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Kinetic theory of electrical conductivity in plasmas
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A recently developed quantum kinetic theory for time-correlation functions is applied to the calculation of the
electrical conductivity iri dense, strongly coupled plasmas. In the weak-collision limit the theory generalizes the
Ziman expression to finite temperatures while, for strong collisions, it generalizes the result of Gould and'of
Williams and DeWitt to include strong ion coupling. Numerical results which compare the effects that strong ion

coupling, bound (core) electrons, and strong collisions have upon the collision frequency are also presented.

I. INTRonveTION
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This paper mill discuss a kinetic theory ap-
proach to the calculation of electrical conducti-
vities in nonideal plasmas. The starting point for
this theory is the Kubo' expression for the elec-
trical conductivity in terms of the equilibrium
current-current time-correlation function so that
a kinetic theory formalism may be applied to the
problem. This formalism has been described in
detail for a one-component system in the preceding
paper2 (hereafter referred to as I), and its gen-
eralization to a two-component system (electrons
and ions) will be employed here. Use of this
formalism allows the description of plasma elec-
trical conductivity to be extended into regions of
growing experimental interest' where the standard
Debye-Huckel theory of plasma equilibrium pro-
perties and the Born approximation to the elec-
tron-ion scattering cross section fail simultan-
eously.

The correlation-function expression for the
electrical conductivity in an isotropic medium
may be written as'
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where ( —e) is the charge on an electron and Ze
is the charge on an ion.

Rather. than dealing with Eg. (1.1) directly, it is
more convenient to represent o in terms of the
transformed correlation function,

Capital letters refer to ion operators while lower-
case letters refer to electron operators. The
electron-electron (1,1), ion-ion (2, 2), and elec-
tron-ion (1,2) interactions are indicated by V„,
V», and V», respectively. The current operator
appearing in Eg. (1.1) contains both electron and
ion contributions,

where P is the inverse temperature, and Q is the
volume of the system. The angular brackets
indicate an average over an equilibrium ensemble
of electrons and ions,

C(z)—= i—
dp

t 1
dt e'" —(g (0) ~ 8 (t)),1m' & 0.

(1.6)
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(1.2) Comparison of Eqs. (1.6) and (1.1) shows that

a = ——Im lim C(0+ iq) .
q» p+

(1.7)

The fugacities of the electrons and ions are z, and
is the partition function, and the super-

scripts on the trace operations indicate over
which subspace, electron (1) or ion (2), the trace
is to be performed. The Hamiltonian for the
system is taken to be

The advantage in expressing the conductivity as in
Eq. (1.7) is that the kinetic theory of I is designed
to calculate correlation functions of precisely
this form. Since this theory has already been
described in detail for one component, only its
major results, generalized for tmo components,
will be presented here.
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Because the current operator is initially a suin
of single-particle operators, partial traces may
be performed in Eq. (1.6) to write C(z ) as

formally exact closure of the hierarchy at the
two-particle level. This program can also be
carried out here with the result that

C (z ) = —Tr, ' j(1) ' g, (l; z ) + —Tr, »J(1) $2(1;z ), Z z(1; z) =B z(l) +M .z(1; z),
where

(1.17)

(1.8)
where g, (1;z) and g, (1;z ) a,re solutions to the
exact, coupled kinetic equations, found by for-
mally closing the BBGKY (Bogoliubov-Born-
Green-Kirkwood-Yvon) hierarchy at the single-
particle level,

[ z —L,(1) —Z...(1;z )]y, (I;z ) —Z, ;, (1;z )$2(I; z )

=q, (I;0), (1.9)

where the barred indices are summed. The U

operators appearing in Eq. (1.11) relate the»T»'s

to the initial data, j (1) and J(l). For example,
one has

e.(1;z) =U.;,(1;z)j (1)+U.;.(1;z)J(1), (1.12)

»I«
"z» (12;z ) = U z. ,(12;z ) j (1) +U z. ,(12;z ) J (1) .

(1.13)

The inverse of U z(l; z) is defined by

U;»» (1;z ) U=. ' (1;z ) = U .'p (I;z ) Utf;z(I; z ) =6 g

(1.14)

Finally, the single-particle Liouville operators
in the above represent commutation with the
kinetic energy of a single electron or ion,

L,(1)8 = [p '(I)/2m, 8], L2(1)8 —= [P'(1)/2M, e],

while the two-particle Liouville operators re-
present commutation with the appropriate po-
tential energy operator,

L„e [v„,e],=L„8=[v„,e], L,„e-=[v„,e].
(1.16)

In the single-component case, it was shown that
the static, g-independent, limit of Z could be
isolated, and the remainder analyzed through a

[z -L,(1)-Z„.(1;z)]g,(1;z) -Z.;,(I~ z) 4»(l~z)

=»I«, (l; 0) . (1.10)

Just as in the single-component case, the Z z's
contain all of the many-body effects upon the time
development of a single particle, and they are
defined in an analogous manner to Eq. (2.8) in I,

Z .z(1;z ) =- Tr2 «L»-(12) U~- z (12;z ) Ug&(l; z ),
(1.11)

B z(1) —= Tr, 'L -(12)U —.
,z (12) U (1), (1.18)

(1.20)

which can be written entirely in terms of the
equilibrium correlations in the system. The
transformations, G z „,(12;z), are the multi-
component generalization of the 8 operator dis-
cussed in I. They are to be determined from the
coupled set of equations

[z -L (1) -Lz(2) -L z(12)]G z,„~(12;z)
—Z z», -z(12;z)G-„z.„~(12;z)=G @„~(12), (1.21)

where

Z»», „6(12;z) =B z». „~(12)+M~z»„o (12;z),
B z?„6 (12)—= Tr,' '[L „-(13) L+(z23)]

x G z„-, -g(123) G:g.„~ (12)

—U z,.„- (12)U„-,.„(l)TrP»L„6 (13)d'»,

M~,'. „~ (12;z ) —= Tr,'"'[L „-(13)+Lz-„(23)]

x[G z„-.-N (123;z) G .„(12;z)

G»»v «»
(123) G»» &~(12)],

(1.22)

(1.23)

(1.24)

In the form Eq. (1.17), Z .&(1;z ) is the sum
of a static, generalized mean-field operator,
B .z(I), and a "collision" operator M .z(1;z). The
mean field in Eq. (1.18) reflects the effects of
static, many-body correlations upon the motion
of a single particle. Equation (1.19) displays the
collision operator in terms of the solution to the
effective two-body problem defined by Eqs. (1.21)—
(1.24). The following two sections (Secs. II and
III) of this paper will discuss two related ap-
proximations to the two-body dynamics which are
apppropriate to the calculation of the electrical
conductivity in a dense plasma.

The simplest approximation, described in

M,z(1;z)=—Tr, 'L -(12)G -z„-(12;z)Lz„-(12)

x[U='(I)+U=.', (2)d„]. (1.19)

The permutation operator, (P,.&, interchanges
the labels i and j, and the 0's without tildes are
the static limits,

U z...„,(1 ~ ~ n) —= limzU»«. ..„, , (1 n;z),
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Sec. II, is a multicomponent version of the dis-
connected approximation (DA) discussed by Gould
and Mazenko4 and Wallenborn and Baus. ' This
approximation leads to a result which is a gen-
eralization of the usual Ziman expression. ' How-
ever, this description of the plasma does not
include any of the strong collision ("ladder" )
terms which are required to replace the Born
cross section with a t-matrix description. These
types of terms are included in Sec. III, and it is
shown that the collision operator may be approxi-
mated by a Boltzmann form which incorporates
the effects of both long-range screening and close
collisions. In this form, the collision operator
is very similar to that first proposed by Gould'
and used to describe conductivity by Williams and
DeWitt. ' In each of the results described above,
the coupling of the ions is considered to be ar-
bitrarily strong, so neither description is limited
to a Debye plasma. The expressions derived in
Secs. II and III are used in Sec. IV to obtain nu-
merical estimates of the effects of strong ion
coupling, bound electrons, and strong collisions.

II. WEAK COLLISIONS AND THE ZIMAN LIMIT

The pair of equations (1.9) and (1.10) represent
a coupled set of equations for $,(1;z) and g,(1,z )
which are to be solved simultaneously. However,
the very small electron-ion mass ratio may be ex-
ploited to gain a considerable simplification of this

- problem. The term in the electron equation which

I

involves g, may be shown to be m/M times as
small as the term involving g, (Ref. 9). Hence,
if the frequency of interest is in the range

(m/M) ~, «&u «u&, , (2.1)

where , is the electron collision frequency then,
as a first approximation, g, (l; z) can be found

from the single equation,

[z -B...(1) —M, .,(1;z )]q,(1;z) =g,(1). (2.2)

—Tr,"' p(l) M...(1;0+i'}U, .,(1)p(1) .
1

(2.4)

Hence, the conductivity is known as soon as an
explicit expression for the collision operator is
obtained.

In order to accomplish this, some reasonable
approximation to Eq. (1.19) must be made. In this
section, a multicomponent generalization of the
disconnected approximation'" will be discussed.
Specifically, Eq. (3.21) of I is generalized to

The fact that $,(l; z } must be diagonal in the mo-
mentum representation has been used to drop
the free streaming term. As discussed in the
Appendix, Eq. (2.2) may be used to write the
electron contribution to the electrical conductivity
approximat ly as

c =n, e', /mv, (2.3)

where n~ is the density of species ~, and v, is the
imaginary part of the electron collision frequency,

M~n~'(I;z) =-i j dte"' JTr,"L»(12)U, ,
—(1;t)U, , & (2;t) UO, „-U&,6 (2)

0
x G„-~.=g (12)L=

z (12)[U. =, ,(1}+Uz. , (2)(P,z]

+ Trz 'L»(12) U, ,
—(l; t) Uz. &(2; t) U-. „- (1)U&.~ (1)G„-~.=& (12)

x L=z (12)[U=,,(1) +Uz, , (2)6'»]) ~ (2.5)

This result may be interpreted just as in I. The two colliding particles propagate independently through
the background plasma between interactions. However, the "propagators" in this case are a little more
complicated in that they now form matrices.

A. The factorization approximation

To proceed further requires a detailed analysis of the equilibrium correlations in G z,„,(12). However,
a very interesting result may be obtained by simply writing

G z,„~(12) U, „(1)Uz, ~(2) .

Using this and Eq. (1.14) allows Eq. (2.5) to be rewritten as

(2.6)

M,', ,"'(1;z ) =- id t e '-*'(Tr,"'L»(12) U, ,-(1;t) U, ,z(2; t) L-~ (12}[U-, ,(1) +U z, , (2)d'»]
~lo

+ Tr~~~L»(12) U~ (1 t) Uz z(2 t) L z(12)[U ~(1)+Uz, (2)6',2]f (2.7)
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This approximation is considerably simpler than
the disconnected approximation, and due to the
form of Eq. (2.6) it will be called the factorization
approximation (FA). The classical version of this
approximation in a one-component system is what
leads to the usual form of the Lenard-Balescu
equation. "

Introducing the Weyl representation of the po-
tential

y (12) = V (k)8 ('2rtgg &)-r() (2)3
(2v)2

and using the identities

(2.6)

e'"'~ "U . (1.t)e'""()")=&g, 2 S (k t)

[p(1), e '"'"']= —ke '"'"'

U2'. 1(1)U, .1(1)p(1)= 0,
U j,(1)Ui;1(1) p(1) = p(1),

yields the principal result of this section"

(2.9)
(2.10)

(2.11)

(2.12)

(2.15)
I

()0
d I(),'

y "0

-s;,(k;t)j.
(2.13)

Owing to the conservation of momentum, the
first term in Eq. (2.V) does not contribute to Eq.
(2.13). The time-dependent structure factors
in Eq. (2.13) are the density-density correlation
functions in a true two-component system. How-
ever, to lowest order in the electron-ion inter-
action, they reduce to

S„(k;t) -S,(k; t),
s„(k;t)-s, (k; t), (2.14)

S,2(k; t) -0,
where S, and S, are the structure factors for an
electron gas and a one-component plasma, re-
spectively. Therefore, to second order in v»,
the imaginary part of ~, may be expressed as

oo w 3

where

S(k; v) -= dt e'"'S(k;t) . (2.16)

The result in Eq. (2.15) is fairly simple and can
be understood in terms of heuristic arguments
based upon Van Hove's theory of the scattering of
a beam of particles by the density fluctuations in
a gas."

~ ((k; (u) = 1+P 'C ((k)X,.(k; ~),
~ d'I

P)T m (~+t)) g. p/~ i '

S(k; ~) = (,„(2,f,(P+k)f, (P)(1 e 22)-

"5(&+ &.) I~.(k; &)
l
', (2 2o)

e,(k; (d) =1—
2 X,(k; ~),

4we'
(2.21)

X(k'.)= 2
d P f(P k)f (P)(1 -.-,)(2)i') . &8+27/+ (L)2

(2.22)

where '&, =(—k/m) (p+k/2) and C,.(k) is the direct
correlation function for a one-component plasma.
These approximations to the structure factors are
exactly what would be obtained from the short-
time equations discussed in Sec. III of paper I
with B(l) for the electrons given by Eq. (3.15) of
1 and B(1) for the ions given by its exact classical
limit. Substituting Eqs. (2.17) and (2.20) into Eq.
(2.15) and performing the integrations over the
delta functions yields

B. Ziman's theory

The contact with Ziman's theory of electrical
conductivity' occurs through the following substitu-
tions for the structure factors,

11 ~ P )
«a(«- M /Il«, .(a'«)I '

P
" d2p 1 /'A "22(1+Y/A) t . f 2 ) 1/2 ) 2 i 2 )1/2

1/, = „, 2 2
—f, (P) dYe Y dkk' v2l k;l l kFl e(l k',

l kYl
&pmq

)1/2 ) ~
2 2(/ 1+2A)Y/t 2 1/2 ) 2 f 2 )1/2 i -2"f

l
p +2ml I kY l+ ~t dF(. dkk (/slk'

"A " 22(1 Y/ A)-- pmj

t 2 iii2
xf,

l

p'+2~
l

(2.23)
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with

"=i-) ~, - k-)-i»-)" (2.24)

3 2mi 3/2

&i mze~~al~) ii )I t

P
tk OO

(io = dp pe -BP/ 2ktil(p)
Pl ktP

(2.32)

(2.33)

p, -=(2tn/p)" ',
v ~(k; u)) -=vka(k)/e, (k; ~) .

For a typical electron-ion collision,

(2.25)

(2.28)

(2.27)

which is the single-polynomial approximation to
the Lorentz gas conductivity" with Coulomb lo-
garithum replaced by (A). This differs from the
exact Loretnz gas result by a factor of 32/3w.

The reason this approximation is so much more
accurate in the degenerate limit is that, in that
case, sf, /sp ——5(p —p~), and (A ') and (io ' be-
come indistinguishable. " Significant improvement
in the classical case can be obtained by going one
step further to a two-polynomial approximation, "
but that will not be pursued here.

v, —
3 dPf, (P)f, (P)Pii (P)

4mZe4 ™&f,(p) (2.28)

1 2 2p

k(t)-=(k d, dkk'~~v (k;0)~'S(k),

(2.29)

where S,(k) is the exact structure factor for the
one- component plasma,

where Z is an average electron energy. These
factors can be set to zero in the electron terms,
but they may not be ignored in the ion terms,
since they are not negligible in comparison to the
other terms appearing in Eq. (2.19). This ap-
proximation wi11. be particularly accurate in the
degenerate limit, "because in that limit (PZ) "'
-0. Making this approximation and taking A-~
leads to the considerably simplified expression,

C. Initial correlations in the classical limit

Sections II A and QB discussed the factorization
approximation and its connection with the Ziman
expression for the electrical conductivity. The
factorization approximation is very simple, but
its simplicity comes at the expense of neglecting
the initial static correlations contained in the
G,~ „,'s. Quantum mechanically the evaluation of
these correlations requires the evaluation of the
first four reduced distribution operators. How-
ever, in the classical limit only two-body cor-
relations are required, since in that limit it can
be shown that"

G.g, ;g(12}L-.8 (12)l. y-.(pk) +3 g(pg)]

iP 'f"&'(1-2)V, lng &(r, - r,)
Bp Bp

(2.34)

] ~ kkO

S&(k) =—
~

deS,.(k; v)
82

m-'j'

n2

i kta ) '-2
kx I . (2.30)'i '

I,PM)

swan

4Zm'e'&(p~) ' (2.31}

Equations (2.28} and (2.29) combined are the
Ziman expression for the collision frequency in
a plasma, generalized to finite temperature. The
precise Ziman form occurs in the degenerate lim-
it where Bfk/Sp --5(p —p~) and the conductivity,
Eq. (2.3), becomes

with the direct correlation functions, c ~, given
by a multicomponent generalization of the Qrn-
stein- Ze mike equation

c ~(r„r,) —=k ~(r| —r,)- n~ J d r, c ~(r, —r, )

x k~~ (r, —r,), (2.36)

where g ~(r) is the radial distribution function for
a particle of species a and another of species P.
Substituting this into the classical limit of Eq.
(2.5) and using the fact that

U '.~(1)-5,.~f '(p, ) —Tr, c ~(r, -r,)&»,

(2.35)

which is precisely the expression used by Minoo,
Deutsch, and Hansen. '4 Similarly, in the nonde-
generate limit, Eq. (2.3) reduces to

k ~(r, —r, ) = g,~( rr,}—1-,

leads to

(2.37)
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2),.,(1;z)--tI dte'"[ T',z" 2(12) U, ,-( )t) U, , (22t)Z,-(t22)[U,:' (z1) eUjj', , ( )2tz„)
0

+ Tr2~)L, 2(12)U, .;(I;t)U [)(2; t)Z;()(12)[Ug2(1)+ U()'. 2(2)d»]j . (2.38)

In the above, the trace operation is now under-
stood to represent an integration over the ap-
propriate positions and momenta. Equation (2.38)
is identical to Eq. (2.7) with L ~(12) replaced by

8 a2,(12) -=-ip 2(U', c z(r2 —r, ) — - ~. (2.39)
Bp, Bp, ]

In other words, some of the potentials in Eq. (2.7)
have been replaced by the corresponding direct
correlation functions. As a result, the collision
frequency found from Eq. (2.38) is

f (2O d'k

x [S»(k; t}S»(k; t) —S»(k; t)],
(2.40)

which is identical to Eq. (2.13) with one of the
potentials replaced by c»(k). Equation (2.40) is
"asymmetric" in c»(k) because the collision op-
erator was not made "symmetric" in the G's. As
a result, the high-frequency behavior of .M, ,(l;z )
has been preserved. '

III. STRONG ELECTRON-ION COLLISIONS

A. Approximate collision operator

In both its quantum and classical forms, the dis-
connected approximation discussed in Sec. II pic-
tures the electron and ion as propagating indepen-
dently between two interaction vertices, and the
"ladder-type" terms which are required to ade-
quately describe strong, close collisions are ab-
sent. The purpose of this section is to develop

l

a more complete picture of electron-ion scatter-
ing which includes such terms.

To begin, it will be assumed that the electron-
ion contribution to Z2 z(l; z ) is dominant.

+ U(=';2(2)6'„) . (3.1)

This assumption is justifed, in part, by the fact
that the first term in Eq. (2.5) made no contribu-
tion to tg, . Furthermore, it is known that elec-
tron- ion collisions dominate electron- electron
collisions in a very degenerate plasma in which
the electrons are "frozen" into a Fermi sea."
Electron-electron collisions appear to become
more important as the electrons become less de-
generate, "but even in a classical plasma they
can be negligible if the ionization state of the
plasma is high enough. " In any case they appear
rarely to reduce the conductivity by more than
about a factor of 2 (Refs. 3, 21). Therefore, even
in regions wher e it is not strictly appropriate,
neglecting electron-electron collisions should
give a fairly good first estimate of the conduc-
tivity, especially in high-Z plasmas.

In principle, G». ~(12; z), should be determined
from the coupled set of equations (1.21}. However,
these equations will be separated just as those for
)I)2(2) and [t)(22). With this simplification, the col-
lision part of Eq. (3.1) may be written as

Z2 q(1; z) -Tr',"L„(12)U„,-(12)U ., (1)

+ Tr',"L»(12)G,2. —,&(12; z)L~(12)(U 2+(1)

M2 2(1; z.) —Tr, ' L»(12)[z —L2(l) —L~(2) —L2~(12) -B22). „(12)—1Vl, .„(12;z )] '

"f22'(12)9» —.(-(12)[U —.
' 2(1}+Ui';2(2}~»j (3.2)

where

9„. ~(12) =—[f2(2)(12)] G22. ,~(12)L,~(12) 2 (3.3)

is a "shielded interaction. '"
As it stands, Eq. (3.2) is still very formidable,

and in order to proceed the following set of ap-
proximations will be introduced.

(1) Treat the ions classically; in particular, neg-
lect ion-ion exchange terms and allow the ion-ion
correlation operators to factor into momentum and

l

position- dependent parts.
(2) Ignore multiple collisions; i.e., set

(3) Evaluate B2e).»(12) and 9», -~(12)[U 2(l)
+ U)[', ,(2)5'»] to lowest order in the electron-ion
interaction; i.e., neglect the static correlations
between the electron and ion systems in these
terms.

Using these approximations allows the collision
operator, Eq. (3.2), to be written as

M2, ,(1;z ) —Tr 2~)L,~(12)[z —I 2(1) —Lz(2) —g2'2(12) —h„(12)j 'f2~)(12)@22(12)U, '. ,(1) .
The new quantities appearing in the above are defined by,

(3.4)
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L,'(1) —=L,(1)+Tr ~'L»(12)U». ,(12)U,'. ,(1),
L,'(2) = Lm(2) + Tr ',"L»(23)U». 2(23)U, ', 2(2),

g,', (12)y„(12)—=f, (1)V„(12)y„(12)-y„(12)V»(12)f, (1)+ Tr',"I.„(13)g",,' (23)f,'(2)y„(12)

+ Tr',"Lm, (23)g",,'(13)f,'(1)y„(12),

2, (12)=—f,'(l)f, '(2)U, , (1)U2. ,(2)L„(12),

L,2(12)y»(12) —= Tr ',"I»(13)g",,' (23)f,'(3)y»(13)

+ Tr", ~[V„(23)P„f,(1)y„(32)—f,(l)g„(32)P„V„(23)]
+ Tr ',"L2~(23)g',2,' (23)f,'(3)g»(32) + Tr", 4"I ~2(13)A».2(23; 4)y,2(14)

+ Tr',","L„(23)X»,,(13;4)y„(42),

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

where y„(12) is an arbitrary electron-ion opera-
tor, and the X's and g's are multicomponent
generalizations of Eqs. (B1) and (B14) in I. The
single-particle operators, Eqs. (3.5) and (8.6},

'-

propagate the electron through the background
of electrons and the ion through the background of
ions. Retaining them alone i:n the "denominator"
of Eq. (3.4) and using the ideal-gas limit of f~',~(12)
leads to the Ziman expression discussed in Sec.
II B. The effects of strong collisions are con-
tained in g»(12). According to Eq. (3.7), Z»(12)
includes both the degeneracy modifications of
the potential, which occur even for short-ranged
forces, ', and the long-range screening effects due
to electron-electron and ion-ion correlations.
From Eq. (8.9}, all of the contributions to b. »
involve traces over the electron-ion interaction
and the operand. Therefore, s» contains the
dynamic correlations between the electron and
ion subsystems. Since the essence of approxima-
tion (3) is to neglect the corresponding static
correlations, it is consistent to make a fourth
approximation;

(4) Neglect dynamic correlations between the
electron and ion subsystems; i.e., set b, »(12) = 0.

Approximations (1)-(4}then lead to the primary
result of this section

M, .,(1; g } Tr~22lL»(12) [s -L', (1) —L2(2) —Zg, {12)] '

xfV(») &,.(»)U,', (1), (3.10)

Ijl, ,(1)y,(1) Try/I„2(12) [f~~2~ (12)f, '(1)y, (1)

—f,(1)U-, ', (1)yPP, .'(»)],
(3.11)

where y, (1}is an arbitrary electron operator.
The second term in Eq. (8.11) results from con-
sidering electron exchange. These expressions
must be supplemented by an appropriate expres-
sion for the equilibrium correlation function

f 'P~(12). Applying approximations (1)-(3) to the
equilibrium hierarchy shows that a self-consis-
tent f~',l(12) should be the solution to

[L(1)+ L(2)+ 2,' (12)]f~~(12)= 0. (3.12)

I, ', (1)—L„(1),
and L,'(2} will be taken to be24

(8.13)

L2(2) y~(2) = L2(2) ym(2)

+P ' Trs"'[c)(R2 —Rs),f2(2)y2(3)]

= [L,(2) + &,(2)]y, (2), (8 14)

where c, (R, —R,) is the direct correlation func-
tion for a one-component plasma. Also, one
finds that

B. Further simplifications and a t-matrix representation

In order to further explore the physical content
of Eq. (3.10), the electrons will be modeled as
a non-degenerate ideal gas. With this model

where all of the operators are defined in Eqs.
(3.5)-(8.8). The corresponding result for the
mean-field operator is

g'„(12)-g„(12)-g, (12),

where

(3.15)

g~(12) y,2(12}=,v»(k)f[e" '&'& ~2l, y»(12)]+[&,(&) —1]e '"'R2[e~"'i, y»(12)]}
t

-[V (12), y„(12)], (8.16)

and

V (12)=- ~ (n)S (I)e~~ &"-»~ (8.1V)

I
is the electron-ion interaction screened by the
static correlations among the ions. The arrow
in Eq. (3.16) may be replaced by an equality when-
ever y,2(12) does not contain the ion momentum.
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$, (12; z ) =— [z —I,,(1} L,(2) gz (12)]-',
(3.19)

(3.20)

However, due to the smallness of the electron-ion
mass ratio, the change in the ion momentum is
almost always a very small fraction of the ion
momentum itself, so the simpler commutator
representation of C~ should be very accurate
even when y»(12) does contain ion momentum de-
pendence.

Using Eqs. (3.13)-(3.15) in the collision opera-
tor, Eq. (3.10), yields

M, ,(1; z )-Trg&L»(12)[z —L,(1) —L2(2) —gz (12)

-Bm(2)] 'f~~2~(12)Zz(12)f, '(l.) .
(8.18}

The role of B,(2) is the dynamic screening of the
remaining bare interaction. This may be made
explicit through the use of the identity

$(12; z) —= [z —L,(1)—I„(2)—Zz(12) —B,(2)] '

=$,,{12;z)+e.,(12; z)B,(2}e(12;z),

to obtain the form

M, ,(1; z )-Tr&~g~(12; a z )$.0(12; z )f~~~ gz(12)f, '(1) .
(3.21)

The dynamically screened interaction is defined
by

=" d'u
gn(12; gz}y»(12)=—

(2 }, g»(k)

x[e" &"~ "2&~P(k; az }y»(12)],

(3.22)

where Az =— z —L,(1}and the dielectric function
is the same as that in Eq. (2.18}. Consistent
with approximation (4), the contribution of V» to
the dielectric function has been neglected. "

Equation (3.21) simplifies even further in the
low-frequency or Boltzmann limit, & -0+i'.
Using Eqs. (3.12) and (3.15) and noting that only
the first term in Eq. (3.11) survives in the non-
degenerate limit aQows Zy y to be written as

where

+ i»&x(1*' '}-»2"[Lim(12}-&&[12;0+iran-L, (1)lf2"(12&f (1)q,(1;z)

+»2' Zs{12;0+i@-L,(1))f,",~(12) Il,f, '(1) $,(1;z )fl, , (3.23)

H, —= Ho+ V„HD = p2/2m + P22/—2 M,

(8.24)

(3.25)

defines the Moiler operator associated with the screened potential, V, . The second-order approximation to
the first term in Eq. (3.23}has been analyzed in the Appendix and it was found to be negligible compared
to the second term. Hence, only the second term in Eq. (3.23} will be retained here To fur.ther analyze
this term, it is noted from Eqs. (8.12) and (3.16) that f~',~(12) must be a function of H, ,

f&'1(12) = F (H.),
such that

F(H ) =f,(1)f (2).

Using this and the so-called intertwining relation

HsAs = ~sHot

the momentum matrix element of Eq. (3.23} becomes

&P, I &'.,(I; 0+ n&f, (1; & IP&- g [&Pd.l V («»fl.f.(2&4, (»' &f1.'IP, PP

where

-&PiP21@,fm(2) 4g(1; z ) I1~Vst(m, ) )P,Pg], (3.26)

&P P. l Vo («,)I Plp.'& =-~„(&)/I1 ~ '(P, -P', ; (P', -P,")/2~) 5„„,.,„,, (3.2V)

The Born limit of Eq. (8.26} reproduces the Ziman expression Eq. (2.28) with electron screening ignored,
but further analysis of Eq. (3.26) is hampered by the appearance of both the static and dynamically
screened potentials. If V~(AE) were to be replaced by V„ then Eq. (3.26) would take the Boltzmann form,
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&p, l&, -, ,(1; 0+v&t &1 )Ipb-&p, l&.(»0,(1; }Ip,&

-= 2«g Z l&p. p. lT. IÃ.p.&l 6%.+&2-Ek —E.&[f.(P.&BP„e}-f2(p2&t(p» e)1, (3.26)
P2 PgP2

where T, =—V, Q, is the t-matrix. associated with

V, . However, this expression is incorrect in the
Born limit, so rather than writing the collision
operator simply in the form, Eq. (3.28), the Born
contribution to Eq. (3.26} will be explicitly iso-
lated and the collision operator written as'

u, = k' f dPPf (P)A(P);
0

(3.31)

&p, lx...(1; 0+~@)&,(1; &}Ip,&=&p, l~ (1&(C,(1; e)lp, &

+&p, l~.(»4,(»' }lp,&,

(8.29}

where Z, is precisely the dynamic Born term
analyzed in Sec. II B with electron screening ef-
fects ignored. If V~ is now replaced by V, in Z,
only, then Eq. ($.26) becomes,

&p, lz...(1;0+fan)y, (1; ~)lp,)-&p, l~.(1)p,(1; e)lp, &

+&p, lz, (a}4,(1; & )Ip, &

-&p, l&s(1}e,(1 x &Ip, &,

(8.30)

where Z~ is the Born approximation to Z„defined
in Eq. (3.26). This result generalizes the colli-
sion kernel used by Williams and DeWitt to in-
clude strong ion coupling, but it neglects electron
sc reening.

The collision frequency found from Eq. (3.80} is

I

eter expansion, but they are consistent with the
intuitive idea that, at least for high-Z plasmas,
the ion-ion correlations should be dominant. Of
course, the electron-electron and electron-ion
correlations are contained in the exact expression
for Z

y y
and they were included in the discussion

of weak collisions presented in Sec. II. So, per-
haps a different set of approximations can be
found to include these extra effects in a tractable
strong collision theory. However, this will not
be pursued here; and instead, simple numerical
results based on the discussion of this and Sec.
II will be presented.

IV. NUMERICAL RESULTS

The results of Secs. II and III, especially Eqs.
(2.29) and (3.32), provide fairly simple mathe-
matical expressions which can be used to make
numerical comparisons of various physical effects
on the electron collision frequency. Equation
(2.29} may be used to study the effects of strong
ion coupling, electron screening, and bound elec-
trons, while Eq. (3.82} may be used to assess the
validity of the weak-collision approximation. The
types of plasmas for which most of these calcula-
tions are tailored are those described experiment-
ally in Ref. 3. Typically, these aluminum plasmas
achieve electron densities between 10' to 10"
cm ' and temperatures between 10 to 500 eV.

where Ar(p) is defined by

A, (p) =- A.(p}+a,(p) -A, (p),
2

A, (p) = . . . (I+ 1) sin'(5„, -5,),mZe
g 0

(3.$2)

(3.83)

A. Strong ion coupling and electron screening

In a weakly coupled pla, sma, the ion structure
factor is well represented by its Debye-Huckel
(DH) approximation,

S,„(k)= k' j(k'+ k', ) (4.1)

A, (P) = (d, ) dkk'v'„(k)d, (k), (8.$4)

+2@

A (P)= ( „ l
dkk'k*„(k)d*, (k). (k.!Ik)

This result describes electron-ion scattering
events -in terms of the phase shifts, &„ associated
with the statically screened potential, V„plus
a correction to account, at least partially, for
dynamic screening effects. It was obtained through
the application of approximations (1)-(4) listed
above plus the neglect of electron-electron cor-
relations. These approximations have not been
rigorously justified in terms of a small-param-

S,„(k)= k' j[k'+ k', k(kr, )],
where, in this paper, k(kro} is taken to be

k(kr, }= 8d),(kr,)/kr, .

(4.2)

(4.8)

The parameter, r~ is an increasing function,
determined numerically, of the ion coupling param-

where k~2 =4mn, Pe'. This expression breaks
down in strongly coupled plasmas and it must be
replaced. Calculating exact structure factors is in
general quite difficult, "however Baus and Hansen"
(BH} have proposed a semianalytic expression
which simulates Monte Carlo results for S(k). This
improved approximation has the form



1978 DA VID B. BOER CKER

eter, I' =—P Z'e'(&wn, }' '
Owing to the appearance of the spherical Bessel

function in Eq. (4.2}, the Baus-Hansen structure
factor approaches unity more rapidly than the
Debye-Huckel result. Values for A, calculated
from Eq. (2.29), using the Baus-Hansen structure
factor with electron screening ignored and the
corresponding values found using the Debye-
Huckel expression are compared in Tables I
and II. As expected, the results found with the
improved S(k} are consistently larger than the
Debye-Huckel answers, implying that the effect of
strong coupling is to decrease the conductivity
of the plasma by as much as 10-20@.

The effects of electron screening in nondegen-
erate plasmas ' may be estimated by taking v, in
Eq. (2.29} to be

v, (k) = —4sZe'/(k +k /Z). (4.4)

B. Bognd electrons

The effect of the electrons bound to the ions on
the electron-ion cross section may be estimated
by assuming that the density distribution for the
bound electrons remains unaltered during a col-
lision, and that this distribution is given accurate-
ly by its Hartee-Fock (HF) approximation. If
this is taken to be the case, and electron screen-
ing is neglected, then

v„(k) = (Ze'/k')R(k), (4.5)

(4.6)R(k) = [A —p(k)]/Z,

TABLE I. Comparison of A calculat'ed using the Baus-
Hansen estimate of S (k ) (A&H) to the same result calcu-
lated using the Debye-Huckel S(k ) (A~). The value of I"
is 1.96 and P is measured in units of a =—(47t.n2/3)
Electron screening effects have been ignored.

Tables III and IV list values of A found using Eq.
(4.4} in Eq. (2.29} for various ionization states.
Comparison of these values with the corresponding
values in Tables I and II show a significant de-
crease in A due to electron screening, but this
effect is less pronounced for higher Z values
and lower I values.

TABLE II. Same comparison as in Table I except that
I' is now 5.15.

ASHY') ABHOR )

2
3
4
5
6
7
8
9

10

0.601
1.02
1.31
1.53
1.72
1.S7
2.01
2.12
2.23

0.438
0.602
0.818
1.01
1.17
1.31
1.43
1.54
1.65

where A. is the atomic number of the ion, and

p(k) is the Fourier transform of the bound-elec-
tron density distribution. For small k, R(k) ap-
proaches unity, while for large k it approaches
A/Z. The effective charge on the ion, therefore,
appears to increase with the energy of the in-
coming electron. Substitution of Eq. (4.5) into
Eq. (2.29) yields

2~ dk—S, (k)R'(k) .
0

(4.7)

From the behavior of R(k} it is apparent that the
bound electrons should decrease the conductivity
and that for a fixed net charge this decrease
should be more significant at higher energies.
These expectations are borne out in Table V
which shows about a ten percent increase in QF
over A „at 1 eV and about a forty percent in-
crease at 10 eV. Table VI compares values of
JI ~F for various values of net ionization. The
trend is for ~» to decrease with increasing
ionization due to the smaller size of the bound
electron cloud. This effect is particularly pro-
nounced in Al between Z=2 and Z=3 where the
last 3s electron is stripped.

TABLE III. Values of A& H including electron screening
for various ionization states with I'=1.96.

ABH Z=3 Z=5 Z =].0

2
3
4
5
6
7
8
9

10

0.833
1.24
1.53
1.75
1.94
2.09
2.22
2.34
2.45

0.657
0.982
1.24
1.45
1.-62

1.77
1.90
2.02
2.12

2
3
4
5
6
7
8
9

10

0.420
0.770
1.04
1.25
1.42
1.57
1.70
1.82
1.92

0.513
0.885
1.16
1.38
1.55
1.70
1.84
1.95
2.06

0.619
1.01
1.29
1.51
1.69
1.84
1.97
2.09
2.20



KINETIC THEORY OF ELECTRICAL CONDUCTIVITY IN. . . 1979

Z=5 Z =10

TABLE IV. Same as Table III, but now I'=5.15. TABLE VI. Comparison of AHF for Al+, Al+, and
A14+ at a density of 1020 cm. The upper integration
limit is P =(6m/P)'~'.

2
3

5
6
7
8-
9

10

0.200
0.488
0.722
0.918
1.08
1.23
1.36
1.47
1.57

0.276
0.609
0.862
1.07
1.24
1.39
1.52
1.63
1.74

0.375
0.749
1.02
1.23
1.41
1.56
1.69
1.81
1.91

T (eV)

1.00
1.65
2.72
4.48
7;39

12.2
20.1

AHF g =2)

2.92
3.88
5.09
6.69
8.86

11.9
16.0

AHF @=3)

2.24
2.86
3.57
4.42
5.52
6.99
8.99

AHF g =4)

2.03
2.59
3.21
3.90
4.73
5.74
7.03

C. Validity of the weak-collision approximation

All of the results discussed so far were obtained
from Eg. (2.29) which is based upon the Born ap-
proximation to the electron-ion cross section.
For temperatures below about 30 ev this approxi-
mation is expected to be inaccurate, and an im-
proved expression like Eq. (3.32) should be used. In

order to accomplish this, the phase shifts for the
statically screened Debye potential were calculated
for I ( 145 for various temperatures and densities in
the ranges 10"&n, ,(10"cm ' and 0.1(T & 100
eV. The method employed was to integrate the
radial Schrodinger equation using the Numerov
technique and to compare the locations of the
zeros of the radial wave functions to the locations
of the zeroes of the corresponding spherical
Bessel functions. The integration was terminated
when two successive estimates of 5, differed by
less than +10 4

m or when the wave function had
been through 100 oscillations. In no case was
the inaccuracy of 5, greater than +3 & 10 ' p.
Tabie VII compares & calculated from Eg. (3.32)
to the corresponding values of Qs, and it is
apparent that the Born approximation is over-
estimating the cross section and giving conduc-
tivities which are too small, by as much as a
factor of 2.

V. DISCUSSIGN

The theory presented in Secs. I-IIIrepresents
an example of the practical application of the

TABLE V. Comparison AHF to ADH. In each ease the
material is Al + at nt =10 cm, and P =(sm/P) ~ .

formally exact kinetic theory developed in I to
the study of plasma. electrical conductivity. Sec-
tion II applies the disconnected approximation of
Gould and Mazenko4 to the collision operator of
the kinetic theory. This approximation is appro-
priate when strong collisions are not important,
and to second order in the electron-ion interac-
tion, it reproduces the Ziman' expression for the
electron collision frequency, including electron
screening effects, As seen by the numerical re-
sults presented in Sec. IV A the electron-electron
correlations can make a significant contribution
to the collision frequency. But even with them
included, the picture is imcomplete, since there
are also correlations between the electron and
ion subsystem which should be included. In the
classical limit, such correlations are included
exactly in Eq. (2.40). Numerical results based
upon this expression have not yet been obtained,
so no statement regarding the actual importance
of electron-ion correlations may be made.

The neglect of electron-ion correlations is, in
essence, equivalent to modeling the plasma as a
Lorentz gas. This model is known to be fairly
accurate for degenerate plasmas, but it is much
less accurate for nondegenerate plasmas due to
the increased importance of electon-electron
collisions and electron correlations. " Actually,

TABLE VII. Comparison of Az calculated from Eq.
(3.32) using the phase shifts for the Debye screened po-
tential to ADH. The material is A13+ at n~ =10 cm
and P =(6m/P)'~'.

T (eV)
T (eV)

1.00
1.65
2.72
4.48
7.39

12.2
20.1

AHF

2.24
2.86
3.57
4.42
5.52
6.99
8.99

2.04
2.53
3.03
3.53
4.03
4.53
5.03

1.00
1.58
2,51
3.98
6.31

IO.O

15.8
25.1

2.04
2.49
2.95
3.41
3.88
4.33
4.79
5.25

0.962
1.30
1.71
2.18
2.73
3.25
3.83
4.37
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in the case of a very degenerate plasma one may
not only neglect electron collisions and correla-
tions, but the electron-ion cross section may be
modeled in the Born approximation. The primary
thrust of Sec. III, is to deal with this latter ap-
proximation and to provide, within the context of
the Lorentz gas model, an improved picture of
electron-ion scattering. This is presented in the
principal result to that section, Eq. (3.10) which
combines both the long-range electron-electron
and ion-ion screening effects and close collisions.
When electron-electron correlations are neglected
in addition to electon-ion correlations, this result
may be written in the simpler, more numerically
useful, f-matrix form of Eq. (3.30). It is signif-
icant to note that the effect of strong collisions is
not simply to replace the Born cross section in
the Ziman expression, Eq. (2.29), with the square
of a t-matrix, so that the iotegrand would involve
something like the product ~t ~'S, (k). Bather, the
structure factor is contained inside the t-matrix
itself. Hence, the Ziman expression appears to
be rigorous only in the weak-collision limit.
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APPENDIX

The purpose of this appendix is to justify Kq.
(2.3) as an approximation to the electrical con-
ductivity. From Eqs. (1.V}, (1.8), and (2.2), the
electron contribution to the conductivity is

ne'
o — lm~

(CO + (d
(A2)

where e, is defined by Eq. (2.4). The quantity,
~', is real and is defined by

—Tr~ "p(1) B„,(l)U, , ,(I)p(1). (A3)
Smn,

Provided He(~'+~, ) «Im&u, = v„Eq. (A2) is
equivalent to

n,e'
O 0., =—

m v~
(A4)

which is just Eq. (2.3).
In order to ascertain if the condition mentioned

above is reasonable, the second-order approxi-
mation to ~'+ co, will be considered. To second
order in V», the real part of co,. is

I

2
o'= ~1m Tr,p(1) ~ jZ,, ,(1;0+ ig)]'U, , ,(1)p(l) .

(A1)
An approximation to Eq. (A1) which is equivalent
classically to a single-Sonine polynomial approxi-
mation" to the solution of the kinetic equation is

Re&a, —
~ 2 2 2, v»(k)S, (k;&u)S, (k; u&)PP

= '~

(2 )3 (2 )s (2 ),
' vi. (k)& Afi(pi-k)fi(pi)f~( .)j&;(k;~2) j 'j&.(k;~i)( '

(A5)
where ~,-=—k p, /m —k'/2m. Using the definition of B&.& (1), Eq. (1.18), .and the Bloch-DeDominicis"
rules for evaluating equilibrium distribution functions, the second-order approximation to (d is found

to give

" d'k & d'p d'P
Be(u'+ co, ) —,( 3 3 v»(k)[I —[~;(k;~,) j

'
j&,(k; j) )

']" P.7&K —k)f&(Pj)f2(P2)
/

(1 —e 8 (+s j +&&2& ) l

(m, + m, ) (A6)

For small k, &,'-&'-0 and the quantity in the large parentheses goes to

3

Pn,v'„(k)
(2 ), i.p,f,(p, )fi(p&) =0.

For large k, C' &' &, and once again the large parentheses enclose a small quantity. Therefore, it
seems reasonable to expect Be(u'+ w, ) && v„as required above.
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