
0.7989
0.8987

0.5514E—08
0.4100E—07
0.9521E—07
0.1902E—06
0.2588E —06
0.9414E—06

0.9507E —05
0.5243E —04
0.9124E—04
0.1320E—03
0.1522E —03
0.2461E —03

0.1776E—01
0.1137
0.2480
0.4897
0.6721
0.2659E+ 01

170.08
77.3
58.4
47.1
42 ~ 9
29.8

2.40
1.73
1.38
1.13
1.04
0.72

and

(116)-iz+m'"(k z)/Q"'(k) '

where m, ', (k, z} is the Fourier-I, aplace trans-

respectively, to the microscopic densities of mass
and charge, these results reflect the fact that the
sound-wave mode becomes overdamped in the
limit k 0, whe'reas the plasmon mode is not a
genuine hydrodynamic mode but rather a "relax-
ation" mode ' with a lifetime which remains
finite even in the long-wavelength limit. For
intermediate and large wave numbers (q 2 1),
we find as expected, that 7»(k)/r»(k}=M''.

The final expressions for the functions E,,(k, z)
may be written as

E„(k,z) = —(,[Q„"(k)Q'„' (k)",, (k, z)
p

+Q„'l(k)QI; (k)mi'l(k z)

i z Qi ~ol (k)&(k—)], (114)

with

D(k z) =m ' (k z)m ' (k z)-(d'dk(k)

-iz[Q„(k)m ' (k, z)+Q„' (k)m ' (k, z)]

form of one of the two approximate memory func-
tions (103) and (104). The corresponding dynam-
ical structure factors S„(k,&u)[=F„(k, v)] are ob-
tained by taking the real part of E,~(k, z) [see
Eq. (85)]. It is then straightforward to deter-
mine S„„(k,ar}, Szz(k, u), and Szz(k, &o) by in-
version of the linear relations ( I8}and (79) and
the use of Eqs. (62)-(64)-.

The static ingredients needed for the evaluation
of Eqs. (114)-(116)are the frequency moments of
zeroth, second, and fourth order. From Eqs.
(66}-(68)we see that these quantities are en-
tirely expressible in terms of the pair potentials
and the pair distribution functions; the latter may
be determined either from the simulations or,
with high accuracy, by numerical solution of the
coupled HNC equations (see Sec. III). Results ob-
tained from HNC calculations for the nontrivial
(i.e., zeroth- and fourth-) frequency moments and
for the relaxation times v»(q) and r»(q) appropri-
ate to the Gaussian memory functions (104) are
listed in Table V for several values of q and the
temperatures and densities corresponding to the
MD simulations. (For technical reasons, the the-
oretical expressions have been evaluated for
wave numbers which differ slightly from those
studied in the MD calculations. ) The resulting
charge-fluctuation spectra are plotted in Figs.
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15- r =o.s

c~ = 0.4

0.307

10-
8'(q, ~)

10-

0.8 1.0

FIG. 9. Spectrum of charge-density fluctuations (mul-
tiplied by 100) for I' =0.5, rz =0.4 and q =0.307. Full
curve. : Calculated from memory-function theory describ-
ed in text and based on potential modeI. defined by Eq.
(14). Dot-dash curve: The same, but incorporating the
electron symmetry term, defined by Eq. (16). Dash
curve: Vlasov theory.

. 10-

r =05

cg =1

q =0.30"I

10 1

43/Crd pp

1.4

FIG. 10. Same as in Fig. 9, but for I' =0.5, r& =1.
The effect of electron symmetry is negligible in this
case.

6-8 for comparison with the MD results. Al-
though the comparison is complicated by the scat-
ter in the "experimental" data, the agreement is
clearly very good. If the exponential memory func-
tions (103}are used, the good agreement is
partly spoiled; the subsequent discussion is there-
fore limited to the Gaussian approximation rep-
resented by Eg. (104). The theory also yields
results for the other dynamical structure factors,
including S„„(q,&o} and S„z(q, &u). These latter
functions have an uninteresting structure, con-
sisting solely of a central peak which broadens
steadily with increasing q.

0.5 1.0

Gd / Ga3 pp

1.5

FIG. 11. Real (above) and imaginary (below) parts of
the complex dielectric function for I" =0.5, q =0.307.
Dash curves: Vlasov theory. Other curves: Results of
memory-function theory described in text for x& =0.4
(full) and r &

=1 (dash-dot) . Memory-function results
are based on the potential model which incorporates
electron symmetry, defined in Eq. (16).

Since the spectra predicted by the memory-
function scheme are in such good agreement with
the results of the simulations, it seems natural to
use the same theoretical approach to obtain in-
formation on the col.lective dynamical modes in
situations for which there are, as yet, no MD
results available. Of particular interest is the
behavior of the charge-fluctuation mode at long
wavelengths. Accordingly, in Figs. 9-12, we
show results obtained at q = 0.30V both for Szz(q, &o}

and for e(q, ar). The shortcomings of the Vlasov
approximation which are already apparent at
larger values of q (see Figs. 6-8}are even more
strikingly evident here. The comparison made
for c(q, ~} (Figs. 11-13)is particularly instructive,
since it reveals that mean-field theory can yield
results which are qualitatively incorrect, even at
relatively large values of q (Fig. 13). When

q «ah~, collisionless (Landau) damping is neg-
ligible, and in the high-frequency region the
Vtasov spectrum reduces to a near delta-function
form centered close to e~. Examination of Figs.
9 and 10 shows that col.lisional damping has not
only the obvious effect of broadening the plasmon
peak, particularly at the lower density, but also
that of shifting it to higher frequencies. At larger
q, however, the shift is negative. The situation is
summarized in Fig. 14, where the dispersion of
the plasmon peak is plotted for the three thermo-
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l =05
r~ = 0.4

-25- 1.0

3

0.5 1.0 0.5 1.0 1.5

FIG. 12. Heal (above) and imaginary (below) parts of
the complex dielectric function for F =2, x& =1 and

q =0.307. Full curves: Calculated from memory-function
theory described in text for potential model which incor-
porates electron symmetry, defined by Eq. (16). Dash
curves: Vlasov theory.

10- E'( q, (u}

-10—

20-

10-

0.5 'l.0

~ lapp
FIG. 13. Same as in Fig. 12, but for q =1.074.

dynamic states for which MD calculations have
been made. In each case, the plasmon mode at
infinite wavelength is shifted to a frequency lying
above au~. For a given coupling constant, the
magnitude of the shift is quite sensitive to the
value of r&, but there is qualitative agreement,
at least for 1"=0.5, with a weak coupling calcula--
tion due to Baus.

One factor that we have ignored so far is the
effect of electron symmetry on the collective

FIG. 14. Plasma dispersion curves as measured from
the position of the high-frequency peak in Szzg, co) for
F =0.5, w& =0.4 (above); F =0.5, r& =1 (center), and
F =2, r& =1 (below). Dots: MD results. Full curves:
Calculated from memory-function theory described in
text. Dash curves: Vlasov theory. The dash-dot curve

~ for F =0.5, x& =0.4 shows the effect of electron symme-
try as calculated from memory-function theory.

dynamics of the plasma. Since the charge fluc-
tuations are dominated by the long range of the
Coulomb potential, we do not expect electron sym-
metry to make a major contribution to Szz(q, &o),

notwithstanding its importance for static proper-
ties (see Sec. III). As a check, however, we have
repeated the memory-function calculations with
the frequency moments based on the potential
model (16). Results obtained for Szz(q, a&) at
q =0.307 and I'=0.5, y& =0.4 are plotted in Pig. 9.
The effect is small, but increases with increasing
q, the extra repulsion in the electron-electron
interaction causing a shift of the plasmon peak to
higher frequencies; dispersion curves computed
with and without electron symmetry are compared
in Fig. 14. At 1"=2, which is close to the electron
degeneracy limit, the effect not surprisingly, is
more pronounced, but at a ten times higher tem-
perature (I" =0.2) it is everywhere completely
negligible.

Finally, we have made a preliminary study of
the influence on the charge-fluctuation spectrum
of changes in the mass ratio M by extending the
memory-function calculations to the somewhat
extreme case of a hypothetical plasma made up of
protons and muons, for which M= 8.88. Results
obtained for both electron and muon plasmas at
the same values of j." and r~ are shown in Fig.
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q = 0.307 q = 0.767
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15. [Note that in absolute units the temperature
of the muon plasma would be about 20'f (=1836/
8.88) times higher than in the electron plasma
and the density would be approximately (207)'
times greater. ] The main difference between the
bvo is the absence of an intense central. peak in
the case of the muon plasma, though there is a
weak low-frequency peak at q = 0.767 which is
clearly linked to the motion of the protons. In
other respects, the spectra are surprisingly
similar.

Vrr. DISCUSSION

We have shown that MD calculations on a semi-
classical model of a dense nondegenerate hydrogen
plasma are technically feasible despite the large
difference in time scales of the ionic and el.ec-
tronic motions. Our quantitative results may be
summarized as follows. First, the static proper-
ties of the plasma are very well described by the
relevant system of coupled HNC equations. Sec-
ond, computation of the ion and electron self-
diffusion coefficients and of the electrical can-
ductivity shows that the latter considerably ex-
ceeds the sum of the two mobilities. Third, the
spectra of charge fluctuations and the complex

FIG. 15. Spectrum of charge-density fluctuations (mul-
tiplied by 100}formuon (full curves) and electron (dash
curves) plasmas at I' =0.5, rs =1 and two values of q.

dielectric function differ significantly from the
predictions of Vlasov theory, particularly at
small wave numbers, but the MD data are repro-
duced essentially exactly by a simple theoretical
scheme which takes explicit account of ion-elec-
tron correlations. The only input information that
the theory requires are the first three nonvan-
ishing frequency moments of the partial dynam-
ical structure factors, quantities which are easily
obtained by HNC calculations; there are no ad-
justable parameters. This makes it possible to
study, in an economical way, the dependence of
the collective modes of the plasma on the precise
form of the effective pair potentials.

One weakness of the theoretical model. developed
in Sec. VI is that it does not go over correctly
to the Vlasov result in the limit I' 0. This sit-
uation can be remedied, however, by applying
the memory-function formalism to the response
functions (susceptibilities) rather than to the cor-
relation functions. 33 Work in that direction is in
progress. Other projects in hand include the
computation of other transport coefficients, in-
cluding the thermal conductivity, and the exten-
sion of the simulations to include the important
nonequilibrium situation in which the tempera-
ture of the electrons greatly exceeds that of the
ions. It is worth adding, finally, that a MD in-
vestigation of the collective modes at significantly
smaller wave numbers would be a useful under-
taking. Although this would require the simula-
tion of a much larger (N 10') sys-tem, such a
calculation seems very well suited to a vector
processing machine.
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