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Behavior of classical particles immersed in the classical electromagnetic zero-point field

A. Rueda

(Received 27 May 1980; revised manuscript received 3 November 1980j

This article presents a general ana1ysis of some aspects of the interaction of classical particles with the classical
electromagnetic zero-point field (cemzpfj. The analysis provides a possible observational test for stochastic
electrodynamics (SEDj. A convergence form factor derived semiclassically supports the narrow linewidth and
related approximations of SED by introducing a typically sharp frequency cutoff. An extended classical charge
monopole can then be shown to perform a simple jiggling motion under the influence of the cemzpf. Besides this
motion (same as polarizable particles), monopolar particles also display a random walk in velocity space which leads
them to ever-increasing translational kinetic energies. Hence, classical particles under the influence of the cemzpf
display a conspicuous behavior because of the following well-known interrelated results: First, no velocity-
dependent forces exist for classical particles moving exclusively through the cemzpf. Second, both monopolar and
polarizable particles in SED are predicted to perform a random walk in velocity space due to the action of this field.
Only collisions may provide a stopping- mechanism. An analysis of the work of Boyer and others concerning particle
collisions with walls, suggests the idea that collisions transfer energy from an unconfined gas of mutually colliding
particles to the random field. Using this, a Fokker-Planck model for an unconfined gas of mutually colliding
classical particles is constructed. It displays a universal equilibrium energy spectrum E """for the gas particles
under the cemzpf as seen from any point fixed to co-moving coordinates. Primary cosmic rays have such an energy
distribution. This motivated the proposal of a zero-point field (zpf) cosmic-ray acceleration mechanism in a previous
work. Such a proposal requires a careful examination. However, methodologically speaking, one should first
examine the alternative possibility that the behavior predicted in SED for classical particles does not occur in nature.
If that would happen to be the case, then SED and the cemzpf concept should be critically revised. That the cemzpf
concept may apparently lead to difficulties, is seen by presenting a paradoxical example where a monopolar particle
moving through the cemzpf is predicted to suffer an enormous frictional force due to the surrounding zpf. The
prediction obviously violates the Lorentz invariance of the cemzpf energy density spectrum, But the paradox is
easily resolved by realizing the improper ultrarelativistic behavior of the Lorentz-Dirac equation which is used in the
example. Extreme care must then be exerted in the use of the equations of motion of classical charged particles when

moving under the influence of a zpf. The search for internal contradictions in SED, not related with the mell-known
renormalization and other diKculties of classical electrodynamics, has so far been unsuccessful. This and several
points of rigor here and elsewhere included, are enough to indicate that the conspicuous behavior of classical
particles discussed here is correctly predicted from the assumptions of SED. It is therefore proposed that this
predicted behavior may serve as an observational test for the validity of SED.

I. INIODUCTION

In a recent review article Enz' has presented in
a provocative way the problem of the existence of
an electromagnetic zero-point field (zpf). This
problem is discussed here from the classical
point of view. A brief historical account follows.
The proposal of a physicall. y real emzpf goes back
to Planck. ' Nevertheless, it was Nernst who

emphatically stressed this idea. Nernst thought
that at zero temperature there remained an energy
per mode of 5 in the cavity field instead of the
~2@a we consider today. Multiplying, l~ by the
density of modes gives the well-known divergent
energy density spectrum of the zpf,

p(co)dco =
2 3 dc'

IQ)
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This divergent spectrum, with the implied infinite
mass density and associated gravitational difficul-
ties, lead Pauli to deny the reality of the zpf. '
However, matters did not stay that way for long.

Soon after-, Welton' explained the Lamb shift of
the 2P», —2S,&, energy levels of atomic hydrogen
by introducing the heuristic idea of an interaction
of the zpf fluctuations with the atomic electron.
The Casimir' effect was next theoretically dis-
covered' and later on experimentally' verified.
This effect could also be presented as an attraction
between two parallel plates induced by the em
fluctuations of the vacuum. In a review article
V. Weisskopf' again raised the zpf to the category
of a real field. In the last few decades there have
been emphatic endorsements of the idea of a real
zpf. First, we recall the interesting speculations
on the structure of the vacuum by Sakharov' and

by Wheeler and co-workers. '" Second, we men-
tion the appearance of a new classical theory,
called random or stochastic electrodynamics
(SED), where a classical version of the zpf is pre-
sented. This theory. has been extensively re-
viewed. "" It essentially consists of introducing
in the old Lorentz theory of the electron, instead
of the traditional null homogeneous solution for
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the field potentials, a new homogeneous solution
where it is assumed that there is a background
of a randomly fluctuating radiation that is homo-
geneously distributed in space that is isotropic
and that has a Lorentz-invariant energy density
spectrum. " The associated random field has
identical form in' all inertial frames of reference.
It can be shown" "that this implies that the
spectrum becomes exactly the same as the spec-
trum of the quantum theoretical zpf of Eq. (1).
Consequently, this classical random field is called
the classical electromagnetic zero-point field'~

(cemzpf). Although quantization is not intro-
duced, Planck's constant does appear as the par-
ameter that fixes the scale of the field.

It could be expected that advances in SED should

come rather fast. However, that has not been
the case. Due to mathematical and conceptual
difficulties the rate of progress in this new theory
has been rather slow. There are nevertheless a
few interesting results. The Planck distribution
without quantum assumptions has been derived. ""
Another important contribution was the classical
derivation of the Casimir effect and of several
other van der Waals forces." It could furthermore
be shown that various features of the quantum

harmonic oscillator could be reproduced for the
classical harmonic oscillator interacting with

the cemzpf. ' " One of the outcomes of SED has
been an elucidation of the unique properties of
the zpf. The zpf is the unique spectrum with a
Lorentz-invariant energy density. "" It is the
unique spectrum that remains invariant under an
adiabatic compression of a cavity. " It is the
unique spectrum that preserves as adiabatic invar-
iants for charged systems the adiabatic invar-
iants of some uncharged mechanical systems, "
and it is the unique spectrum that does not give
rise to frictional forces, i.e. , to veloctiy-depen-
dent forces (some aspects of this last statement
are discussed at length in this work). Further-
more, the zpf produces a phase-space distribution
of an ensemble of classical harmonic oscillators
in the ground state that is stationary in time. The
classical ensemble corresponds to the quantum
mechanical oscillator in the ground state."

In order to gain universal acceptance as a
theory that may well complement and perhaps
even compete with quantum theory, SED requires
more relevant results. Among these, of course,
is the solution of the problem of the hydrogen
atom." The theory also presents the difficulty
of introducing as a very basic feature a field
that has a divergent energy density spectrum. '4

This zpf has in SED 'the character of a real field
in contradistinction with the purely formal virtual
photon zpf of traditional quantum theory.

The typical attitude of physicists with respect
to the existence of a physically real zpf is under-
standably cautious and ambiguous. Consider, for
example, the presentation of Lautrup" when

proving in a quantum fashion the Casimir effect.
He takes two parallel plates of finite size and
assumes that there is a zpf inside in order to show
that a net attractive force therefore results be-
tween the plates. However, outside the inner
spacing between the plates he denies the existence
of a zpf." Many other authors are nevertheless
willing to invoke the ubiquitous existence of a
zpf in order to explain certain quantum effects
like spontaneous emission, etc. , but naturally
deny any real meaning to the divergent sum of
energies over the modes g ~ N+, =~.

From this it follows that the notion of the struc-
ture and reality of an electromagnetic zero-point
field is still unclear. Furthermore, studying the
problem in all generality may require unsuspected
advances in fundamental physics still not available
at present. Given this state of affairs a more
practical approach to the zpf problem in classical
theory is to study critically some of the most
conspicuous effects predicted in SED and to check
if such predictions are seen experimentally. The
more general study of the structure and proper-
ties of the vacuum should be left as a future task.
Following this idea we select a particular pheno-
menon that has been theoretically predicted in

SED and that does not have a known counterpart
in quantum theory, Classically, at least, par-
ticles that suffer electromagnetic interactions are
polarized under the action of an electromagnetic
field. It has furthermore been shown that polar-
izable particles submitted to the action of the
cemzpf steadily increase their translational
kinetic energies by performing a random walk in
velocity space."'~" The same phenomenon can
also be shown to occur in simple monopolar
particles (Appendix 8). One may then surmise
that all electromagnetically interacting classical
particles perform a random walk in velocity space
due to the action of the cemzpf. This growing
energy trend is only stopped by collisions.
Because of the strong acceleration, in a collision,
a colliding particle returns back energy to the
random background field."""It has also been
shown that collisions may strongly inhibit the
acceleration process and that only when the par-
ticle number densities are low enough does the
acceleration process take off." The interesting
thing, however, is that the energy spectrum of a
gas of low enough volume number density acted by
the zpf should, if it exists, be observable under
suitable conditions most likely present in astro-
physical situations.
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A description of the contents of this article
follows. A simple classical analysis of mono-
poles is first performed. A purely monopolar
particle submitted to the action of the cemzpf
can be shown to display two kinds of motions.
First, is performs a jiggling motion that is just
a Brownian-motion-like perturbation of its class-
ical trajectory. Second, and as occurs with
polarizable particles, it displays a random walk
in velocity space. Hence, both monopolar and dipolar
particles in SED can be shown to perform a vibratory
motion (dipolar vibrations for polarizable particles
or jiggling motion for monopolar particles) and
a superimposed translational motion with ever-
increasing translational velocities. Both motions
are caused by the cemzpf. A byproduct of the
analysis of finite-size monopolar particles is a
proof that, despite the divergent nature of the
zpf energy density spectrum, there is only a
finite energy available for the particle ~ This
follows from a semiclassical derivation of a
convergence form factor that is equivalent to
imposing a frequency cutoff in the zpf energy
density spectrum. This convergence form factor
is very sharp and it serves to justify the narrow
linewidth and other approximations of,frequent
use in SED," The sharpness of the form factor
is very important when considering the acceler-
ating action of the zpf on monopolar particles.

Using a suitable model and the associated form
of the Fokker-Planck equation, an energy spec-
trum of the form E-' " is derived for the case of
an unconfined gas of mutally colliding classical
particles interacting with the zpf. However, the
effect of collisions with the cavity walls has been
proposed by Boyer as responsible for maintaining
equilibrium between the background random zpf
and the polarizable particles in a gas confined
to a cavity, where collisions with the cavity walls
are only considered. ""A revision of the colli-
sionally induced equilibration process suggested
by Boyer is presented. This idea is extended
to the case of ari unconfined gas of polarizable
particles in equilibrium with the zpf, where colli-
sions among the particles are considered instead.

Because of the Lorentz invariance of the spec-
trum no velocity-dependent drag forces can be
induced by the cemzpf . . Thecase of polarizable
particles moving through the zpf has been studied
by Boyer and others. It was shown that no
such em friction can occur for polarizable par-
ticles moving through the Lorentz-invariant zpf.
However, for the case of monopolar particles
there are some difficulties. A calculation based
on the Lorentz-Dirac equation gives an enormaous
em frictional effect for monopolar particles mov-
ing through the cemzpf. The predicted frictional

effect may with confidence be attributed to a fail-
ure of the Lorentz-Dirac equation in ultrarelativ-
istic regimes. This wrong result serves to warn
that a correct classical treatment of the motion
of charged particles in the vacuum may demand
so far unspecified refinements of the theory.

It is concluded that the classical version of the
zpf of Eq. (2) (see below) is not a complete
version of the em aspect of the vacuum and that
the energy spectrum for a gas of classical par-
ticles, predicted when the classical zpf back-
ground is taken for granted, should be examined
in a critical fashion. It is true that, as previously
proposed, the E ' " energy spectrum may cor-
respond to the well. -known energy spectrum of
cosmic-ray particles. However, for seriously
considering a zpf cosmic-ray acceleration mech-
anism it is methodologically wise to search first
for possible alternative astrophyisical explana-
tions within conventional theory, where no resort
to a field with a divergent energy density spec-
trum is required. The predicted conspicuous
behavior of classical particles (random walk
in velocity space, E-' " energy spectrum, etc. )

is an exclusive result of SED that has no counter-
part in quantum theory. It is proposed that such
predicted behavior may serve to test the validity
of the classical version of the zpf (version from
which the predicted behavior rigorously fol-
lows).

Despite many interesting features of SED, one
thing is certain: It is not a complete theory of
nature. To start with, SED deals only with one
of the interactions, namely, the electromagnetic.
It does not consider gravitational phenomena.
It also does not explain the high-energy phenomena
of particle physics. In consequence, SED intro-
duces a picture of the vacuum where only an
emzpf is present. In other words, the purely
geometrical model of the vacuum of classical
theory is physically implemented in SED by im-
bedding it in the zpf. The picture does not in-
clude, though, other interesting properties of
the vaccum. Omission is made, for example, of
vaccuum polarizability which is an essential pro-
perty of the vacuum for explaining several phen-
omena in particle physics. Hence we should limit
our expectations concerning SED, although how

much we have to limit them still remains to be
seen.

II. CLASSICAL MONOPOLAR PARTICLES
IN EQUILIBRIUM WITH THE CLASSICAL
ELECTROMAGNETIC ZERO-POINT FIELD

%e limit ourselves here to the case of a purely
monopolar particle that interacts with the cemzpf
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and study the particle motion due only to the in-
teraction of the random field with the zeroth
charge moment of the particle. A discussion on
the motion of polarizable particles (first charge mo-
ment) subjected to the actionof the cemzpf is left for
the next and the other sections. Let us first study
then the problem of the monopolar particle.

For ideal point charges of zero volume the
problem is not rigorously solvable as the whole
divergent spectrum of Eq. (1) contributes to the
field-induced translational energy of the charges.
The divergent expressions that result are usuall. y
forced to converge by the introduction of ad hoc
cutoffs in the spectrum" or, in the case of di-
poles, by invoking a narrow linewidth approxima-
tion where the divergent part at high frequencies
is neglected. ' However, it can be rigorously
shown (see Appendix A) that if classical particles
of nonzero volume are instead considered, a very
sharp convergence form factor is obtained in the
spectral integral for the particle energy that is
available from the field. This form factor
guarantees the convergence of the expressions.
Owing to its sharp cutoff character, which pro-
duces a cut at a fairly distinct frequency, for all
practical purposes this form factor can be re-
placed by a suitable frequency cutoff.

Assume for simplicity a rigid spherical homo-
geneously charged classical particle of radius
R & 0. The cemzpf is a superposition of plane
waves with random phases whose overall spec-
trum is Lorentz invariant. Boyer writes it as"

&jan

E(x, t) =l, Q, d'k ~(k, X)p((o-„)
i 2lT

xcos[+-„t—k x-8(k, z)],
(2)

where [V/(2v)']'~' is a normalization constant
introduced here for dimensional purposes and V
is the cavity volume, which for some purposes
may be made arbitrarily large. For each wave
vector k there are two mutually perpendicular
directions of polarization

e(k, X) ~ k=o; e(k, X) ~(R, A')=5»„X,X'=1,2 .

The factor p(&o„) sets the scale of the. field

u'(~) = c'p((g)

The function 8(k, A) represents a random phase
that, for each set of k and A. values, takes an
arbitrary value between 0 and 2m with a uniform
probability distribution in that interval. The
magnetic field B(x, t) results from replacing
i(k, y) by [kx &(k, X)]/lkl in Eq. (2).

Consider a free monopolar charge in free space.
Let the particle at time /& 0, be located at the
origin x =0, with zero velocity v =x =0. Assume
for simplicity that the zpf is turned on at (=0.
After a sufficiently long time interval k=7', in the
nonrelativistic approximation the particle ac-
quires a momentum given by

+1 P ) 1/2 "T
mv, =Z, =

~
eEdt =l ~l e dt's d'ki(k, X)p(&o-)cos[&o-„t —k x-8(k, A)],

C p 2W I sO /=1 J
(5)

where, because lvl «e, the magnetic field con-
tribution is neglected. Equation (5) is derived
from the Abraham-Lorentz equation, .

~ l

mv =1 mv+ eE(x, t) + (e/c)vy B(x,t),

first and then after squaring and averaging over
the random phases we obtain the translational
kinetic energy

where v=x, and

2g2I'=
3mc

In a first approximation and for nonrelativistic
velocities we can neglect the effect of the magnetic
field. We can also neglect the radiation reaction
term. This last approximation can be performed
provided the spectrum of relevant frequencies is
such that p~ «1. It can easily be shown that
this condition, which incidentally is required also
for the val. idity of the Abraham-Lorentz equation
itself, is obeyed in the present case (see Appendix
A). The time integration in Eq. (5) is performed

where y(v~) represents the corresponding con-
vergence form factor derived in Appendix A. The
averaging is carried out by means of the rela-
tions"

(co@[&a-„t—k x —8(k, X)]cos[&o'„t—k' x -8(k', Z')])

(2v)' 1
2 6»,5(k —k'), (9)

(cos[&o~ t —k .x -8(k, X)]sin[&o~t —k' x -8(k', A. ')J)

=o, (lo)
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(cos[&o-„t—k ' x -8(k, X)]) = 0,

with corresponding expressions for the sines.
Replacing the form factor by the cutoff at ~ we
then obtain

—((g v)sin((o r))~.]
Observe that pz &p~ «1. The time z-' is of the
order of the time required for a light ray to travel
a distance equal to the size of the particle. It is
then reasonable to consider times w much larger
than &-'. If z r»1, Eq. (11) yields"

4m'e25

derivation was very recently given to us by Boy-
er. ' Observe that in the above derivation and
under the assumption that v/c«1 we neglected
the last term of Eq. (6). However, in the case
of polarizable particles, it is precisely this term
that is responsible for the random walk in velocity
space. This consequently means that the random
walk in velocity space is a distinct relativistic
effect that until the present has not been uncover-
ed, due to the usual neglect of the magnetic field
in the treatment of classical equations for the mo-
tion of charge monopoles under random em rad-
iation.

Consider a monopolar particle of charge e,
mass m, and velocity v, at time t. Let it be
submitted to the action of thermal plus zpf radia-
tion (T & 0):

where A. = 2mc/&o (Appendix A). The rigid mono-
polar particle performs a jiggling motion with a
finite well-defined average energy. The motion is
slightly reminiscent of the Zitterbewegung of quan-
tum theory that is present between positive and
negative energy states in the Dirac equation for
the electron. However, this similarity is most
likely not meaningful. The classical equation (13)
has, however, an exact counterpart in quantum
electrodynamics. It corresponds to the transverse
self-energy of the electron under the electromag-
netic fluctuations of the vacuum. "

Satisfying as it may seem, because of its cor-
respondance with a phenomenon derived in quan-
tum theory, the result of Eq. (13) is, however,
incomplete. On the one hand Eq. (13) implies that
the particle has an infinite memory of its initial
velocity state, despite the fact that the particle is
being submitted to the perennial action of a ran-
dom force. This fact is not entirely satisfactory.
On the other hand, . polarizable particles have
been predicted to perform, according to SED, a
random walk in velocity space with ever-growing
translational kinetic energies. This growing
translational kinetic energy trend is an additional
motion superimposed on the internal. vibratory
motion of the dipole caused by the cemzpf. The
vibratory motion of the dipole for a polarizable
particle in a sense corresponds to the jiggling
motion of the monopole. However, there should
be an additional correspondance that should be
physically expected also for monopoles; namely
as in the case of polarizable particles, monopolar
particles should also perform a random walk in

velocity space to ever-increasing translational
kinetic energies. However, this last effect is
missing from our analysis above.

The clue to the missing prediction of the above

(i4)

[which for T =0 reduces to Eq. (1)]. In three
dimensions, and if no walls confine the system
of particle and radiation, we may write

(i6)I =b +P,
where 6, represents a fluctuating part and P a
velocity-dependent drag force. In Appendix B
we present a detailed proof that to first 'order in
v/c it follows that

P=—(I,) = Prv, . —

It also follows that for the case of the cemzpf
alone [T =0 in Eq. (14)], to first order in v/c
we have P =0. Owing to the Lorentz invariance
of the field energy density spectrum, it should
be expected that / =0 for the cemzpf case to all
orders in v/c. This proof is also included in
Appendix B.

Although the average value of &, is equal to
zero, (Z,) =0, it is shown, however, that as in the
case of polarizable particles the average of the
square of &, grows with the time 7- in such a man-
ner that the translational kinetic energy of the
monopolar particle grows at a rate (Appendix 8)

rnv„, =mv, +I, ,

where 7. represents a short enough time interval,
during which the particle state of motion does
not substantially change, but which is much longer
than typical oscillation periods of the fluctuating
field. The net impulse acquired during this time
interval we denote by I, . Traditionally, this im-
pulse has been broken up into two separate parts:
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For a more precise expression in the case of
homogeneously charged spherical particles we
can use the form factor y(&u) of Appendix A instead
of the simple cutoff at &u„[see Eq. (B.15)]. How-
ever, Eq. (18) is enough to show the very strong
dependence of 0 on'the highest frequency ranges.
As an example for the case of electrons, Eq. (18)
reads

0=5X 10-'4

which for an ~ of about 10"s ' would give a
reasonable value of 0 = 10'-10' eVs '. However,
if we use cu = ar, = ave/X, = wc/R; R = 1"c (Appendix
A), then ~ =5X 10"s-', which giles for 0 the
unreasonable value of 0 =—10"eV s '. Further-
more, experiments in particle physics have been
unable to determine a radius for the electron.
This indicates, that due to the very strong depen-
dence on the'. highest frequency ranges available
for the transmission of purely translational mo-
tion to the particle, the rate of translational en-
ergy growth 0 is very strongly dependent on the
geometrical characteristics of the particle model.
However, for the most typical charge monopole
known, which is the electron, no definitive model
has until the present been found, and hence a
determination of 0, even within a much more
detailed formulation than the one here, is prema-
ture.

III. ENERGY SPECTRUM OF AN INFINITE GAS
OF MUTUALLY COLLIDING CLASSICAL
PARTICLES IN EQUILIBRIUM WITH THE

CEMZPF

Here we search for the energy spectrum of an
unconfined ultrarelativistic gas with infinitely many
mutually colliding classica1 particles in equili-
brium with the cemzpf. For simplicity of pre-
sentation, we deal only with the case of polariz-
able particles. The treatment of monopolar par-
ticles can be performed i.n a very analogous man-
ner with correspondingly analogous results. The
energy spectrum of a gas of polarizable particles
in equilibrium with the cemzpf that will be obtained
here was previously derived ' in a way that did not
connect with the detailed calculations of Boyer for
the coll.isionless one-dimensional case."" The
present revision attempts such a connection. The
complexity of the problem where particle col.li-
sions are considered demands several simplifying
assumptions. A Fokker-Planck model is therefore
used. Both the nonrelativistic and the relativistic
one-dimensional gases of collisionless particles
in equilibrium with the cemzpf haec'been studied
by Boyer in considerable detail xe, z7, 27, 2s

Boyer gives the net Quctuating impulse trans-,
mitted to the polarizable particle in a short time

interval v. He restricts the motion of the particle
to the x axis and the direction of vibration of the
dipole along an axis parallel to the z axis. He
then obtains

(~;(p)) = y&~'(0)), (ao)

(21)

where P =e/c, y= (1 —tP/c')'~', and &o, is the
characteristic frequency of the dipole. 7' is
the radiation damping constant for polarizable
particles. " Equations (20) and (21) can be
extended to the full three-dimensional. case, i.e.,
for both the particle translational motion and the
internal dipole vibration. For the relativistic
and nonrelativistic cases one obtains, respec-
tively,

«;(P)) = y&~;(0)&

and2s

(22)

aS' el~1 'I 1 8 1=-= I-«p»l- —= -&(&p)'»I . (24)
Bt sp t(7' i 2 Bp

Because of the stationarity sW/sf =0 and because
of the isotropy of the problem, 9' should be inde-
pendent of the direction of the p vector, i.e., of
8

p
and gp. Hence, s/sf=i~(s/sp). The problem

becomes one-dimensional since only one variable,
namely p =

~ p[, appears. For this case it is known
that the assumption of detailed balance" can safe-
ly by made. " There are hence no probability cur-
rents f in momentum space and, therefore, "

1 . 1 8 1"p = (n'p) w-- = —&(np)'& wI = o . (25)7 28p v )

The average change of momentum during a time

where instead of the numerical factor 27/5 we have
the number 6, which results from an additive
correction of 3/5 to the value previously re-
ported. 34 This correction comes from a missing
term in the integration over the angles. We study
next the stationary distribution of the infinite
unconfined gas of polarizable particles in equili-
brium with the cemzpf. As the distribution
should be homogeneous, there cannot be any
space dependence. The probability distribution
gr= W(p) is independent of r. The particle mo-
mentum p is measured with respect to an inertial
reference frame. More on that inertial frame is
discussed below. The Fokker-Planck equation
is"
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interval of duration r, (b,p) has two parts: one
due to the zpf, which has been rigorously shown
to be strictly equal to zero, "and the other which
is due to collisions with the surrounding particles
of the gas. In order to be able to incorporate
these very strong collisions into the Fokker-
Planck formalism we have to introduce a model.
A collision of two particles at high energies is a
complex process where the two original particles
are annihilated and several other unstable particles
and radiation cascade out from the initial event.
Viewed in momentum space, and if equilibrium and

stationarity are to be maintained, the collision in our
model should look as follows. Two particles that are
far away from the origindisappear. They are re-
placed by two other particles that spring forth from
the neighborhood of the origin. The kinetic energy
loss of the collision eventually transforms into
random electromagnetic radiation. A "black box
approach" is hence used. A more detailed des-
cription of the collision process is beyond the
phenomenology required by the thermodynamic
level of our model. If we assume that a collision
completely stops the colliding particle it is easy
to see that

(Sp) = -i~ po(p)pcs, (26)

—„c(E)WZ+„—(WE) =0,nc
(28)

where, because the particles are ultrarelativistic,
E =Pc. We introduce again the constant"

where o(p) is the collision cross section at mo-
mentum p and n is the volume number density of
the gas particles. The average momentum change
(hp), between t and t+7 has two contributions,
one due to the zpf whose average value is zero, "

- and the other due to collisions, which obviously
depends on the value of p at time t. The Fokker-
Planck formalism requires that the momentum
change occurring during the time interval T be
very small in comparison with the value of

~ p [

=p. It can be assumed then that instead of occas-
ional sharp collisions the effect of the other gas
particles is replaced by a fictitious surrounding
thin viscous fluid whose average drag force is as
given by Eq. (26). For the other term in Eq. (25)
we know that

(27)

Observe that Eqs. (26) and (27) adjust well to the
first and second transition moments given by Eq.
(225) of Chandrasekhar. " From Eqs. (23), (25),
(26), and (27) we obtain a reduced version of the
Fokker-Planck equation for the energy

«'(o) &

2mcY

where m is the rest mass of the gas particles.
After integration the model then gives

const nc "E
W(Z)= e&p — &(E')dZ)0

0

(29)

(30)

This distribution, despite the special assumptions
that the model implies, is similar to the previous
result, "differing only in an additional g ' factor.
For the case of collisionless particles, o = O, we
recover the result of Boyer"' "for an infinite un-
bounded relativistic gas, 5'-E '. It follows that
in asymptotia, which is the spectral region where
there are some observational possibilities (Sec.
IV. C), we obtain a particle current density at en-
ergy E and per unit energy of the form"

g (E) E-const

The exponent is

qn's q (3ec)'Mnconst=l+, =I+
( )4

(3l)

(32)

W (E) E collst

Last but not least, the inertial frame of refer-
ence with respect to which the particle momenta

p are measured has to be specified in more detail.
For the introducti. on of a well-defined unique
frictional force in Eq. (26), such an inertial
frame has to be given by the average local motion
of the fictitions vicous fluid introduced above.
Such a viscous fluid can then be made to coincide
with a cosmological fluid of an expanding uni-
verse. " ' The Quid then defines locally a prefer-
red frame of reference which is the frame with
respect to which the average momenta of the sur-
rounding matter is zero. The expanding cosmo-

with const 1 ifn-0, where' is aconstant coming
from scale invariance in asymptia, "a is the fine-
structure constant, and M is a parameter with the
dimensions of mass previously discussed" in more
detail. For large number densities Eq. (32) reduces
to the previous result. As before, "it follows that if n
is not small enough the whole spectrum is quench-
ed because of strong exponential attenuation.

It is interesting to note that we obtained a one-
dimensional Fokker-Planck equation which does
not allow for probability accumulations anywhere,
not even at infinity. We used the assumption of
zero probability currents, Eq. (25). This assump-
tion is formally justified by the potential condi-
tion" "trivially obeyed in stationary one-dimen-
sional cases, and in particular in this case as
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logical Quid defines everywhere the so-called co-
moving coordinates, i.e., a special coordinate
system that expands with the universe and with
respect to which the average local motion of the
cosmological fluid is zero." For any two separate
points (galaxies) in the cosmological fluid, the
corresponding coordinate interval, as given by the
co-moving coordinates, remains constant and the
expansion of the universe results, not from any
change in the coordinates position of the points
(galaxies), but rather from a change in the metric
of the space.

The co-moving coordinates define at every point,
then, a local preferred inertial frame of reference
with respect to which the distribution 9' of polar- .

izable particles should be homogeneous and iso-
tropic. The distribution is not necessarily, though,
homogeneous and isotropic, when observed from
a different inertial frame. Locality is understood
here in the cosmological sense: The size of the
relevant region should be small in comparison
with the Hubble length; but it should, of course,
be large with respect to the mean free path of the
colliding particles of the polarizable gas. It is an
easy task to check that, for an intergalactic gas
with n =10 '-1o ' cm ', these conditions are met
within wide margins. "

Something similar to the thermal 2.7-Kback-
ground radiation occurs with the preferred local
frame. The distribution appears homogeneous and
isotropic as seen from the preferred local frame
that co-moves with the cosmological fluid.
The particle distribution, as well as the 2.7 K
background radiation, are not, however, in gener-
al Lorentz invariant, and they should not be ex-
pected to be so. Only, until when the particle den-
sity becomes very small [see Eg. (28)] and no
collisions take place, does the distribution recover
the Lorentz-invariant character, $V-E ', recently
uncovered by Boyer."'" Thus the n-0 limit for
particles [see Eq. (28)] is analogous to the p-0
limit for thermal radiation. In each one of those
limits the respective distribution becomes Lor-
entz invariant.

IV. DISCUSSION

Here we comment on some general features of
the above results with the related thermodynamic
aspects and ensuing observational consequences.

A. General aspects —the thermodynamic problem

In the previous section we found the energy
spectrum of an infinite gas of mutually colliding
classical particles that are in equilibrium with

the cemzpf. Attention was focused on the high-
energy tail of the distribution which is presum-
ably the only part of the spectrum able to reach
observers in galactic interiors. Were it not for
collisions the E, spectrum of Boyer ' for an
infinite gas of collisionless particles in equili-
brium with the zpf would have been found.

In a collisionless gas of unconfined free par-
ticles the zpf, as viewed in SED, should force
the particles to diffuse out to infinity. Simultan-
eously, the particles are predicted to perform a
random walk in velocity space to ever-increasing
average translational kinetic energies. "'"'"
Energy is thus transferred one way only, from
the field to the particles, and no equilibrium spec-
trum may thus be found. "'" It is in the case of an
infinite gas, when the particles uniformly fill all
space, that an equilibrium spectrum can be ob-
tained. "" For a finite gas, though, equilibri-
um may occur only if the gas is confined to a cavity.
When, in addition to the zpf, temperature radiation
is also present, the effect of the walls is to impose a
radiation distribution with a preferred frame of
reference, namely the Planck distribution with
the zpf ter'm"' "[Eg. (14)] . We study here a
slightly different case. The gas has an infinite
number of particles and is unconfined, but the
particles are allowed to collide. Collisions are
manifested furthermore in producing an addition-.
al attenuation in the energy spectrum which is
of the form E "", const~ 1 (const= 1 only for
the collisionless case). For the case of an in-
finite unconfined collisionless gas, energy moves
one way only from the field to the particles and
there is no return energy path. In our Fokker-
Planck model for an infinite gas, particles collide
among themselves. They are assumed to be
stopped by the collisions.

The picture of the equilibration mechanism 3ust
described is based on the idea, first introduced
by Boyer,"that for a finite gas of confined classi-
cal particles that do not collide among them-
selves, but that collide with the surrounding walls,
equilibrium is restored by the action of the cavity
walls which accelerate particles during the colli-
sions and force them to radiate. However, the
equilibrium mechanism of the cavity walls has
recently been criticized by Jimbnez, de la Pena,
and Brody." The main point of-their criticism
may nevertheless be avoided by a rather minor
change in the set of assumptions proposed by Boy-
er in his treatment of the cavity walls. "'"

8. The cavity walls

From the above it follows that, for our equili-
bration mechanism by particle collisions of Sec.
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III, the importance of the problem of collisions
with the cavity walls need not be over emphasized
here. The thermodynamic analysis of the par-
ticle collisions with the cavity walls is also cru-
cial in the proof" that the Planck distribution for
thermal radiation can be obtained without quan-
tum assumptions. We proceed then to a re-analy-
sis of the problem.

In free space a polarizable particle suffers mo-
mentum fluctuations that satisfy, "'"as in the
case of monopolar particles, Eqs. (15)—(17). The
corresponding expression for P can be found in
the literature" "; it is, of course, not the same
as the one for monopolar particles of Eq. (B.25)
and (B.26). A one-dimensional analysis suffices.
Squaring and averaging in Eq. (15) and deleting
the vector notation; one obtains

((mv„, )') =((mv, )')+(I', ), (33)

and the energy runs one way only, from the field
to the particle. Equilibrium does not occur. In
the case of confinement within a cavity, the cavity
walls serve to restore equilibrium. "'" Another
term is then added to account for the effect of the
wall collisions:

I

mv, +~ =mv, +I, +J, (34)

where J is the impulse transmitted in a collision,
if there happens to be one during the time interval
v. At p =0, I, =6,. After squaring and averaging
and assuming a. steady state ( (mv„, )') =((mv, )'),
one obtains

0= 2(mv, g~)0+ 2(mv~ J)0+ 2(b~J)0+( J')0+(6 ~)0 . (35)

At T & 0, I, =6, Pv, 7', an—d Eq. (35) becomes

0= 2(mv, g,) +2(mv, J)r+ 2(Ja, )r+(J') r+(b. ', ) r —[(mv', )r+(v, 4, )r+( Jv, ) ]2'~ (v+, ) Pr7. . (36)

Boyer proposes then the equations

(mv, a, )r =(mvga, ),=0

(«,&,=(«, ).=0

(37)

(38)

I

cles, except for the crucial contribution of the
zero-point energy which can be removed only at
the walls. (It is precisely the last two equations,
namely, Eqs. (41) and (42), that Jimenez and co-
workers" claim are invalid. ) Using Eqs. (41) and
(42) we then obtain

that follow from the random character of the in-
coming radiation that is uncorrelated with the ac-
tual dynamical state of the particle or of the walls.
Furthermore, he correctly argues that

2(mv, J),= -(a', ), , (43)

and introducing Eqs. (37) to (43) in Eq. (36) we
finally get

(mv, J),& 0 . (39) (s', ),-(s', ),=2Pmi(v', ), , (44)

v can be made small enough so that

P7.lm«1 .

Boyer then assumes that if the cavity is large
enough, then

(40)

(41)

He finally proposes that

( mv, J),=( mv, J') r, (42)

arguing that, in the case when only purely thermal
energy is involved, there should not be a net
transfer of energy between the field and the gas
particles at the walls. After collisions with the
walls, particles should emerge with a spectrum of
kinetic energies the same as the entering parti-

as on the average J can be neglected as compared
with mv, .

If the values for (b, ', ) and P of the model of
Einstein and Hopf" are replaced in Eq. (44), the
Planck spectrum with the zero-point term is ob-
tained. " Turning to the objection of Jimhnez and
co-workers, their argument runs as follows:
Equation (41) is not compatible with Eq. (43). Let
K be the average momentum exchange for a par-
ticle per collision; then, K = —2[( (mv, )')]'~',
provided collisions with the walls do not cause
radiation and kinetic energy loss. However, if
Boyer's supposition holds, then K will be less in
absolute value, but it cannot be smaller than
—[( (mv, )')]'~', at this value the particles stick
to the walls. Therefore, (J') =fK', where f is
the fraction of intervals of the same duration 7
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during which a collision occurs. However, an
analogous argument also gives (mv, Z) = -fK'.
Now, f decreases with the cube root of the volume
of the cavity. Hence one can choose a cavity of
such a size that Eq. (41) is satisfied or, alterna-
tively, Eq. (43), but not both. Moreover, f de-
pends on the temperature, as follows from ele-
mentary considerations. Hence it is unlikely that
Eq. (42) is satisfied also. The difficulty is, how-
ever, not grave. A rather minor change in the
proposed expressions, Eqs. (41) and (42) and the
ensuing Eq. (43), safely avoids the difficulty.

Consider the net momentum loss l caused by a
wall collision. It is' easy to see that l = 2m', +J.
From simple kinetic considerations it follows that
K and f, and hence (J'), are increasing functions
of the temperature. We then write ((J'))' '
-g(T) where g(T) is an increasing function of its
argument. From the discussion above one knows
that l is instead a decreasing function of the tem-
perature.

Assume that 1-1/g(T). With this matching it
occurs then that (IJ ) is indeed a constant inde-
pendent of temperature. We then have

((2mv, +Z) J)r =( (2mv, + J )j)0 . (45)

If we assume this relation, instead of Eqs. (41)
and (42), we can in a more direct manner than be-
fore obtain Eq. (44) without ever needing Eq. (41).
And from Eq. (43) the Planck distribution with the
zpf term follows in the usual way. "'"

Observe furthermore that if l indeed is a de-
creasing function of temperature, E-I/g(T), the
detection of any wall effect is much easier at low
temperatures than at high temperatures. It thus
may come as no surprise that such a wall effect is
not easily measurable in a direct manner in cav-
ities at ordinary temperatures. Despite all claims
to the contrary, it is clear that an energy loss
by negative acceleration in a collision process has to
take place at least within the context of a classical
theory for particles with distributed charges.
Boyer's proposal is that the radiation coming
from such an energy loss is so random that it can
be identified with the radiation with the maximum
degree of disorder, namely, with the cemzpf. ""

If collisions with the cavity walls do indeed
serve to maintain an energy balance between the
translational energy of the particles and the zpf,
it is natural to think that the same role is played
by collisions in the classical case of an unconfined
gas of mutually colliding particles in equilibrium
with the cemzpf. " It may be argued, "however,
that at least part of the energy radiated in colli-
sions is thermalized at a higher temperature,
and hence that equilibrium is broken because of
the ensuing net transfer of field energy to the

gas." This net transfer would then imply an im-
balance in energy, causing a continuous warming
up of the gas. However, this unbalance cannot
occur. Because of the second law of thermody-
namics, there should exist some energy-balancing
mechanism so that there is no net transfer of
energy from a cold reservoir (field a't T = 0) to a
hot reservoir (gas at T& 0). Collisions are the
only possible balancing mechanism. " Observe
furthermore that this balancing mechanism seems
crucial for the establishment of the equil. ibrium
Fokker-Planck model of the previous section.

C. Astrophysical speculations —highwnergy cosmic rays
and hot intergalactic gas

If our naive version of the zpf does indeed take
place in physical reality, and if the field can be
isolated from other properties of the vacuum' "
so that it may be represented as in Eq. (2), it
then necessarily follows that there is a cl.assical
accelerating mechanism for increasing the trans-
lational kinetic energy of charged or polarizable
classical particles. For the second case, this
mechanism has been extensively studied
and gives for an infinite unconfined gas an energy
spectrum with a particle flux of the form 8 (Z)
-E """,const~ 1, the equal sign holding for a
gas of collisionless particles.

If, as argued above, the accelerating effect is
also present in monopolar particles it may occur
in particles other than protons, i.e., electrons.
For the case of protons the polarizability has been
measured, and it is good enough for the satisfac-
tory application of the mechanism. " For this
case, the constant in the energy exponent depends
on a parameter q originated in some high-energy
theorems of asymptotia and on another parameter
whose value remains unknown. " Our constant in
the energy exponent cannot thus be explicitly
evaluated. This is a handicap since observation-
ally one does not know what value of the exponent
to search for. There is, however, the well-
known spectrum of primary cosmic rays whose
shape, in rather wide energy ranges, goes as
E "". (For the largest range 10"-10"eV,
const= 2.8, with not widely different values for
other ranges and always with const& 1.) Appar-.
ently, this spectrum is in support of our cemzpf. .

There are, however, several serious attempts to
explain the origin of the cosmic-ray spectrum
from more traditional model sources, i.e., su-
pernova explosions, pulsars, etc. (see Ref. 26
for further references). One has to wait for more
conclusive answers from those attempts to ma-
terialize. 4' If it turns out that one or several of
them are enough to explain satisfactorily the
primary cosmic-ray spectrum, it would then
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follow that the cemzpf gives a deceptive E
prediction, and hence that the cemzpf does not
give a good enough picture of the whole physical
aspect of a more complex vacuum. In that case,
some still unidentified changes would have to be
made in the classical formulation of the vacuum,
and presumably a certain generalization of SED
(beyond purely electromagnetic theory) as a con-
sequence would result. SED includes also only a
very simple ad ho@ phenomenological particle
description whose naive character may preclude
a correct prediction for the behavior of particles
in several physical regimes. It is then, of course,

,venturesome at present to point out in which di-
rection modifications of the cemzpf concept or of
the model of charged particles will have to be
carried out. Let us recall again the interesting
considerations of Wheeler and others' "on geo-
metrodynamics that might give a clue for the
construction of a more complete classical model
of the vacuum. If, however, the cosmic-ray ener-
gy spectrum cannot be satisfactorily explained in
terms of traditional model sources, we should
then conclude that the cemzpf of Eq. (2), despite
the naive aspect of its formulation, which includes
a divergent spectrum, may for some purposes at
least adequately represent the physical structure
of the vacuum. Observe" also that, in favor of a
real zpf effect on particles in the intergala, ctic
medium, there is the well-knownx- and y-ray back-
ground radiation, which implies a hot intergalac-
tic medium of about 4x10' K. Despite some pre-
vious reviews where the reality of a very hot in-
tergalactic gas is not taken as established, '4 there
are very recent experimental measurements"
that indicate that a hot intergalactic gas would
much more easily explain the available data than
other alternative interpretations. However, for
definitively ruling out or accepting a hot inter-
galactic gas, we have to wait for more conclusive
results, most likely to become available from the
recently launched Einstein Observatory.

V. CLOSING REMARKS

Although interesting, the idea of a physically
real zpf (as opposed to virtual), that is, Lorentz
invariant and classically representabie [as in Eq.
(2)], is not free from difficulties. These cemzpf
difficulties appear in conjunction with the use of
equations of classical charged-particle motion.
To illustrate the issue we present the following
example. Because of the Lorentz invariance of
the zpf, there should be no zpf induced frictional
forces for a monopolar particle that moves
through the zpf (Appendix B). However, if instead
of the equation of Abraham Lorentz, as in Appen-
dix B, the Lorentz-Dirac (LD) equation is used, it

can be shown that, formally at least, a large zpf
induced frictional force is obtained on a moving
monopole (Appendix C). The reason for this fail-
ure can easily be attributed to the improper ultra-
relativistic behavior of the Lorentz-Dirac equa-
tion. The improper behavior of the LD equation
at large particle speeds has been amply discussed
by Burke." In this context we proceed to review
very briefly the approximate nature of the LD
equation. Consider the classical nonrelativistic
generalized equation of Abraham Lorentz,

m —=R+Q,dv
N (46)

where m is the renormalized rest mass and K is an
externally applied force. 0 represents the radia-
tion reaction force that we write as~7

8 d
— +(~ ~ ~ ) Z+( ~ ~ ~ ) ft'+ ~ ~ ~ .3 e dt' (47)

The coefficients in the powers of the classical
radius of the particle R = I'q contain higher-order
derivatives of v. Their form is model dependent,
and different internal charge distributions give
different expressions for the various coefficients.
The Lorentz-Dirac equation for relativistic radia, —

tion damping is obtained by considering a small
particle radius ft. Equation (47) gives for small
R the standard form of the equation of Abraham
Lorentz which only in the -extreme R = 0 case be-
comes an exact equation [Eq. (46) withe
=mF d'v/dt']. Next we write the resulting expres-
sion for the R = 0 case in covariant form, assum-
ing that K represents the applied Lorentz force
due to the external electromagnetic field, "

dQ e
PIC = F +y+ gds c (46)

where g'~ is the field tensor and g' is the Lor-
entz-Dirac damping four-force of Eq. (Cl). g'
is obtained by writing the standard form of the
Abraham Lorentz damping force in covariant
manner, recalling that g' should obey the usual
condition for force four-vectors, namely, g'z, .
=0. The Lorentz-Dirac damping force is clearly
valid only for classical charge monopoles of zero
radius. Therefore, when considering particles of
nonzero radius in the limit g- q, we have to find
a covariant form for the' radiation reaction Q
represented by the infinite series in Eq. (47).
Hence our expression of Eq. (C12) for the average
relativistic damping force ( f) is strictly applic-
able only in the unphysical R- 0 limit.

There are several well-known difficulties in-
herent in the classical theory of charged particles.
Those difficulties propagate naturally into all re-
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Fig. 1. Display of convergence form factor V(c.), c.'=&uR/c versus wavelength, n t = &/2vR. The very small wiggles
at high frequencies are displayed in the small chart in the upper left corner. Observe the very amplified scale for the
vertical axis. The general behavior at long wavelengths is seen fram the chart in the lower right corner, where the
cutoff becomes evident at about &,= 2R.

lated theories, hence we find them in quantum
theory as well as in SED. However, if extreme
care is exerted in. the use of the classical equa-
tions of charged-particle motion in SED, the risk
of uncritically accepting spurious results like that
of Eq. (C12) is minimized. There is another like-
ly source for erroneous predictions in SED, and
that obviously is the introduction of the cemzpf of
Eq. (2) with its associated divergent spectrum of
Eq (1). Cle.arly, the several points of rigor,
here and elsewhere introduced, are enough to
guarantee that the conspicuous behavior of classi-
cal polarizable particles (randoin waik in velocity
space, E "a, const ~ 1, energy spectrum, etc.)
is correctly predicted from the basic assumptions
of SED, and hence that such a prediction springs
forth from the conjunction of the classical theory
of charge-particle motion with the cemzpf. It
looks, hence, natural to propose that an observa-
tional search for such predicted behavior that is
presented in SED may provide an immediate ob-
servational test, both to the SED theory itself as
well as to the validity of the rather simple model
of the vacuum contained in the cemzpf concept of
Eq. (2). However, the proposed test would prob-

ably have to be carried out within an astrophysical
context since, apparently, the low particle number
densities (n=10 ' cm ') required for the pheno-
menon tp be detectable may well lie prders pf
magnitude below those characteristic of the partial
vacuum provided by present-day technology.
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APPENDIX A: CONVERGENCE FORM FACTOR

Intuiti, vely, one expects that for a monopolar
particle of diameter 2R )0 spectral components of
random radiation whose wavelength X is smaller
than the size 2R of the particle cannot be effective
in producing translational motion of the particle.
Only spectral components of wavelengths A. ) 2R can
be responsible for translational motion of the
particle as a whole. Spectral components of wave-
lengths smaller than the size of the particle,
A. &2R, can only be effective in producing internal
deformation of the particle. It is, however, inte-
resting to give a specific example of this fact be-
cause despite the spectral divergence of the
cemzpf and its associated infinite energy density,
a natural cutoff should appear associated with
the size of the particle, which means that one can
do the electrodynamics of particles immersed in
the cpmzpf without worrying unnecessarily much
about the said divergence. This we proceed to
check in detail by means of a specific example.
This example is useful in Sec. II and in the next
two appendices.

A convergence form factor is obtained by finding
I

(E,.)„,= (v~) '
J dX dt E,(x, t);

7

q =1, 2, S. (Al)

The expectation value of F~2 is given by averaging
over particle volume and time of measurement

an upper bound to the energy available from the
electromagnetic zero-point field for a charged
particle of nonvanishing size. This is accom-
plished by a standard semiclassical method.
Consider the interaction of the zero-point field
with a classical charged particle. Take the
particle as an homogeneously charged sphere.
Because of the Lorentz-invariant character of the
spectrum of the zero-point radiation, one should not
worry about velocity effects, and one can work in the
frame of reference where the particle is instan-
taneously at rest. Let the particle have a small
nonzero volume e, e «V, where V is the electro-
magnetic cavity volume, and let the time duration
of the interaction be a short nonzero time interval
v' &0. This is the time required for a measurable
effect to occur. Our immediate purpose is to
study the translational effect of the field on the
particle motion. For that purpose we need only
know the average field. Consider the jth field
component

(Qi(E )' i0) = (vv) '
JI Jt dxdx' dtdt'(QiE, (x, t)E, (X', .t')io) .

V f' VsT
(A2)

The matrix element in the integrand is

(AS)(o(z, l, e)z, (p', e')Io) =(—'I Qpte, exp(e(Te, (x —x') te(e —e')]—j(e,,„e,),
S&

where the ket (Qi represents the so-called vacuum state, i.e. , the state where all cavity modes contain
only the zero-point field. 2v/p is a normalization constant (see E(1. (2).in the text), and the summation
is carried over an implicit plane-wave expansion. For each plane wave, indicated by z, there are two

directions of polarization, v=1, 2. z„ is the unit vector in the direction of the electric field of the plane
wave, and%, is the associated wave vector with &u, =ci%, i. Substituting Etl. (AS) in Ecl. (A2) and summing
over the field components by means of Q&,(e,„~e,.) = 1, it follows that

(pl(@).*,l» =( p)1(ee)
* dxdx' dtdt' 2 +k()exp((i[& (&-&') -(d (t -t')]]. (A 4)

The time integrations can be carried out. The summation over z can be replaced by an integration in the
standard manner y 'P, ( ~ ~ ) = (2v) ' jd%( ~ ~ ). As &u, =

cilia

= ck and using the expression for the energy den-

sity u = ( R )/4v, written in Gaussian units, and recalling that the total energy density is u = p' 'P, -', k(d, „, we

have the average available zpf energy density over the particle volume,

(u) = 2» JI dx dx' )I kd%exp[j% (%-x')] sin'(-.' ckv )
—,ck7 '

We integrate first over %, letting the k, axis be parallel to the vector % -x',

(A 5)

(u) = » d% J
d%' k'dk sin8, d8,d(I)„, ', exp(iki x-%'icos8, ),-', ckr ' (A 6)
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where fk signifies the integral over the infinite sphere in k space. writing p = cosg~ and using the fact that

»n(k
I
& -x'I)

exp(ski + -&'l p)d g =2, ,
l)1 klx-x

we obtain

2kc ' ", " sin'(&cTk) sin(k l
x —x'l)

((2m')'.„.„J,, (-,'crk)' (kl% -%'l)

This equation gives a divergent expression only if both z = 0 and z = 0.
This result is to be expected for a particle interacting with a field of infinite energy density. It follows

that when the particle volume is infinitely small and also the time of interaction is infinitely short, there
is no averaging of high-frequency components and the full effect of the field is manifested. We show next
that if, on the contrary, both z and 7. are finite nonzero quantities, the high-frequency components give
no contribution to the energy available from the field. If either y or g is zero, but not both, (u} is still
convergent. A particular realization for the case'of spherical particles is presented. In order to estimate
the volume integrals, observe that

2w)l g (g (kr )h, ()l) ) g ~~ (e', ( ')F„(e, ( ),
2z)~& -%'( m=-1

(A 9)

where j, are the spherical Bessel functions, g, are the spherical Hankel functions, Y, are the spherical
harmonics, and

(A10}

From the above we can write

=4»Hel Qj&(k~ ~ji(k~ )&( (8' 4")&i (e) 4}l.%-x
I & &=0

We proceed to evaluate the integral

&, sin(kl% -3j'l } (A12)

assuming that v is a spherical volume of radius R, v= 4''/3. As y;„=8, (cosg)e'"')), the integrations over
Q and 6 give zero unless m = 0. Hence, writing r —=

l %l, ~'=
l
g'l, we have

OQ

& = (») k g (21+ 1) r'dr r"dr'j, (kr, )j,(kr&)
l p, (6)d6

l

l =0 40 "0 j
where g = cos8, cos8'. We obtain

(A13)

2
/

())R '2
As j,(p, ) = sing/iL, the last integral can easily be evaluated:

(A14)

~kR

w 0
g sini), dp = sin(kR) —(kR)cos(kR). (A15)

Replacing in E(I. (A14), this gives

I =k —,
l [sin(kR) —(kR)cos(kR)]'.

The energy density of E(I. (A8) becomes then

(A16)

gch )
" sin'( —', cTk) sin(kR) „'dk

(A1V)
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A signal takes a maximum amount of time 2R/c in traversing the particle. It can be assumed that the
maximum time of detection approximately corresponds to this amount. Setting then for simplicity & = 2R/c
in E(I. (A17) we obtain

Qc
""]'sinn ' sina ')' do

(A18)

where n = kR and where the last integral is a numerical constant that for R & 0 is positive and bounded.
For the case R &0, the energy available from the field, U= g(u), remains bounded:

ss

U= v
~

y(~)p(~)d~,
~t) 0

where

9 (sino.' '(sin().
y(~) =y[&]= —,

( ~

—cos a

(A 19)

(A 20)

and o. = arR/c. The function y is displayed in Fig. 1 in terms of the wavelength ]).. A cutoff is clearly
seen around the critical wavelength A., =—2R, giving substance to the intuitive statement that wavelengths
smaller than the size of the particle produce internal deformation and do not directly contribute to the
translational motion of the particle. "

Last, but not least, we would like to point out an important consequence of the sharpness of the cutoff
given by E(I. (A20) and displayed in the lower right corner graph of Fig. 1. This sharp cutoff has re-
markable relevance in the simplification of our treatment of the monopole in Sec. II and Appendix B. Fur-
thermore, the energy growth rate for a charged monopolar particle under the cemzpf is a strongly de-
pendent function of the cutoff frequency, i.e., most of the energy growth rate for a monopole is found to
depend strongly on the highest frequencies of the random field available for monopolar translational mo-
tion" fsee Eqs. (18) and (B16)].

APPENDIX B: MONOPOLAR MOTION UNDER
THE CEMZPF

Consider the monopolar particle of E(I. (6) under the electric and magnetic fields of E(ls. (2)-(4). If
again we assume that the effect of the field on the particles is not too strong, the resulting initial particle
motion is slow enough, and then in a first approximation we can use, if a sufficiently short time interval
v is considered, the dipole approximation fk x = 0 in Eq. (2)] and neglect in a first approximation the ef-
fect of the magnetic field. The steady-state solution is then

x(t) = (, ) d')txos, x)sos[x„t —Got, s)+ il(s„-)], -
2v '

1

where

(B1)

x(k, x) =— 3 3

p (&]-, ) sin[6 ((u]-, )]i (k, ]).), (B2)

i:an[5(~]-)]= I' ~

where I' was defined by E(I. (7). We can now include the particle velocity x in the Lorentz-force expres-
sion of the right-hand side of Eci. (6). In the time interval ~, the net impulse obtained by the particle is
then

0
e E+ —v x BIdt.c ) (B4)

It is easy to see that for a time interval & sufficiently long, on the average the integral over the electric
field may be neglected in comparison with the integral involving the magnetic field. The electric field
gives only the jiggling motion of E(I. (18). It is the magnetic field that is responsible for the main contri-
bution to the impulse of E(I. (B4). This is so because the cross product of the velocity and the magnetic
field gives an impulse that on the average grows with v'' ', as shown in what follows. We have



BEHAVIOR OF CLASSICAL PARTICLES IMMERSED. . .

(X X B)di =
( 2,)—

1
d k) ) (f kB 2 B p ((d)]( )(U, ((d)], ) sin[5(e)]( )]& (k q) ]).~)

x [$, x ~(k „z,)] sin[~]-, f + 6 (~[-„)-e (k „]).,)]
x cos[(d)]-,,t —e(k „]).B)]dt, (85)

where 5 = k/(R~ and the calculation is analogous to a previous one B' The time integration is carried out
first. We then square and take averages over the random phases using26

2v '
(sin(—,

' (v, a(u)]+9, -e, + 6) sin(-,' (e)', +~,')7+O'B-8[+ 5))=, —,'5(k, -k', )6(kB-,k,')6 ~, g, ~. . (86)

This yields

(d*,) = (-) d'd, d dX*'(x,i) )d(xi) (d I ( ')
x (q(k „](,)x[y, x R(k„]),)]]' — —

~ ~ & sin'[-, ((d), + (d)p'], 1 v'&B/ 1
2 2j (-', ~+~

1 2X+ [, ( } j, sin'[B(a), -e),)r] ~,
2 1 2

(8,7)

where we have already written (Z',) instead of (I',) because, for the case of motion under the Epf, there
is no net drag force and the friction term 4= -PTv„as shown below, is equal to zero to all orders in
t)/c. Observe furthermore that (f'I[ = (e)'/c') d (d) d Q, . For long enough ~ it can easily be seen that the
second term in the curvilinear parenthesis behaves as a delta function. In comparison, the first term can
be neglected. We use the relation

sinBP =w. (BS}

Furthermore, we observe that

2 2

dQ dQ [d(k, ji )x[5 x)(f, il )]] =
) dD dB P [ (f xIi )xx(k, X )]

lI j.

Recalling the vector identity

(AxB)'= A'8'-(A 8}',
with the observation that if (A )

= (8 )
= 1, then

(Ax 8) = 1 - cos e(A, 8),

(89)

(810)

(811)

(812)

we can, instead of E[I. (89), write
2

dQ, dQ,
~

4- Q[e(k„]).,) ~ C(k„x,)]']I = 4(4w}'-4(4]r}(~w) = ~B(4w)'.
Kg=1 X2-I

From E[ls. (88), (89), and (812), and after neglecting the first term inside the curvilinear parenthesis
of Eq. (87) we obtain

3 B8 B~ 1 1 r S~)B (I'~)'' =
2 3 "' 2 2" . ~ 2. ) 1+(r~)' .

The rate of translational energy growth is then given by

dE (ZB)
gf 2ntl' '

(813)

(814)

In the above derivation we have considered a point particle. For a particle of nonzero radius„&& 0, we
know from Appendix A that this translational energy growth should be finite even if the cemzpf energy
density spectrum is itself divergent. Introducing then the convergence form factor of E(I. (A20) we finally
obtain
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s k' I" (r(g)'0= —
~ J y(+)1 ( )2 op d&u. (al5)

As the classical particle radius is ft = rc, we can approximate the integration of Eq. (B15) by the introduc-
tion of a cutoff at ~„-=m/r = wc/g. This gives

n=—
5

(r(o„)' ", (k(o )(o .k(g (B 16)

For a more precise evaluation of the integral of Eq. (B15) structural information on the specific particle
is required. For elementary particles found in nature, i.e. , electrons, that information is not always
available. However, for the idealized homogeneously charged spherical particles of Appendix A, it can
be seen that Eq. (816) is a fairly reasonable approximation. It is interesting furthermore to realize that
the rate of energy growth is strongly sensitive to the highest frequency ranges available to the particle. "
It remains to show that in the cemzpf case the average impulse of Eq. (1V) transmitted to the particle is
equal to zero.

Consider a new frame of reference $' moving with velocity v with respect to the previous reference
frame that we call S. We can make this velocity 0 coincide with the instantaneous velocity that the particle
has in the frame S at a specific time, say, the time t = 0, i.e. , v =X(0). The field transformations give

E (% t)=
(a )

d kp((df) E, t+yi e„(g'( 7„+y 6 +
ig( iix

x cos [&o't'- k %'-e(Ts, A)], {al7)

where for simplicity we have chosen the z and z' axes to coincide with the axis of the relative velocity v
of S and S'. Beware that y = (1-v'/c') '~' is different from the previous y(m). The wave vectors transform
as

k„=y(k„'+v~'/c'), k, = k„', k, = k.', d'k = d'k'y(1+ vk„'/~'), u& =y(co'+vk„'), &ot -% %= &o't'-%" x'.

However, the field R' can also be expressed directly in the particle frame of reference as

(ala)

(al9)
j./2 r

f'(x', t')=, „d'k'e'(Te, X')p'[%']cos [(g't' —fe x' —e(fe, X')],
g =1

where p[%'] denotes a function that in general is not necessarily isotropic in%'. From Eqs. (BIZ) and

(819) after squaring and averaging it is shown that

V'[y(l+ v 't/~')]
y(1+ v. k'/~')

If v/c«1, Eq. (Ba0) reduces to

(aao)

(aal)

In general the radiation is not isotropic except for the S frame where v= 0. However, if the expression in

large parentheses identically cancels, the random radiation may be isotropic in all inertial frames. This
can be so if p'(+')- &u', which from Eq. (4) we know is exclusively the case of the cemz pf of Eq. (1). In

that case then,

(aaa)

The impulse in the frame 3' can be written as

p

+ 7

8E'dt'+ — (x' x B')dt'.
C Jp

(a as)

For a long enough time interval we can neglect the first term of the Lorentz force in comparison with the
second. Hence, we obtain that

fr 3

(I„') = I (%'xB')dt'= —7 d'k' ——, a tL' [%']sin'6(~-„.)e'x(5'xq'),
c p 2 c y-y 2 g gg

(Ba4)
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where Eg. (85) has been used. The averaging has been performed first and the time integration has been
performed next. As k ~ i = 0, Eq. (824) can be simplified even more, yielding

3c(1') =~ d'k'sin'5(td-') ~ " ' %'=0 (825)

where the last equality results from simple symmetry considerations. This last result is to be expected
and was all we needed. However, for completeness of presentation, we can consider the case of general
thermal plus zpf radiation (T & 0) at low enough particle speeds. Replacing then Etl. (821) in the second
term of Eq. (825) we obtain

(I,') = —v, p, '((a)') —(o', sin'5((g')(g'd(u'. (826)

We see that we can then write that the drag force is proportional to the velocity

f = —Pv~ (827)

with p'+0 in general, except in the special case of the cemzpf where &=0 identically, as follows from
Eqs. (825) and (826).

APPENDIX C: LORENTZ-DIRAC FRICTIONAL FORCE
FOR MONOPOLES MOVING THROUGH
THE ZPF —A SPURIOUS PREDICTION

Consider the Lorentz-Dirac damping force four-vector"

28 dN r r, de,
3c cfog ds

where u' is the four velocity, cthe speed of light, e the charge of a monopolar particle, and

ds = cd t(1 —v' jc')'~'

(C1)

represents the proper time interval. The Lorentz-Dirac damping for a monopolar particle of Eq. (Cl) can
be written in terms of the field tensor I ~ of the external field acting on the particle, ~'

g =, u, u —
2 F F~,u + 2 (Fl,u)(F "u )u.2H ~r r

2e'
r n~ (C&)

3&PC 8g 3' C . 3tyg C

The associated three-dimensional expression for the damping force i in the relativistic case can easily be
found in terms of the electric E and magnetic H fields measured in the laboratory frame of reference for
a particle of charge e and rest mass m moving with respect to the laboratory with velocity v, '

28 8 ~ ~~ v 8
y —+ v ~ VE+ —x —+v ~ V H3mc' Bt c at

4 %2
V - 2e, V V l ( V+, , E xH+Hx (Hxv/c)+E —~ E —,~ y' — E+ —xH

~

—
~

E3m'c' . c 3m' c, c ) i c J' (c 4)

where y =—(1 —v'/c') 't'. When E and H refer to the zero-point field we can, because of the homogeneity
and isotropy of the random field, assign the conditions specified by Bourret for random radiation, namely,

(H( H,) =(Eq E~) =(E()5)~ = +3 vU5,.~,

(E, ) = (H&) = 0; (g ) = (E x H) = 0,
(c sa)

(csb)

where I, and E, represent the field components, the brackets indicate averaging over an ensemble of
similarly prepared random fields, and U is the field volume energy density

U= ' y(u))p((u)d(o. (C 6)

The volume and spectral energy density p is given in Eg. (1}, and the integration can be carried out intro-
ducing the convergence form factor y(&v} of Appendix A. Hence we write

"~m
p(CO)d(d .

+0
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Equations (C5) and (C6) define the instantaneous correlation properties of the field with itself. We also
require the correlation properties of the field with the translational motion of the particle. From the ran-
dom field at hand it can easily be seen that the instantaneous value of a field component is only weakly
correlated with the present value of the particle velocity, since for the zero-point field the correlation
time of the field with itself, because of the spectral divergence of the spectrum, if nonzero, should be
extremely short. Hence we assume

(E",a, v', ).=(E. "R)(~'.) + ~ (CS)

where E represents a relatively small correction term and where n, m, and 1 represent integral powers
of the field components and of the velocity, respectively. We use furthermore the vector relations

Hx Hx —=H H ~ —-H—
v ~

c

~~ 2

~

v

c

~ ~

~

v ~ ~
IE+ —xH~ =E'+ —xII 2 —~ (E xH).

c i c C

From Eqs. (C4) —(C9) we then obtain that

(f) =-, (yx)' 2(E (
—

E)) —(E —) '(y'E' —
) —(y'( —x E) —) y(y'JE —

)
—)

(C9a)

(C9b)

(Clo)

From now on we neglect the small e term of Eq. (C8), as carrying it unnecessarily complicates the alge-
bra. Because of Eqs. (CS) and (C5) it easily follows that

E ~ —E = E "E+ ' E+——E, =3 E

v xH —= y2

y E ~ ——— y E —"—+E ~+K =' ———
y —E

(C lla)

(C11b)

(C 11c)

We thus obtain for the average force of Eq. (C10) that

( Q = -SvR'U(yE v/c), (C12)
y

where we used Eq. (C5a) and the fact that 1=@'—(yv/c)'. R= I'c is the classical radius of the particle.
Equation (C12) is a rather curious result that runs contrary to all our expectations. The drag force of
Eq. (C12) can be zero for our ultrarelativistic monopolar particles only in the following two cases: (i) If
the classical radius of the particle is zero. However, that is an inadmissible proposition. On the one
hand, if we take into consideration Eq. (C7), we should have (f) -~, R -0, a fact which strongly excludes
the (f) =0 possibility; on the other hand, if we do not consider Eq. (C7), we have to accept in the theory
particles with infinite renormalized mass, as can be seen from Eq. (7). Furthermore, when R-0 the

convergence form factor y tends to 1 everywhere, and hence one would have to accept monopolar par-
ticles acted on by the whole zero-point-field divergent spectrum of Eq. (1). (ii) Another possible reason
for claiming that Eq. (C12) gives (f) = 0 occurs if one assumes a null zero-point-field energy density
spectrum.

In order to throw some light into the peculiar nature of the above displayed paradox, we consider the
nonrelativistic form of Eq. (C12) and compare it with the corresponding expression of Appendix B, namely,
with Eq. (B26). We can write Eq. (C12) in the nonrelativistic limit

f =-SvRE Uv/c, (C IS)

where for simplicity the averaging, although not indicated, is understood. From Eqs. (4), (C7), and
(B26) we have

vf =(I,)/7 = 2~R'-P(&')d&' — &' — d&o' = ——SmR U- E &u'P(m')
C

(C14)( ). ( . )
where we introduced the cutoff of Appendix A, and hence could neglect the (I'e')' term in the denominator
of Eq. (B26), and used the fact that the classical radius of the particle is R = I c. Observe that Eqs. (CIS)
and (C14) differ only in the term that results from the integration by parts. Clearly, for thermal and other
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random radiation of a convergent spectrum such that p-0 sufficiently fast as v- ~, there is no problem
with the integrated term and both Eqs. (C14) and (C13) give exactly the same result .It is for radiation
fields of a divergent spectrum that such a term becomes relevant. In particular we can see that for the
case of the cemzpf we have that the integrated term is exactly equal to IJ, and hence that Eq. (C14) gives
f =0, as on physical grounds it was obviously to be expected.

Therefore, in Eq. (C13) and h'ence in Eq. (C12), there is a missing term that gives the clue to the
solution of the apparent paradox depicted in this appendix. The missing term, which is the integrated
term derived in Eq. (C14) from the results of Appendix B, can be introduced in Eq. (C13) in an ad hoc
manner as a "renormalization term" that corrects the divergence that ensues from the use of the LD
equation in a random field of divergent spectrum. Hence we can see that the correct solution arises
spontaneously from the derivation of Appendix B, that starts from the Abraham Lorentz Eq. (6), and not
from the derivation of this appendix that starts from the LD Eq. (48) with the damping force Eq. (C3).
It is this damping force that we should examine next.

Written in four-vector notation, the Abraham Lorentz Eq. (6) reads like Eq. (48) but with the damping
force

2e2

3c d8
(C15)

The additional term of Eq. (Cl), as is well known, is required for proper covarjance of the resulting
equation and is chosen in such a manner that the orthogonality condition g u, =0 is obeyed. It is a simple
matter to check that this last term does precisely lead to the last term of Eq. (C3). At large speeds it is
also this last term that dominates the space components of the four force. In the ultrarelativistic regime
we then approximately have~s

4

(C16)

Furthermore, if we consider random radiation as in Eq. (C5), then Eq. (C16) leads exactly to Eq. (C12).
Hence we have that the additional term of Eq. (Cl) is exclusively responsible for the frictional force of
Eq. (C12). If there were not this particular additional term, introduced exclusively from covariance re-
quirements, there would not be the electromagnetic friction of Eq. (C12).

The physical interpretation of the additional term to Eq. (C1) can easily be obtained when examining the
four momentum that the moving particle transmits to the field in a given time interval. We have

and hence

&P=-jtfds. (C1V)

However, as seen from Eq. (C12) this transmitted impulse from the particle to the field goes to zero
in the R -0 limit. The contradiction found comes from not considering particles in this limit of zero
radius. For particles of finite size, as pointed out in the text, we have to use a more complex version
of the Abraham Lorentz equation, namely, Eqs. (46) and (4V), and then from it, by requiring the covariance
of the expression, derive the corresponding generalized version of the LD equation. This last approach
should not lead to the difficulties displayed in this appendix. Its actual feasibility is, however, greatly
hindered by the mathematical complications created by the model dependent coefficients of Eq. (4V).
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