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Rheological properties of simple fluids by computer simulation
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%e present results of nonequilibrium molecular-dynamics calculations for the triple-point Lennard-Jones fluid

undergoing shear flow. The calculations show that this simple fluid exhibits a wide variety of non-Newtonian
behavior ranging from viscoelasticity, to shear dilatancy and flow birefringence. It is shown that the constitutive
relations describing these phenomena are consistent with nonanalytic functional forms. For every property so far
studied these functional forms agree with those predicted by long-time tail theories. However, the size of each effect
is found to be several orders of magnitude greater than theoretical predictions.

I. INTRODUCTION

In this paper we present nonequilibrium mo-
lecular-dynamics (NEMD) results which offer a
summary of the rheological properties of simple
fluids. The model systems studied are: the I en-
nard- Jones fluid close to the triple point' for which
which,

which introduces the symmetric traceless strain
rate tensor (&'u)', which guarantees the pressure
tensor is harmonic with frequency ~ (no sub or
super harmonics) and which also implies that Eq.
(3) is complete. The other elements of the pres-
sure tensor take on their equilibrium values. The
zero- frequency Newtonian stress-strain relation-
ship follows immediately from (3).

P =4& [(o/~)"- (o/r)'],

and the two-dimensional soft-disk fluid close to
freezing' for which

&t
= ~(o/r)".

The first model is known to be a reasonable ap-
proximation to the inert gas fluids. The second
model fluid, while it certainly has no counterpart
in nature, provides a simple means of studying
the dependence of simple fluid rheological prop-
erties upon dimensionality. Recently Evans and
Watts' have shown that the qualitative rheological
properties of a wide variety of simple three-di-
mensional fluids are independent of the details of
the interaction potential.

Most of the rheological phenomena to be dis-
cussed here can be defined in terms of the stress-
strain relationship. If P denotes the pressure
tensor and Bu/&x the strain rate tensor then for
simple fluids in more than two dimensions and for
sufficiently small strain rates the equation

&,.(~) =&.„(~)-=—&n(~)r(~) (3)

defines the complex frequency-dependent shear
viscosity coefficient Fj(tu) In (3) "-"d.enotes the
temporal Fourier transform and

(4)

I „,=I,„=-3n(o)y.

It is assumed that for sufficiently small y, n(0)
is a function only of thermodynamic variables.
Equations (3) and (5) therefore describe linear
relationships between the pressure tensor and
the strain rate tensor.

In the nonlinear regime (large y for three-di-
mentional systems) if the strain rate tensor is
given as

0 2y0
eu/axe 0 0 0

oo 0/

then at zero frequency the pressure tensor can
be written as, '

In this complicated constitutive relation n(y) is
the zero-frequency nonlinear, effective shear
viscosity coefficient. The hydrostatic pressure
p(y) is given as

p(r) = l tr( I') =&„+l (o', + ~,) .

(5)

In three-dimensional fluids it is assumed that
one can always choose a strain rate y, sufficiently
small for a linear isotropic coupling to exist
between stress and strain. It ls this assumption

In the nonlinear regime the hydrostatic pressure
is a function not only of the usual thermodynamic
variables (temperature and density, T and p) but
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A group of related theories' which we shall call
"long-time tail theories, " attempt to predict the
leading terms of non-Newtonian behavior from a
knowledge of the equilibrium and Newtonian pro-
perties of the system. The mechanism by which
these properties are believed to determine the
leading non-Newtonian behavior (both linear and
nonlinear) involves slowly decaying hydrodynamic
processes-the so-called long-time tails that were
first discovered by Alder, Gass, and Wainwright. '
These asymptotic predictions (a.symptotic in + and

y) are summarized in Table I. One of the most
significant implications of these predictions is that
the pressure tensor is a nonanalytic function of
both frequency and strain rate. In two dimensions
these nonanalytic cusps are predicted to become
stronger and the Newtonian shear viscosity is
thought to diverge logarithmically as both a func-
tion of frequency and strain rate. '

By performing computer simulations of shear
flow (nonequilibrium molecular dynamics) we have
recently found support for the functional forms
predicted theoretically for both two- and three-
dimensional systems. We produced the first com-

TABLE I. Asymptotic non-Newtonian behavior of
three-dimensional systems. g(0) = g(0). Long-time
tail theories give expressions for the various A con-
stants in terms of thermodynamic and Newtonian trans-
port properties. "i"in {b1) is Ml.

a. Limiting {small y) nonlinear behavior

p (y&-p(o&+A, I
yl"',

,&y& =A.,l
yl" ',

~(y&= ~(O&-A„lyl'~',

(a1)

(a2)

b. Limiting (small co) linear viscoelastic behavior

R(~) =~(0)- (1+~~&~"' (b»

of the strain rate as well. ' This effect is known
as shear dilatancy and is usually observed exper-
imentally as a change in density with strain rate
under constant pressure and temperature. ' The
o, variables describe the differences in the nor-
mal stresses that occur under high rates of shear.
These normal stress effects are believed re-
sponsible for non-Newtonian phenomena such as
the Weissenberg effect. ' ' In the linear regime
the eigenvectors of the pressure tensor are at
45' to the x, y axes. It is easily seen that in the
nonlinear regime the directions of maximum and
minimum stress make angles 8, to the x axis
where

(g o ) ~[(g o )2+ 4q2yRj1/2

2ny

puter simulation evidence for a square-root cusp
in the frequency-dependent shear viscosity. " La-
ter more accurate calculations for the Lennard-
Jones fluid at moderate densities shows that over
two octaves in frequency the square-root depend-
ence fitted the observed results with a maximum
relative error of -4 percent. "

Our earlier frequency-dependent studies were
limited to moderate densities away from the freez-
ing line, because as Ashurst and Hoover" have
shown complicating nonlinear effects are magnified
at high densities. In this paper we present the re-
sults of accurate Lennard-Jones triple-point cal-
culations both as a function of frequency (after
extrapolation to zero strain rate) and as a function
of strain rate (at zero frequency). A preliminary
account of the zero-frequency results showing that
over almost two decades in strain rate Eg. (a3)
in Table I fits the nonlinear results to better than
3 percent has been published earlier. "

In spite of the fact that so far the results indicate
agreement between the predicted (Table I) and ob-
served functional forms there has been a discrep-
ancy of more than 2 orders of magnitude regarding
the values of the coefficients, A, (Table I). The
computer results may be calculated at strain rates
and frequencies too high for the asymptotic theo-
ries to be appropriate. However, we have recently
calculated the nonlinear viscosity and hydrostatic
pressure for a two-dimensional system. " For
both properties we observed the predicted logar-
ithmic dependences but again the coefficients of
the predicted and observed functional forms dis-
agree by several orders of magnitude.

The "coincidences" between the observed and
predicted asymptotic functional forms and the dis-
agreements regarding the magnitudes of these ef-
fects are not limited to the results of nonequili-
br1um molecular-dynam1cs s1Dlulatlons of shear
flow. Recently Wood and Erpenbeck" have used
equilibrium molecular dynamics to calculate the
limiting (&o 0) form for q(&u) using the Kubo-
Green expression. ' They find a square-root cusp
some 400 times larger than theoretical predic-
tions, Hoover, et a/."have simulated cyclic
compression in the triple-point Lennard-Jones
Quid to calculate the limiting frequency depend-
ence of bulk viscosity. Again the data are con-
sistent with a square-root cusp several orders of
magnitude greater than expected.

In this paper we complement and extend our
previous work. We show that at the triple point
the Lennard-Jones fluid exhibits a large square-
root cusp for f&(e). We detail more accurate and
complete results for the square-root strain rate
dependence of q(y) than has been published before;
we show that the shear dilation effect varies as
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y'~' (a1); we provide data for normal stress dif-
ferences o, and finally we provide data for the
nonequilibrium radial distribution functions both
of two- and three-dimensional systems.

3.0

II. METHOD 2.0

III. NONLINEAR EFFECTS IN THE
LENNARD-JONES FLUID

A. Shear thinning behavior

Figure 1 shows the computed zero-frequency
effective viscosity as a function of the square ~oot
of the strain rate. The data are consistent with a
square-root dependence

q(y) = 3.1V (+0.03) —1.48(+0.05)l yl'~' .
Over a 100-fold range in strain rate the maximum

TABLE II. Simulated parameters.

System size: N

p (x) truncation:
time step: At*
density p*
temperature: T*

Lennard-Jones

108
2.5
0.007
0.8442
0.722

Soft disk

32
1.5
0.007
0.9238
1.0

Units: System properties are calculated in dimen-
sionless units. Values are reduced by e, 0, m=par-
ticle mass

density: p*=
temperature: T*=
time: t*=

po'

AT/e
t(E/m) ~ g

po
k T/~
t(e/m)~~20 ~

Detailed descriptions of the simulation algor-
ithm have been published previously. ""'" Con-
sequently we give only the briefest description
here. The equations of motion of N particles in-
teracting through either the Lennard-Jones (1)
or the soft-disk (2) potential, are solved subject
to oblique periodic boundary conditions which
constrain the system to planar Couette flow. A
thermostat removes the viscous heat produced at
each timestep ensuring that the system is iso-
thermal. The constitutive relations' ' ' are used
together with the statistical mechanical expres-
sions for the pressure and strain rate tensors to
calculate the required transport coefficients. At
low strain rates where the signal-to-noise ratio
deteriorates the first moment of the peculiar vel-
ocity is adjusted (in addition to the second moment
which gives the temperature) to set the required
strain rate.

The simulation parameters for the Lennard-
Jones (1) and soft-disk (2) work described in this
paper are set out in Table II.

1.0—

0 i I i I

0 0.2 0.4 0.6 0.8 1.0

FIG. 1. Shearviscosity g* is plotted as a function of
the square root of the strain rate

I y*l i

relative error is 2.5 percent and the correlation
coefficient is 0.989. The data for Fig. 1 are given
in Table III. As can be seen in the table the num-
ber of timesteps used for each run varied approx-
imately linearly with y '. The calculation at the
lowest strain rate was carried out to 520000
timesteps and is one of the longest real time sim-
ulations that has been performed for a continuous
potential.

Three data points were obtained for a 256-par-
ticle system. As can be seen from Table III the
results for N = 256 agree with those for N = 108
within estimated statistical uncertainties. These
size dependence checks confirm results by Hoover
and Ashurst" and Hoover, et aL" showing a
negligible size dependence for this system using
the homogeneous shear algorithm.

B. Normal stress effects

Table III also shows the strain rate dependence
of the hydrostatic pressure p and the normal
stress differences o„o,. Figure 2 gives a log-log
plot of p(y) against the strain rate. As can be
seen the data are consistent with the predicted
asymptotic form. When fitted to the y~' ' func-
tional form we find that

p(y+) = 1.018+2.601I yl" ~ (10)

v, (y*) =0.008+ 1.13I y I' ',

~ The correlation coefficient for the fit (y+ & 0.6) is
0.997. We note that this equation'was obtained for
a Lennard-Jones potential truncated at x= 2.5o.

The data for the normal stress differences are
much poorer in quality. Figure 3 shows a graph
of o„o,as a function of y' '. If we assume this
relationship is linear (a2) we find that
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TABLE III. Nonlinear shear flow properties of the triple-point Lennard Jones fluid. (1) N

=108 (2) N= 256.

yo(m/e) 12 qo'/(me)'~' n(o'/e) og(o /E) 0'2(o' /6) Time steps Notes

0.0513
0.1006
0,1491
0.1745
0.2505
0.4952
0.9569
0.1995
0.2041
0.4905
0.0
0.0126
0.0980
0.1992
0.2031
0.3606
0.5565
0.7313
1.051

2.844
2.605
2.656
2.542
2.383
2.135
1.744
2.552
2.458
2.163

3.099
2.692
2.551
2.468
2.213
2.062
1.954
1.596

1.025

1.384
1.259
2.007
0.997

1.074
1.298
1.283
1.608
2.085

3.11

0.021

0.04
0.13
0.12
0.18
0.50

0.79

0.066

0.07
0.24
0.10
0.32
0.56

0.91

QO 3)

37
20
20
15
10

8
8

20
524
23
20
25
27

.12
8

14

cr2(y*) = 0 033+1.29 l y I (12) I then Eq. (3) implies that the eigenvectors of the
pressure tensor have rotated through only 1.4'.

The constant term in (11) and (12) must of course
be zero (since fluids must have an isotropic pres-
sure tensor at equilibrium). Within statistical
uncertainties this consistency requirement is
satisfied. In view of the statistical uncertainties,
the difference between the sizes of the y' '. terms
is hardly significant. If me assume that at y~ =1,
the data still follow the functional forms in Table

1.0—

IV. VISCOELASTICITY AT THE LENNARD-JONES
TRIPLE POINT

As pointed out earlier' one ca',n simulate sinus-
oidal time-dependent shear

fleam

to calculate the
frequency-dependent shear viscosity. This is a
reasonable procedure only if one carries it out
for as small an amplitude as possible since at
large amplitudes where nonlinear effects are
present one knows that if the strain rate is har-
monic with frequency + then the pressure tensor
will contain super harmonics at 2v, 4', etc. The
amplitudes studied in this mork were sufficiently
small for the harmonic distortion to be 6 1%.

Table IV shoms details of the calculation of

CL

O.f—

. 0.6-

0.4-

g&D
Oj V

' V

0.2-

0.0 4
0.0 0 0.1 1.0 0 I

0.1
I I
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ly'I"'

I

0.4
I

0.5

FIG. 2. We show a log&0-log&0 plot of the shear induced
pressure change as a function of strain rate. The
straight line is Eq. QO).

FIG. 3. The normal stress differences are plotted
against the strain rate Co the 2 power. Note: o~ =P„„-
Pgg s 02= Pyy-Pg g
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TABLE IV. q(M) at the LJ triple point. Above ~*=17
we use 6*=. 0.002 rather than 0.007.

t(10 'S) b, t*

O.l
0.1
0.1
0.1
0.1
0.1
0.1
0.1

2.704 0.70
2.212 0.70
2.14 0.91
1.736 1.07
1.223 1.00
1.145 0.97
1.054 0.98
0.900 0.92

1.122
2.24
2.24
4.49
8.976

11.97
11.97
14.96

40
20
20
20
20
20
20
20

0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007

0.15
0.15
0.15
0.15
0.15

0.0502

0.0510
0.049
0.0501
O.l
0.1
0.1
0.1
0.1
0.1

2.409
2.334
1.719
1.253
1.137

2,548
+0.04
2.189
1.269
1.013
0.346
0.506
0.663
0.411
0.237
0.829

0.60
0.76
0.97
0.94
0.94

0.614

1.024
0.98
0.83
0.721
0.883
0.949
0.7g5
0.624
0.941

1.122
2.244
4.489
8.976

11.968

1.22

2.244
8.98

11.968
31.42
22.44
19.64
26.18
39.27
17.95

26
32
20
20
20

503

84
77
77
20

10
14
16
20

0.007
0.007
0.007
0.007
0.007

0.007

0.007
0.007
0.007
0.002
0.002
0.002
0.002
0.002
0.002

q(u&). The real and imaginary parts of q were
calculated by noting the phase and amplitude re-
lations of stress and strain. The calculations
were performed for three different amplitudes
and as can be seen from Table IV there is no sys-
tematic amplitude dependence of q(v). It appears
that the amplitude dependence of q(e, y) has es-
sentially vanished for + a 1 and y~~0. 15.

Two different timesteps were used for the sol-
ution of the equation of motion. This is required
since for (d ~ 17 the motion of the periodic images
is so rapid that a significant displacement can
occur in a single timestep (b, t *=0.007). It was
found by trial and error that reducing the timestep
to ~t*=0.002 above ~~ =17 produced consistent
sets of results that smoothly mesh into one anoth-
er.

As is well known the real and the imaginary
parts of q(&u) are not independent but are related
by the Kramers-Kronig relationship

in the imaginary component are approximately
twice those of the real. Thus most of the subse-
quent discussion concerns q„(e)=-Re@(~).

Figure 4 shows a graph of qs(&u) as a function
of the square root of the frequency. As can be
seen at low frequenci'es the data are linear in

A reassuring result is that if one fits the
lowest nonzero-frequency data to Eq. (11) one finds
that the extrapolated q(0) agrees almost exactly
with the value obtained by extrapolating the zero-
frequency results to zero-strain rate, (namely
3.15 and 3.17, respectively).

Although for v~ & 1 there appears to be no am-
plitude dependence because

lim q„(&u, y) = q(y) = q(0) -a„l y I" ~

QJ ~0
(15)

In Fig. 4 we have sketched in the limiting zero-
frequency values q(y) for the three values of y used
in this work. The data have been interpolated using
the equation

q„((d) = j(0)+q,4P '+rf, rd' '+q, &' '+ ~ ~ ~ .

Now either by using the calculus of residues and
the Kramers-Kronig relationshps or by insisting
that the Laplace transform q(s) =q(co = s/i) is real,
one can deduce an asymptotic expansion for g„

3.0

=0

"g 2.0
"3

ig.

&.0

Re[@*(&o* y*)]=3 15-(0 178m*'+4.798y*')' '
(18)

In looking for the most compact means of sum-
marizing the data in Table IV we noted immedi-
ately that the data in Fig. 4 can be successfully
fit to a power series expansion in odd half-integer
powers of +,

( )]
—2

"" (u'Im[q((u')] „
0

(13) 00

Im[ q(~)] =
0

(14)

By looking at the data in Table IV we see that the
statistical fluctuations (particularly for small cu)

FIG. 4. The real part of the shear viscosity is plotted
against the square root of the frequency. For nonzero
frequencies there is no systematic strain rate depen-
dence. The curves are given by Eq. (16) for the strain
rates indicated.
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'gi (/d) = '/h&d - ri (d + Ti (d + ' ' ' (18)

Inverting (17) and (18) we obtain the stress-
stress time-correlation function q(t). Using the
Tauberian theorems' one has

lim r/(t) = {-r/&t ~q&t
5/

t"~

+-'Pf},t '"+ ~ ~ ). (19)

It is important to. note that it is only the half in-
teger components of the power series for q(&u)

which contribute to the asymptotic long-time be-
havior of p(t). These are the ohly terms needed
to fit our data.

A more usual approach to fitting such spectra
is through the moment expansion~

0
30

FIG. 5. Shows the complex viscosity [Eq. (21)] as a
function of frequency. This equation is consistent with
all the extrapolated zero strain rate data.

1 " '" (i(e)"
dt" 2m ~ n„(f= 0) =— q(&u)d( (20) The time-correlation function can be regarded

as the impulse response function since

G„
i( ) -g/T P (f f3/2/A~) 7 (21)

we see that we can guarantee: The correct value
for r/(t= 0) which must be the infinite frequency
shear modulus G„; the correct coefficient of the
&o~/2 cusp of r/(co) [NB: Ar/=-q& in Eg. (1V)] and
we can choose + to obtain the correct value for
the zero-frequency shear viscosity. The smooth
curve drawn through the data points in Fig. 4
shows the spectrum obtained with G„*=24.89
(the known value for the modulus20), Ay*=0.85
(the measured asymptotic slope of the data in
Fig. 4) and &+=0.12. This choice for the time-
correlation function fits all of our data for both

q„(&u) and q/(+) within estimated uncertainties.
It predicts q(0) =3.15. Figure 5 shows a graph
of both the real and imaginary parts of p so ob-
tained. It is interesting to note that the region
over which the asymptotic square-root behavior
occurs is relatively larger for p& than for pl.

In Fig. 6 we showthe time-correlation function
ri(t). Because our function for 7i(t} only involves
three adjustable constants and was fitted from a
necessarily noisy spectrum it should not be re-
garded as a basic output of our simulation.

It is easily seen, however, that this theorem is
useless for fitting our results since even for the
second moment at least 50% of the integral (20}
is determined by frequencies higher than the
highest studied in this work (&v*=40}. This is
a consequence of the small radius of convergence
of the Taylor expansion of r/(t).

Although the half-integer expansion of r/(~)u»8, »&

works quite well we found a more compact way
to summarize the data. If we assume, using (19}
as a guide,

P„„(t)=-2 (22)

V. SHEAR BIREFRINGENCE

For simple fluids undergoing shear flow the
singlet-distribution function maintains its equil-
ibrium value. This is not true for the two-particle

t afa~
—3

20

10

0 0.2 0.4 0.6 0.8
t"

0
1.0

FIG. 6. Shows the stress time-correlation function
g(t ) and the step response function N (t ) generated using
Eq. (21). The crosses denote Levesque's {Ref.26) equi-
librium computer simulation results at intermediate
times. Note the slow decay of these functions.

q(t) predicts the response of the system to an
impulse in the strain rate. We also show N(t),
the step response function, N(t) =f ~ r/(t') dt'.
It is important to realize how slowly the Kubo-
Green integrand converges. After 150 time-
steps (or t*=1.0) N(t) is 13/0 below its asymptotic
value. After 1500 timesteps (or t*=10.0) it is
still 5% below its asymptotic value. Many early
computer simulations of equilbrium properties
were less than 2, 000 timesteps long.
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distribution function, g(r„y). Assuming g(r;y} is
suitably smooth in angles (r) but not necessarily
in strain rate y, we may expand in spherical
harmonics. ~

where

I' „=cos(mg }P„(cose),

(23)

I'0 „=sin(mg)P„(cose},

are the even-and odd-spherical harmonics. Our
notation is that of Morse and Feshbach. 20 Inte-
grals over g(r;y) can be expressed as ensemble
averages since

g r iy =4IIr r ~r+~r ~ 24

The angle brackets denote the nonequilbrium en-
semble average in a spherical shell of radius
r,r +dr. Using the orthogonality properties of
spherical harmonics we can write expressions
for the expansion coefficients as ensemble aver-
ages.

g(r y)=/A, .(r y)I",.(e, 4)+&,.(r;y)y', .(8,$),

g(r; y) =A«(r; y),

v(r; y) =W»(r;y)ly.

(30

(3l)

By integrating the spherical harmonic expansion
one can see that the hydrostatic pressure p is giv-
en by the equation

P = pk&+
3

p' r'y '(r) A„(r, y}dr .2m2 "3
~

0
(32~

'The potential contribution to the shear viscosity
g~ is given as

"p (.,a &ry
5 -0 y

(33)

The normal stress differences are given by the
equations

not so since the pressure and the shear viscosity,
which are integrals of g(I';y), are presumably non-
analytic in y. The divergence of the Green expan-
sion was first realized by Evans and Watts. '

Nevertheless by allowing the coefficients of (27)
to be functions of y we can obtain useful informa-
tion regarding the y-dependent structure for fluids
undergoing shear. ' ~ In fact one can identify the
g(r;y) and v(r; y) terms in the spherical harmonic
expansion.

&„(2n+ l}(n -m)'
mn( Y) = 4& (n+ ) }ra ( tnn&rr+4 r s (25)

WPo', =- 5, dr r'p'(r)[4A»(r; y) -A»(r; y)], (34)
0

)
c„(2n+ 1)(n —m)! (. ,

4wp(n+m)! r' (26) 7l'P
o, =

5
dr r'Q'(r)[4A»(r; y)+A»(r;y)] .

where E =1 if m =0, =2 otherwise. From the par-
ity of g(r;y) if n is odd, A„„,B„„vnai shfor all
r, y. This expansion (23) exists provided the angu-
lar variation of g(r;y) is sufficiently smooth. » It
does not require smoothness with respect to y or
ro

In previous work we have used the irreducible
Taylor expansion ofg(r; P~) as introduced by
Green. ' lt predicts,

g( y"r)=g( yr=o)
~

+—-~: y" +o(y')
(syos J' yos

(27)

g(r)+ v(r)T' —:y'+O(y'),
r (28)

(2)
'FF'- 3r I .

r (29)

For this expansion to exist g(P;P') must be an-
alytic in the strain rate at y' =0. This is probably

where 2'+) is the symmetric traceless second-rank
tensor

A«(r;y) g(r;y)= g, (r)+g, (r) ~y ~"',
and

»„(;y) =v(r;y)=vo(r)+v (r) ~y ~' '-
y

(36)

(37)

This conjecture turns out to be consistent with the
simulation results. Figures 7 and 8 show go(r),
g, (r), and v, (r), v, (r) as a function of separation.

'The introduction of spherical harmonics allows a
simple qualitative description of the parts of
g(r; y) which give rise to the various macroscopic
effects."

As we showed in Sec. IV the normal stress dif-
ferences as calculated in our computer simula-
tions are subject to relatively large statistical
fluctuations. Consequently we will not give details
of their corresponding expansion coefficients, A»
and A„(r;y).

In view of the asymptotic relations for p(y) and
'g(y) given in Table I, we might expect that



RHEOLOGICAL PROPERTIES OF SIMPLE FLUIDS BY.. . 1995

—0.8

—0.4

&(&)=&.log I&'~ I

and a logarithmic pressure dependence

p(r) =p(0)+&P I&'~ I»g I&r& I .

(38)

Thus by analogy with three-dimensional fluids we
might expect that in two dimensions

1.5 2.0

—-OA

-0.8

s(vr) =g.(v)++.6') Irr, (~) l»g Irr, (~)
I
. (40)

In fact the nonequilibrium radial distribution func-
tion is consistent with a simpler form than (41).
The data are consistent with the equation

FIG, 7, pp(r*) and g& (r*) are plotted as a function of
reduced separation r for the triple-point Lennard-
Jones system. Note that the equilibrium radial distri-
bution function A(r*) was obtained without using any
equilibrium data.

g(~;r) =g.(~)++.(~) Irr~ llog l~&~ I
~

Figures 9 and IO show

A~(r)r~ ~g, (x), A„(r)logs„(r) =- vo(r),

and

(41)

g, (&) is of course the equilibrium radial distribu-
tion function for the triple-point Lennard-Jones
fluid. However the go(r) displayed in Fig. 7 was
not obtained from any equilibrium data. Thus the
agreement of the graphed go(r) with the well known

g(r) for this state point "constitutes a good check
on the validity of (36). As has been pointed out by
Evans and Watts (Ref. 3), vo(r) is given approxi-
mately by -[G„/p(0)Judg, /dr.

By way of coritrast we also show graphs of g(x; y)
and v(r;y) for the soft-disk fluid. As has been re-
ported by Evans" computer simulations are con-
sistent with a logarithmic divergence of shear vis-
cosity in two dimensions,

&„(r)-=v, (r),
for a periodic system of 50 soft spheres. Note
that for this system &~ =11.09.'4 Equation (42)
has some important consequences for the nonlin-
ear irreversible thermodynamics of two-dimen-
sional fluids. If (42) is correct then all configura-
tional thermodynamic properties that depend sole-
ly on the zeroth-order spherical harmonic F00
(like internal energy and pressure) take on their
equilibrium values at the same nonzero strain
rate y=1/7'~. Since in the constant temperature
ensemble the kinetic contributions to internal en-
ergy and pressure are independent of strain rate,
we find that at y = 1/r~ the internal energy and the

0.8—

0.6

0.4

0.2
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FIG. 8. Shows that part of the Lennard-Jones radial
distribution function which determines the potential con-
tribution to the linear and nonlinear shear viscosity co-
efficients (vp, v~).

-0.8—

FIG. 9. g&(r*) is the nonlinear spherical contribution
to the soft-disk radial distribution function. g&(r)
=A~(r)v& where 7&*=11.094 (see text). Note that 7~(r)
=7& indeperident of r within numerical uncertainties.
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FIG. 10, vo and v& are the two components of the anis-
otropic nonequilibrium radial distribution function re-
sponsible for the soft-disks shear viscosity. vo(r)
=A ~(r) logf07&(r), v&(r)

—= A v(r) (see text).

hydrostatic pressure both take on the equilibrium
values.

VI. CONCLUSION

The results described in this paper show that all
fluids can be expected to be non-Newtonian.
Fluids such as argon are observed to be Newtonian

only because macroscopic turbulence prevents the
attainment of sufficiently high strain rates for the
kinds of nonlinear effects described in this paper
to be observed. Computer simulation overcomes
this difficulty by providing a microscopic system
where macroscopically large strain rates can be
used to study nonlinear laminar flow in simple
fluids.

Although the nonlinear effects described here
are at present experimentally inaccessible they
may nonetheless provide vitally important infor-
mation for the theoretical understanding of both
the non-Newtonian behavior of complex fluids and

the Newtonian behavior of simple fluids. The ob-
served, apparently nonanalytic, constitutive rela-
tions and their connection with linear "long-time
tail" phenomena underscore this point.

It might be objected that our simulations, which
are run isothermally, do not present the "true"
nonlinear behavior of real fluids (provided turbu-
lence could be supressed by for example construc-
ting. viscometers with a very small characteristic
lengths} since these calculations ignore the effects
of viscous heating. However since the heating is
for small y, proportional to y'and every nonlinear
effect discussed in our work is of lower order in
y (e.g. , y'~', ylogy), we believe that the qualita-
tive features of the nonlinear phenomena discussed
here should be independent of whether the experi-
ments are performed isothermally or adiabatical-
ly.

We note that nonequilibrium radial distribution
functions are likely. to be of considerable future
importance since they have recently been meas-
ured by Clark and Ackerson' and they have been
related to equilibrium time-correlation expres-
sions by Evans, et al. 25

Finally we would like to mention that a direct
outcome of the simulation of nonlinear Couette
flow has been the development of nonlinear therm-
odynamics. In this theory the strain rate y is in-
corporated as an additional thermodynamic state
variable. It provides a general framework within
which the connections between shear dilatancy as
observed in different ensembles and shear induced
internal energy changes are explained. It provides
an understanding of shear-induced phase changes"
which have recently been observed experimental-
ly." It has also lead to a proof of the nonanalytic
nature of the shear dilatancy constitutive rela-
tion. "
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