
PHYSICAL RE VIE% A UOLUME 23, NUMBER 4

Quantum mechanics of a constrained particle

APRIL 1981

R. C. T. da Costa

Paulo, Srasil
(Received 26 August 1980)

I

The motion of a particle rigidly bounded to a surface is discussed, cansidering the Schrodinger equation of a free
particle canstrained to move, by the action of an external potential, in an infinitely thin sheet of the ordinary three-
dimensional space. Contrary to what seems to be the general belief expressed in the literature, this limiting process
gives a perfectly well-defined result, provided that we take some simple precautions in the definition of the potentials
and wave functions. It can then be shown that the wave function splits into two parts: the normal part, . which
contains the infinite energies required by the uncertainty principle, and a tangent part which contains "surface
potentials" depending both on the Gaussian and mean curvatures. An immediate consequence of these results is the
existence of different quantum mechanical properties for two isometric surfaces, as can be seen from the bound state
which appears along the edge of a folded (but nat stretched) plane. The fact that this surface potential is not a
bending invariant (cannot be expressed as a function of the components of the metric tensor and their derivatives) is
also interesting from the more general point of view of the quantum mechanics in curved spaces, since it can never
be obtained from the classical Lagrangian of an a priori constrained particle without substantial modifications in the
usual quantization procedures. Similar calculations are also presented for the case af a particle bounded to a curve.
The properties of the constraining spatial potential, necessary to a meaningful limiting process, are discussed in some
detail, and, as expected, the resulting Schrodinger equation contains a "linear potential" which is a function of the
curvature.

I. INTRODUCTION

The motion of a particle in a one- or two-dimen-
sional domain of our Cartesian three-dimensional
space is a well-known problem in classical me-
chanics. It is usually treated in two different
ways. In the first, or Newtonian approach, the
particle is first thought of as moving freely (that
is, unconstrained) in the three-dimensional space,
but subjected to spatial forces which maintain, at
all instants of time, its velocity oriented along a
preselected range of directions (the tangent plane
of a surface or tangent line of a curve). In the
second, or I agrangian approach, the constraint
is introduced from the beginning through the well-
known generalized coordinates, and the calcula-
tions proceed without any necessary mention to
the space in which our surface (or curve) is sup-
posed to be embedded. For the purely spatial
constraints considered here these two treatments
yield the same equations of motion, the choice
between one of them being, in general, a matter
of convenience.

In quantum mechanics, however, the situation
is much less clear. If we select the first approach
to begin with we have the advantage of a ready-
made Schrodinger equation but will have to deal
with an unfamiliar situation in which the con-
straint can only be thought of as a kind of limiting
process. In fact, due to the uncertainty relations
we must have (besides the quantum analog of the
classical forces to bend the momentum of the
particle) infinite squeezing forces, " to contain the

transversal spreading of the wave packet, which
will be present even in the case of a particle mov-
ing along a perfectly flat surface. On the 'other
hand, if we choose the second approach we can
forget for the moment all properties related to
the external space, but will still have to work out
an adequate quantization procedure for the a priori
curved motion. ' The aim of this paper is to see
how far we can go following the first of these two
approaches. As mentioned above (and discussed
in more detail below) we believe this idea to be
unjustly neglected. The main point involved here
is the choice of the spatial forces which simulate
the mechanical constraint in a certain suitable
limit. To better develop our reasoning let us con-
sider a surface constraint: As is well known, in
classical mechanics the constraint forces can only
be uniquely determined if we assume them to be
nondissipative (or frictionless); that is, they have
the direction of the normal in all points of the
surface. Well, since in quantum mechanics we
can no more predict the position of the particle
with pointlike accuracy it is perfectly natural to
consider only constraint forces which are orthog-
onal to our surface in all points of the space where
the particle can possibly be found (a similar pro-
cedure will be later developed for curves). This
idea can be readily put in practice considering a
potential which is constant over the surface but
increases sharply for every small displacement
in the normal direction, in such a way as to pro-
vide a normal "reaction" in a thin neighborhood
of the surface in question. (Weaker requirements
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can possibly be found, but the one presented here
is perfectly adequate for the ends we have in
mind. ) The constraint will then be considered as
the limit of an infinitely strong attractive potential
which maintains the particle permanently attached
to a pre-established surface. In order to have
the limit independent of the type of attractive
potential we must have some kind of separation of
the Schrodinger equation in which the surface part
of the wave function obeys a special equation
which does not contain the transverse variable
appearing in the constraining potential. This is
in fact what happens, as we shall now proceed to
show.

(2)
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——(&r/&q, )(&r/sq&), s,j =1,2, the covariant
components of the metric tensor of our surface S,
g=det(g, ,) and k, , =h„, the coefficients of the
second fundamental form. Since the derivatives
of the normal N(qi, qs) lie in the tangent plane we
have

II. PARTICLE BOUNDED TO A SURFACE
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I et us consider a particle of mass m perma-
nently attached to the surface S of parametric
equations r = r(q„qs), where r is the vector posi-
tion of an arbitrary surface point P. The portion
of the space in an immediate neighborhood of S
can be parametrized as (Fig. 1)

A(q„qs, qs) = r(q„q, ) +qsN(q„qs), (1)

where N(q„qs) is the value taken at P by a con-
tinuous unit normal to S. The absolute value of
the coordinate qs gives, for points where (1) is
nonsingular, the distance between the surface S
and the point Q of coordinates (qi, qs, qs). Accord-
ing to the ideas presented in the Introduction we
shall now consider the spatial potential V= Vs(qs),
where X is a "squeezing parameter" which mea-
sures the strength of the potential:

limV„(qs) =
oo q g0

(If a specific example is required to guide our
intuition, we can imagine the harmonic binding
Vs(qs) =-,' mX qs, with X eventually going to infinity,
which gives (qs) ~ )2/mX).

Before going to the Schrodinger equation it is
worthwhile to briefly review the mathematical
properties of the coordinate system (1). Let us

FIG. 1. Curvilinear coordinate system based on the
surface S of parametric equation r =r(q~, q2).

(3)

(Weingarten equations). From (1) and (2) we ob-
tain

2
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BR
=N(qi qs) .

In our three-dimensional neighborhood of S the
covariant components of the metric tensor are
given by

I

8R 9R
G»~ —G~» — j z~ j=1&~s 3 ~

eq» aqua

Using (4) and denoting the transposed matrix by
the superscript T, we have

is=giy+ ~~g+( g) ~siqs+(~g )&?qs

G»3 ——G3» =0, i=1,2; G33
——1 .

+ V.(qs)t=sl „
where G=det(G, J). Due to the structure of the
G,&'s given in (5) we can break up the Laplacian
into two parts: the surface part, denoted by
Z(q 1, qs, q 2), given by the terms i,j= 1, 2, and the
normal part, defined by i=j=3. We can then
write

a)(q„q„qs)g —
2 + (In~G

2m 2m eq3 Bq3 eq3

+ V„(qs)y=sa . (7)

We can now turn our attention to the Schrodinger
equation. Writing the Laplacian in the curvilinear
coordinates (q„qs, qs) we obtain
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Since we are hoping for the existence of a surface
wave function, depending only on the variables q&

and q2, we are naturally led to the introduction of
a new wave function y from which, in the event of
a separation X(q„qz, qz) = X,(q(, qz)X„(q,) we will be
able to define the surface density probability

Ix (q~qz) I'J Ix.(qz) I'dqz T"e ade(luate transf»-
mation (t -x can be readily inferred from the vol-
ume dV expressed in terms of the curvilinear
coordinates q„qz, q, . Really, using (4) we have

dV=f(q((qz(qz)dSdqz ~

f(q(, qz, qz) =1+Tr(o.'„)q, +det(&„)q3 .

Expression (8) now gives the desired result:

X(q ~(qzu qz) lf(q(&qzs q3)] (t((q(r qzo qz) (io)

Introducing this substitution into (7) we are left
with

where dS= Wgdq, dqz (the area element of the sur-
face) and

k' (X I' &'X+ 1" sf &f + . sX
SI~~ 2 s 2+ 4fz &

2f
&

z X +V„(qz)X —zh
Lo Old

By . B
", +V,(q,)x= k~.

2m Bq3 Bt
(i2)

Equation (12) can now be easily separated by
setting X=X((q„qz, t) xX„(qz, t), where the sub-

. scripts t and n stand for "tangent" and "normal, "
respectively. The usual procedure yields the
following equations.

O' B X„p" + V(,(qz)X„=ia
2m Bg, Bt

(13)

2 2

[-,' Tr(n„)]' — etd( ()(IX, = ia

(i4)

Expression (13) is just the one-dimensional
Schrodinger- equation for a particle bounded by
the transverse potential V„(qz), and can be ignored
in all future calculations. Expression (14), how-

ever, is much more interesting, due to the pres-
ence of the surface potential V,(q„q,)
= -(k '/2m )(-,' Tr(a„)]' —d et(((.„)j.

We are now ready to take into account the effect
of the potential V(,(q&). Since in the limit when
X-~ the wave function "sees" two steep potential
barriers on both sides of the surface, its value
will be significantly different from zero only for
a very small range of values of q3 around q3

——0.
In this case we can safely take q3-0 in all coeffi-
cients of E(I. (11) [except of course in the term
containing V„(qz}]. The result from (5) and (9) is

52

k2
—,'Tr n„'-det &„X

Using (3) this term can be written in a more
useful form

v, (q„q,) =- (M'-tf}=-
2m

1E=k(kz = det(k &)
—((Gaussian curvature) . (17)

The dependence of Vz on q is especially remark-
able due to the presence of the mean curvature M,
since it cannot be obtained from the g, &'s and their
derivatives alone (contrary to what happens with
K). This result has an important consequence:
Vs(q( qz} will not be the same for two isometric
surfaces (for which correspondent points can be
found with the same g(z's). This is in striking
contrast with the results of classical mechanics
where the Lagrangian of the free surface motion,
Z(q(o q2o q(o q2) = 2 m(dsldt) = z m+i, („(g(((q(qZ)q(q(t
depends only on the metric properties of the sur-
face. Strange as it may appear at first sight,
this is not an unexpected result, since, indepen-
dent of how small the range of value assumed for
q3, the wave function always moves" in a three-
dimensional portion of the space, so that the par-
ticle is "aware" of the external properties of the
limit surface S. In order to illustrate the proper-
ties of Vs(q„q, ) let us consider, for example, a,

bookcover shaped surface obtained by. bending a
plarie around the surface of a cylinder of radius a
(Fig. 2). Selecting as parameters the arc s of
the cross section C and the Cartesian coordinate

where k& and k2 are the principal curvatures of
the surface S, and

M = —,'(k( + kz)

= —(g((kzz+gzzk(( —2g(2k(z) (mean curvature),
2g
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FIG. 2. Cross section C of the "bookcover" surface:
A plane bent around the surface of a cylinder of radius
a. The middlepoint A was chosen for the origin of the
arc s.

from the beginning, since this kind of potential
prevents the' separation of the wave function X in
tangent and normal parts, as given by (13) and

(14). It goes also without saying that the fact that
the forces tend to be normal to S in the limit
E -0 does not imply the vanishing of the tangential
components since the forces themselves go to
infinity, precluding any direct comparison with
the classical situation. If we now take d(q f q2)
= &[1+ef (qi, q2}], then, again according to Cheng,
"everything depends on the higher order terms
O(a )." Here, however, we cannot forget that al-
though the terms of order E may be a small per-
turbation for the total potential, they may still be
important when compared with the energies in-
volved in the surface motion.

z perpendicular to the plane of the figure, we
have from Eqs. (14)-(17)

2 2 Q2 2
Xt + Xf k( )2 k Xt (19)

2m', es ez 8m ' Bt '

where k(s) is the curvature of C at the point of
arc s. If we consider a solution X,(s, t), indepen-
dent of z, we obtain a one-dimensional Schrodinger
equation in the presence of the square well poten-
tial,

V(s) =
0, is i)ne,

(19)

which (since [(2m/k ) i
Vo ) (ae) ]i i2 = 8/2 ( v/4} has

only one bound state of energy Eo, Vo &Eo &0. In
the limit a-0, 8=constant, which corresponds
to an i/initely sharp bend in our plane, the trans-
mission coefficient of (19) goes to zero. The two
sheets, s (0 and s &0, of Fig. 2 are then effec-
tively disconnected, in strong contrast with the
usual solutions where the term V(s) is absent.

One last remark must be made on previous re-
sults stating that the limit obtained here does not
actually exist. Our opinion is that those calcula-
tions, although mathematically unimpeachable,
are badly conceived from the physical point of
view since they involve potentials with nonzero
tangent forces in every neighborhood of the surface
S. To use the procedure described by Cheng we
imagine our particle squeezed between two impen-
etrable surfaces, our own surface S and another
surface S', and let the distance d(qi, q2), between
them, go steadily to zero. If we take d= sf(qiq2),
&-0, then, to quote Cheng's own words, "The
Schrodinger equation would acquire a term pro-
portional to [sf(q„q,)] which varies wildly over
the q's." This, in fact, could already be expected

III; PARTICLE BOUNDED TO A CURVE

Let us consider a pointlike particle of mass m,
rigidly bounded to a curve C of arc q&, parametric
equation r = r(q, ), and tangent normal and binor-
mal denoted respectively by t(q, ), n(q, }, and b(qi}.
Following the same reasoning of Sec. II we shall
now introduce a, curvilinear coordinate system
based on the curve C (Fig. 3):

R(qadi q2i q3) = r(qi) + q2n2(q1) +qan3(qi), (20)

n2 —cos 8(q i)n(q i) —s—ine(q &)b(q f),
n3 sine(q, )n(q i) + c——os 8(q, )b(q,),

(21)

with

d&

dqi
= r(q|), (22)

where r(q|) is the torsion of C. (For the sake of
simplicity we have introduced a Cartesian coordi-
nate system for each normal plane of C.)

From (20), (21), and (22) we get

dR = [1-k(q )f(q, q, q, )]t(q,), (23)

(ng)q, (24)

where

eV 8RF = —gradV= —~
i hf Bqf aqf

(26)

f(q„q2, q3) =cos8(q&)q2+ sine(q, }q~, (25)

and k(qi) = ddt/dqi i
is the curvature of C at the

point of arc q&. Since our coordinate system is
orthogonal, (BR/Sq, )(8R/Sqi) =k,b,.&, we can write
the classical force F due a, potential V(q„q~, q,)
as
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Proceeding as in the case of the surface con-
straint, we shal1 select, from (26), a binding
potential V„(q2, q3) independent of q„ in order to

always maintain the force —gradV, in the normal
planes of C. The Schrodinger equation is then
written as

2m 1-kf Bq~ 1-kI Bq~/ & Bq& Bq& Bq&
" ' Bt

(27)

The volume element is given by dV= (1 —kf)
xdq, dq2dq3, which suggests the introduction of the
new wave function Z(q„q2, q3) =(1 —kJ)'
x(q&, q2, qs). Equation (27) is then transformed
into

I 1 B 1 B

2m (1-kf)'" Bq& 1-kf Bq& (I-kf) ')
k

Sm (1-kf)'

2+ ~. l+V.(q2 qs)&=fk —.(28)
I' ~8'X 8'X'I . ~X

2~~8q2 eq, &

Assuming for V„ the expected properties of a con-
straining potential:

2 2
Op q2+q3=O p

»mV. (q2, q3)= „2+ 2 0q2+q300,
(29)

we can directly take f-0 in (28), obtaining

2 2 2
X + Xll~V( ) ~ X (31)

0

(q,

FIG. 3. Curvilinear coordinate system based on the
curve C of parametric equation r =r(q~). Cartesian
coordinates g and y were used for the normal plane I'.

I By, 8, ,2 k By
Balll2m aqua Sm 2m eq2 eq3j

2+ 2

+ V,(q„q3)g = ik —. (30)~x
BI;

Equation (30) is now readily separated by setting
Xg(qf f) xZ„(qt, qq, t) The resul. t is

k(q, )')t, =fr „' . (32)
2m ~q, Sm

Here equation (32) has the same property of
equation (14): although all curves are isometric
each one has, depending on the curvature, its
own distinct quantum mechanics. It must also
be noted that Eq. (32) does not depend on the
detailed behavior of the potential V,(q„q,) (its
equipotentials around the curve C can be circles,
elipses, rectangles, ect. ), provided that once it
is defined in one normal plane it is known in all
points of the space by giving the same potential
to all "parallel" curves with the same values of

q, and q, (Combescure transforms to the mathe-
maticaliy minded). In a certain sense it can be
said that in V, (q2q, ) we have introduced a general-
ization of the ordinary two-dimensional potential
(obtained when C is a straight line).

One last remark must still be made about the
possibility of binding a particle to a curve in two
successive steps: First using a surface con-
straint of the type employed in Sec. II and, after
that, assuming an extra surface potential. to reduce
the motion to a curve. It is not difficult to see
that the result obtained in this way will, in gen-
eral, depend on the intermediate surface selected
in the process. The reason is that the normals
to this intermediate surface are not necessarily
contained in a normal plane of the curve. This
means that the potential responsibl. e for the sur-
face constraint can give rise to forces with non-
vanishing tangential components in a neighborhood
of the curve, contrary to the definition of
V~(q„q,). It can also be shown that the same
result (29) can be obtained if the chosen surface
belongs to the following family:

R(q„S)= r(q, ) + q, (s)A, (q, ) + q, (s)n, (q, ), (33)

where q, (s), q, (s) gives the intersection of the
surface with the normal planes of C. Notice that,
since q, and q, do not depend on q„ the surface is
completely determined from the knowledge of its
intersection with one of the normal planes.
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