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Particle correlations in the strongly coupled two-dimensional one-component plasma
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The equilibrium pair-correlation function and static dielectric response function are calculated for the one-
component two-dimensional plasma in the convolution (Totsuji-Ichimaru) approximation. The long-wavelength

{k—+6) compressibility sum rule is exactly satisfied for arbitrary values of the plasma parameter y. For y & 2 the
approximation scheme accurately describes the short-range (r~0) behavior of the pair-correlation function g{r)
while for y )2, it does not. As @~4the isothermal compressibility tends to zero as it should, The correlation energy
is also calculated for this model and compared with the results for other approximation schemes and the Monte
Carlo results.

I. INTRODUCTION

By now a considerable amount of progress has
been made on the theoretical side in describing
the static (+= 0) and dynamical (u&10) behavior of
the strongly coupled classical one-component
plasma (ocp). Essentially two different ap-
proaches, both nonperturbative in the plasma pa-
rameter y, have been followed. One of these which
contemplates the introduction of a weak perturbing
electric field into the equilibrium ocp, has as its
most general objective the calculation of the fre-
quency- and wave-vector -dependent dielectric re-
sponse functions from the first Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) kinetic equation
and fluctuation-dissipation theorems. ' ' Evident-
ly, this approach can lead not only to a static de-
scription of the plasma (its equilibrium pair-cor-
relation function and equation of state), but to a
dynamical description (high frequency conductivity
and collective mode behavior} as well. The sec-
ond approach —more modest in its scope —is the
one which we follow in this paper. It has as its
goal the calculation of the equilibrium pair-corre-
lation function g(r) from the second BBGKY static
equation. Note that recently, and following this
latter approach, it has been possible to obtain an
analytical solution for g(k) in the Singwi-Tosi-
Land-Sjolander (STLS}approximation" for any
coupling strength y. Here we will consider the

more complicated convolution approximation (Tot-
suji and Ichimaru scheme)' for the two-dimension-
al ocp, where closure for the equation for g(k) is
achieved by the introduction of a decomposition of
the triplet correlation function into clusters of the
pair-correlation functions.

In their treatment of the strongly coupled three-
dimensional (3D} classical ocp, Totsuji and Ichi-
maru""' found that its isothermal compressibility
tends to zero as y tends to a certain critical value
y, . They argue that if the ocp constraint on the
background particles is removed, their ensuing
long-wavelength fluctuations will be greatly en-
hanced at y=y, , Beyond this, they conjecture that
there is a second critical value y, &y, at which
crystallization occurs. The onset of crystalliza-
tion has long since been confirmed by 3D classi-
cal ocp computer experiment. '

The study of the 2D model has been motivated
to some extent by the interest in the ideal guiding
center plasma whose equation of state is that of
the plasma in a strictly two-dimensional world.
Moreover, the 2D configuration is of interest in
itself and a knowledge of its thermodynamic prop-
erties certainly sheds additional light on the 3D
configuration. Besides the considerable progress
that has occurred over the years in the study of
3D systems, the investigation of the 2D classical
ocp is also well developed now through our know-
ledge of its exact equation of state' ' and long-
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wavelength compressibility sum rules, "and the
exact detailed solution for the equilibrium pair-
correlation and dielectric response functions, for
all coupling strengths, in a particular approxima-
tion scheme. '4 Our goal in this paper is to analyt-
ically and numerically calculate these objects in
the Totsuji-Ichimaru approximation for values of
p up through (and somewhat beyond) p,. Here we
remind the reader that in the two-dimensional
world, the relevant plasma parameter y = Pe' (e
is the charge and P

' the temperature in energy
units) is independent of density.

The plan of the paper can now be sketched as
follows: In Sec. II, we formulate the approxima-
tion scheme in terms of the pair-correlation func-
tion and structure factor. In Sec. III, we analyze

the long-wavelength behavior of the structure fac-
tor and compare it with a recently established
compressibility sum rule. An analysis of the
short-range properties of the pair-correlation
function is presented in Sec. IV. In Sec. V, we
present and discuss the numerical solutions.
Correspondence is made with the analyses pre-
sented in the preceeding two sections, and the ef-
fective potential surrounding a test particle is nu-
merically evaluated over the entire range of k
values. Section VI deals with the calculation of
correlation energy in this approximation scheme,
and a comparison with results from other schemes
and Monte Carlo results. We draw our conclusions
in Sec. VII.

II. FORMULATION OF THE APPROXIMATION SCHEME

In this section, we define quantities of interest and select an approximation scheme which will provide
a description of the static behavior of the classical ocp in a strictly 2D configuration. In such a configu-
ration, the Couiombic interaction energy between two particles i and j is logarithmic, i.e. , Q, &

——-e 1 rn, ~

where r,~
= lx, -x~ l. The equilibrium pair- and triplet-correlation functions, g(r») and k(r„, r») ob-—

jects of primary importance in statistical mechanics —provide such a description. They are defined
through the following relations involving the one-, two-, and three-particle distribution functions:

G(x|, v~; x„v2) = F(v, )E(v2) [1+g (r„)],
H(x, v, ;x„v,;x„v,) = F(v, )E(v,)F(v,) [1+@(r»)+g(r»)+g(r»)+ k(r», r»)] .

In this notation, F(v) is the Maxwellian distribution function normalized to N, the total number of parti-
cles, in the 2D volume V, i.e. , f E(1)d1=J f F(v, )dv&)dx& =N. Similarly,

6 12 dld2=N N-l, H 123 dld2d3=N N-1 N-2 .

Finally, we note the relation

S(k) =1+ng(k), n=N/V,

between the Fourier transformed pair correlation function and the static structure factor.
For the calculation of g(k) in the 2D ocp, we adopt the approximation scheme used by Totsuji and

Ichimaru' in their treatment of the 3D ocp. In this scheme, one starts from the second BBGEY static
equation

ng(k)=-, , l,
l+ —~, [g(li -pl)+nk(k-p, p))),

K = 27Kpe n ~

(2)

connecting g(k) to the Four ier-transformed trip-
let-correlation function, k(k —p, p). In the con-
volution approximation, h is approximated in
terms of g clusters as follows:

(k-P P)=~(ll -pl)~(&)+~(ll -pl)~(»
+&(k)«»+«(k)i"(&)~(ll -p I) (3)

Upon combining Eqs. (2) and (3), one obtains

u(k)= ~Z . [I+no(p)h. (lk-Pl)
P

=
2,). J"&P &, [I+w(P)]a(lk-Pl)- (~)

Note that in the STLS scheme investigated recent-
ly" u is as above without ng in the parenthesis.
Equivalently, in terms of the structure factor,
we have

-~'[1+u(k) ]
k'+ v'[1+ u(k) ] S(x) = x'[x'+ 1+u(x) ] ', (6)
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u(x}=— dy d8cos8S(y)S(iX-y i), (7}
27t o o

where x=k/v, y= p/z, and 8 is the angle between

k and p. Equations (6} and (7} [or (4) and (5)]
form a nonlinear integral equation which has to be
solved numerically. Before doing this, however,
we shall first analyze S and g in certain asymptotic
limits.

III. LONG-WAVELENGTH LIMIT

In the long-wavelength limit (x - 0),

S(i —yi)=S( ) — dS(y) (,/2), 8d'S( ) i '8 dS(y)

—(x' cos'8/6), + 3 tan'8 —— i+ ~
d'S(y), d 1 dS(y) i

dy' dy y dy )

so that from Eq. (7},

u(x-0)= -(y/4)x + (y/16) —
d i x +

"dy dS(y) \'

o y dy i

Thus from Eq. (6), one readily obtains

Iim -, , = 1-(y/4)+ O(x'),
[x'- S(x)]

() x2S x

(8)

(9)

I

Then to calculate the structure factor in the weak-
ly coupled limit (y «1), one simply replaces S in
the integral in Eq. (12) by its Debye-Huckel value
S,(y) = y'/(1+ y'). The resulting long-wavelength
formula

S(x-0)
~

=x'- [1 -(y/4)]x'

+ [1-(13y/24)]x'+, y «1 (13)

a result that is evidently valid for arbitrary val-
ues of y. The 2D ocp compressibility rule"

Iimx'[&(x, 0}—1]= [1 -(y/4)] '
(y arbitrary), (10}

for the static long-wavelength dielectric response
function &(x, 0) is then readily recovered by ap-
plication of the linear fluctuation-dissipation the-
orem

S(x)=x' 1-
6 xg0ti

to (9}. It is therefore clear that the Totsuji-
Ichimaru approximation scheme, when applied to
the 2D ocp, exactly satisfies its. compressibility
sum rule for arbitrary values of the plasma pa-
rameter, in the sense of Eqs. (9), (10), and (11).
Clearly, the isothermal sound speed tends to
zero as y-4. This is related to the fact that what
appears in the calculation is the exact thermal
pressure given, by PP=n(1-y/4), which for ocp
plasmas is, in general, different from the kinetic
or virial pressure, which is always nonnegative;
this point is discussed in the Appendix.

As to the long-wavelength expression for the
structure factor when higher-order (in x') terms
are retained, one again finds from Eqs. (6) and
(8} that

S(x- 0) = x' —[1 —(y/4) ]x'

+ [I (y/4)]'- — ——
I

x'+ "y "dy dSi' 6
16

(12)

is in agreement with the results obtained for the
exact formal expression of the BBQKYhierarchy, as
given for the 3D situation by O'Neil and Rostoker. '

g(r)= c(r)+

foal

g r'c(r')g( (r —r' ~), (14)

which connects the direct correlation function c(r)
to g(r}. Using the equivalent b-space relation be-
tween c and g, one can rewrite Eqs. (4} and (5) in
a simpler form, which, upon transformation to the
configuration space, leads to the differential equa-
tion

V c(x)=yV((r) Vg(r)+z g (r), (15)

where for the 2D ocp,

g(r)=(nr+ ff g r'(nr ng((r —r'I). '(16)

Upon combining Eqs. (14) to (16), one obtains the
following integrodifferential equation for the pair-
correlation function:

IV. SHORT-RANGE BEHAVIOR

A way of assessing the short-range behavior of
g(~} in various ocp approximation schemes,
based on an analysis of the configuration space
equations, has been proposed (~) ~ 3(b),»(c) and may
be applied to Eqs. (4} and (5). The starting point
is the well-known Qrnstein-Zernike relation
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g"(r)+ (1 -y[i+ U(r)]]-g'(r) —~'g'(r)

1
Jl d2, [1+U(r')]ng( Ir —r' I} I g'(

+K dr ng r-r' g r

where

r
U('Y) =— d r, & pgz (1' —r

(18}

which latter relationship follows by pex loiting the
siml al i yl ty of structure between U r and N~ in

E . 1V)Befs. 3 an. 3 d 4 Now in the small-r limit, q. (
simplifies to

The constant A —= yC(y) is associated with the
homogeneous solution

(23)gH(r-0) = Cr" —1

l t solution. The homogeneous part
is, in fact, the correct expression for g(r- );
it follows from the fact that the two-particle po-

p j = - 'lnr and thus the pair-correla-tential is Q r =-e nr
r-0)tion func ion int ' the binary approximation g r-

= e ~~ '"' -1 yields the above expression (2
Equations (21) and (22) reveal, however, that for
y & 2, Eq. (21) yields the correct dominant r"

~ 2 t does not a situation anal-term, while for y ~ i o
ogous to what happens in the STLS scheme.

V. NUMERICAL SOLUTIONS
AND COMPARISONS

gd (r) B
dr

bwhere B is a constant, given y

a=-~ + vB=—v' 1+4m drrng' r + dr U r
0 0

=g~ 1+ dry r

=-K drag r 1-g

(19)

(20)

E uation (4) [or equivalently, q.E . (6) has been
lved numerically by an iterative procedure.so ve nu

. 1 and 2 curvesTh lutions displayed in Figs.
k. .h-. .0 gg vf (k) versus (klan), and versus ka w

='nv) '~' '
the ion circle radius], are obobtained

m 0-6. Vfe have car-for values of y ranging from
rical data withried out a comparison of the numer'c

the long-wave eng sl th structure factor in the weak
13limit (WCL) as calculated from Eq. ( ),coupling limi

ent betweenand we find a nearly perfect agreemen e e
the two for klan & 0.1.

The complete solution of (19) is readily found to
be.

ye 2 (21)
I,

(&h)~"-1+4(2 ), ~
'I

g(r-0)= &

1
I (A(2)z'-1+ (1nr-2), y=2.

S(k)

0.1-
k

(22) -0.1-

We note that the small-r approximations in Eqs.
(19) to (22) require

z r &2mr'«1, y&1

2ngr'& ~'r'«1, y& 1.
the sign of B, it is definitely positiveConcerning e si

for small and moderate values of y. A sig
inB ccan occur on yc 1 ii ~ "d & ng'(r)

I
exceeds unity.

', r& remains a mon-Th s impossible as long as g,rls is
0 =-1tootonica y incll ' creasing function, from g

ratethe case for small and modera e yg(~}=0, as is e c ra e
( the numerical results in the Sec.(see e nu

leads to g& -1 for some ngra e of r nearcreasing y e
nd =0 for large r,the origin and oscillations aroun g=

causing a re ureduction in the magnitude of B with
n ifA s n reversal can occur only

'increasing y. sign
if antone or both of these factors become sign ica

over a large range of r.

-0.3

-0.5-

-0.7

-0.9-

FIG. 1. Correlation function ng(k ) versus (k /~), for
coupling strengths y=0, 1, 2 3 4, 5, 6.
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0.1-

ka

-0.1
-0,1-

-0.3 -0.3-

-0.5
-0.5-

-0.7

-0.7-

-0.9

FIG. 2. Correlation function ng(k) versus ka, for
coupling strengths y=0, 1, 2, 3, 4, 5, 6, .

-0.9-

Figure 1 also reveals that for values up to y
= 2, zg(k) is always negative within the domain
of k considered and increases from its value of
-1 at k= 0 to zero as k-~. For higher values of
y, zg(k) exhibits a positively valued peak accom-
panied by extremely faint oscillations; these be-
come more pronounced as y increases, and also
the oscillatory region shifts towards smaller val-
ues of k.

%e have also computed the configuration space
correlation function g(r) by taking a Fourier
transform of g(k), for values of y ranging from
0.5 to 5. These results, displayed in Fig. 3, in-
dicate that for y& 2, g(r) becomes less than (-\)
over a range of r values near the origin. This
leads to a negative probability (in that range) for
finding a particle at a distance r from a test par-
t' le, since l+g(r) &0. This situation is analogous
to the three-dimensional version of the Totsuji and
Ichimaru scheme, which also leads to negative
probability at short distances. " This seems to be
a geneneral problem for the TI scheme, unlike the

4,13 13STLS scheme in either two'" or three dimen-
sions, which provides a positive probability
throughout. The other defect of the TI scheme for
short-range behavior for y + 2 is the dominance
of the r' term over the physically expected r'
term in the total solution: The latter can be ex-
pec eected to arise on physical grounds as exp(-Pp}
= x", where P is the Coulomb potential P(r)
= -e'logr. This problem is analogous to the cor-

(r/a}

FIG. 3. Correlation function g(r) .versus (w/a), for
coupling strengths y=0.5, 1, 2, 3, 4, 5.

responding shortcoming of the STLS scheme' "
or of the 20 classical ocp version of the Vashish-
ta-Singwi""' scheme where B= ~'. The y -depen-
dence of this criterion is a special feature of the
two-dimensional Coulomb plasma; in three di-
mensions, both the TI and STLS schemes lead"
to the anomalous dominance of the r' term over
the physically expected exp(-I"a/x) for all I',
where I' = pe'/a is the three-dimensional strong-
coup sng parl' arameter and g is the ion sphere radius.

%e should point out here that our numerical re-
sults for g(r} for very small r, r/a&0. 2, devel-
oped spurious fluctuations. These are probably
due to the importance of g(k) for large k. The
computed results for g(r) for small r were
smoothed out, and then they did provide the ex-
pected smooth r' behavior for r-0 for y ~ 2. The
sign of the coefficients was also in agreement
with the analytical prediction. In spite of the
smoothing out, however, the computed value g(0}
d'ff d slightly from -1, and the computed co-

ff' ients of the r' terms differed slightly in mag-
nitude from the analytically predicted values. %e
ascribe these minor discrepancies to the difficulty
in achieving sufficient precision in the computation
of g(k} for large k. The curves displayed in Fig.
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k 1
~(k, 0) Pnx'e(x, 0) ' (24)

2%e
k k

3 are the smoothed out computed curves.
We next consider the effective potential around

a test particle @k given by

where &(k, &u) is the dielectric function of the sys-
tem. Upon combining (24) and the fluctuation-dis-
sipation theorem (11), one can express the effec-
tive potential as

(26)

The combination of E(ls. (12) and (25) then gives
in the long-wavelength limit

n))e(x-0)=(tm ((( —(w/4)) — [) —(w/4)l'- —
(

——
) x'Iy ) "dy dSI'

0 16& 0 y dye
(26)

so that for y = 4,

n P@(x- 0) = lim -,' x' ——
~

= 0."dy ds&'

0 y dy
(27)

The effective potential has been numerically cal-
culated from E(l. (25) and the results are displayed
in Fig. 4.

For y= 0 one deals with the screened Debye po-
tential and Pn@(x = 0) = 1, indicating that

f dr@(r) is finite (while the same integral for the
bare potential f dry(r)=-e f drlnr is infinite)
and positive, i.e. , has the same sign as the bare
potential. This is, of course, the manifestation
of the screened character of the effective poten-
tial. We see, however, that for y= 4 the situation
changes. For y&4, f drC(r)&0, even though

4(r = 0) & 0 still hoMs. This is possible only if
C (r), rather than being screened assumes an os-
cillatory character and develops negative domains.

l

A similar behavior has already been observed for
the STLS model, ' where however, the critical val-
ue of y was 2.

From the exact two-dimensional ocp equation
of state,

(28)

we observe that the y= 4 is the critical value of

y where the isothermal sound speed

tends to zero. The fact that now the effective po-
tential @(x= 0) = 0 at this value of y, is a conse-
quence of the TI scheme exactly satisfying the
compressibility sum rule. As y increases beyond
4, we observe in Fig. 5 that the smallest-k peaks

12.00-

10.00-

8.00-

6.00.

4.00-

2.00.

0.00.
1.0 2.0 I(

0.20

0.00

-0.20-

-0.40-

-0.60

-0.80-

-1.00-

-1.20-

-1.40-

FIG. 4. Inverse of the effective potential [nPC (x)]
versus x=04, for couplingstrengths y=l, 2, 2.5,
3, 4, 4.5.

FIG. 5. Screening functiong (0) versus k/~, for coup-
ling strengths y=1, 2, 3, 4, 5, 5.5.



PARTICLE CORRELATIONS IN THE STRONGLY COUPLED. . . 1921

n(k, ) = (y/4)k,'/»'= k,'/Svn. (30)

Taking u(k, }= -1.23 with the understanding that
this assumed value is speculative, one finds from
(29) and (30) that

VI. CORRELATION ENERGY AND EQUATION
OF STATE

For the two-dimensional ocp, the correlation
energy is given by

in the screening function u(k) shift to the left and
become more and more negative apparently con-
verging to a value of -1.23. In view of this, one
can perhaps speculate that there exists a critical
value y, of y such that the condition

k'+»'[1+ u(k) ] = 0

is satisfied at the peak position k, of k. This
would correspond to S(k,)-~ and consequently to
the onset of a nonhomogeneous state for the 2D
ocp liquid. To estimate y„we assume that k, is
sufficiently small so that one can approximate
u(k, ) by its compressibility sum rule value [cf.
Eg. (8}]:

C~= k~ a+ I b I ey )
y+c &

(36)

C~ increases monotically with y starting from the
perfect gas of 1 and reaching the maximum value
of 1.73. This latter limit is to be compared with
the STLS value of 1.5 and with the 2D harmonic
crystal value of 2.

Similar to the STLS scheme, the 2D ocp equation
of state may be obtained for the TI scheme also if
we adopt the form (35a). We first calculate the
correlational free energy per particle, F,= F —F„

(5) or (6) and (7)], we have evaluated the correla-
tion enexgy as a function of y. Then using the ex-
pression (35a) we find that a reasonably accurate
description of PEc as a function of y is obtained if
we adopt (35a) as a functional form for represent-
ing E~ and choose

a= -0.3'14, b= -0.245, c= 3.02, (TI). (35c)

This result may be compared with results obtaineg
in the STLS and HNC" schemes, and Monte Carlo
simulation" as shown in Fig. 6.

The total heat capacity per particle at constant
volume can be easily derived to be

))Z»=--,'yn. f a'»g(»))og»: (31)

P&c = -y —+ —,»g —
~+

—»g(&n) —2 Q(y}
C, yl 1

2 2 j
(32}

After Fourier transformation to k space we ob-
tain

y+c= W', —bc log
I

and then the expression for the thermal pressure
I'= -(BIl/BV)z immediately leads to the well-
known equation of state

where PJ'
n 4

' (36)

(33)

with C= 0.5'772. .. being the Euler constant. In
our earlier work' we have analytically evaluated
the integral Q in the STLS truncation scheme

Exact values for the correlational free energy F,

~~ + ~/, log Tin
)i

q = —,
' log(1+ y/2),

leading to

(34)

PEc =y a+ b log ——,'log(vn)y+c

with

(35a) V
'10

a= --, b= ——,', c= 2 (STI 8}. (35b)

Recently a unif ied description of the approxima-
tion schemes STLS, TI, and HNC has been given"
and it is shown that TI scheme gives a more ac-
curate description of ocp than STLS, and HNC
than TL Using our numerical solution for g(k)
in the TI scheme [obtained by solving Eqs. (4) and

STLS
NNC
INC

Tl

PIG. 6. Correlation energy versus y; plotted in the
form PE /y =

@log(en) versus coupling strength y.
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have recently been obtained by Alastuey and
Jancovici~' for y-~ (where it agrees with E,)
and for y= 2. It is instructive to compare the
STLS, TI, and exact values for (PE,/&y}, apart
from the log(vn) term, at these points

STLS

Exact

y=2

0.0580

0.0395

0.0405

y ~ OO

-0.289

-0.374

-0.374 38.

From a comparison of this expression with the
Debye correlation energy', one can infer the con-
straints

Apparently, and not surprisingly, the TI values
are closer to the exact figures. A word of caution,
however, is in order. As we have noted, the jus-
tification for adopting (35a) as a generally valid
formula stems from the good numerical fit it
provided. Nevertheless, it should be observed
that for y-0 it gives

PE, =y[a —b loge —,' oI(g—n'n)+ b Iogyj .

correctly describes the short-range (r-0) be-
havior of g(r), while for y ~ 2, it does not.

(iii) As y -4, the isothermal compressibility
tends to zero, and changes sign for y&4.

(iv) The effective potential changes character
(from screened to oscillatory} at y= 4.

(v) Using the numerically obtained g(k), the
correlation energy has been calculated for the TI
scheme and is compared with the results obtained
for other schemes (STLS and HNC), and with
Monte Carlo data. It is found that there is an
improvement over the STLS results, but that the
HNC result comes closer to the Monte Carlo data.

ACKNOWLEDGMENTS

The authors appreciate useful discussions with
Professor Ph. Choquard. One of the authors
(D.M. ) was sponsored by the Swiss National
Science Foundation in this research effort; support
for P.B., G.K. , and K.G. was provided by the Air
Force Office of Scientific Research under Grant
No. A FOSR-V6-2960.

a —b loge = -CI2+ —,
' log2,

(39)

APPENDIX

The expression for thermal pressure (Sec. III),

which are violated by the TI parameters as given
by (35c). Thus, while (35a) is a reasonable formu
la for intermediate values of y, it is not so good
an approximation for y- 0. Since the correlation-
al free energy E,(y} is obtained through an inte-
gral involving E,(y') covering the entire y' domain
extending from y' = 0 to y'= y, the accuracy of the
free energy obtained through (35c) is probably
much poorer than otherwise warranted by the
approximation.

VII. CONCLUSIONS

The equilibrium pair-correlation and static di-
electric response functions have been calculated
for the strongly coupled 2D classical ocp in the
Totsuj i-Ichimaru approximation. The long-wave-
length (k-0) and short-range (r-0) behavior of
the correlation function are assessed by use of
precise analytical techniques. In particular, a
correspondence is established between our nu-
merical results for g(x) and its analytically pre-
dicted short-range behavior. We cite the follow-
ing key results of our study:

(i} The long-wavelength (k —0} dielectric re-
sponse function «(k, v= 0} exactly satisfies the
compressibility sum rule for arbitrary values of
the plasma parameter y.

(ii) For 0&y&2, the approximation scheme

will assume negative values for y& 4. It should be
recognized, however, that there are various defi-
nitions of "pressure", e.g. , the thermal pressure
and the kinetic (or virial) pressure The discr. ep-
ancy between these two definitions of pressure in
a p-dimensional oep has been investigated recent-
ly by Choquard, Favre, and Gruber" and by
Navet, Jamin, and Feix." The total force acting
on a particlei is given by

F.—F.~+ F.~+ F.. .

where the three terms refer to forces due to the
background, the wall, and other particles. Each
term is associated with the corresponding virial

It can be shown by simple arguments that

V~= — F,~ X. =gee' X'. =mme'N x x'dg,
i i



PARTICLE CORRELATIONS IN THE STRONGLY COUPLED. . . 1923

ol

2P =x(2-- -xp —(x) ,N)--y ~n
4 2 &

)

where y= Pe', n=NlA, and P=(kT) '. The first
term on the right is just the theriacal pressure
(which we will designate as Pr), as obtained from
the equation of state and thus the two pressures
differ by the expression

2P-2P = (I 2 -),
where A= mR'.

If the system is assumed to be homogeneous,

and

(x'& =— x'dx = —,'R'
A

where N is the total number of particles, A the
area, P„ the kinetic pressure, and f(x) is the
one-particle distribution function.

According to the virial theorem, the kinetic en-
ergy

K= —V'1

on the other hand,

K= v =NkT (v= 2).Xkr
2

Thus,
2

2N2P —N(N= -2)+2APeee exN ff(x)x dx
2

kinetic pressure P» can be shown to be nonnega-
tive in general as follows. In terms of a Hamil-
tonian

H=H +H,
the forces due to the background and the particles
are given, respectively, by

BHg BH
F]g ~ ~ p F])Bx] ~

Bx.

On the other hand, the one-particle distribution
function is given by

f( )x—f e "d=p„dp, dp„dp, .

Then

8xq Z Bxq

From the virial,

2N22=2dPe — PP,. x, — g'Pe'2, .)i iJ

and then

K4Z Bx,

n &fn+ — 'xjdx~
2 ' Bxi

=n dx x +-—'x =- dxV' x x1&f n
28x 2

P~- PT, 0 (A2} dlR R = R nmR'=n R «0,

The assumption of homogeneity must break down,

however, when P~ becomes negative, since the
where n(R) is just the density at the wall, an ob-
viously nonnegative (luantity.
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