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The existence of Hohenberg-Kohn-like density-functional theorems in momentum space is demonstrated.
Invoking principles employed by Levy to construct universal variational density and density-matrix functionals in
position space, it is found that (1) there exists a universal variational functional for the one-electron reduced density
matrix in momentum space, and (2) for any given external potential, there exists a proper variational functional for

the one-electron momentum-space probability density.

L. INTRODUCTION

In a recent paper,' Levy provided a unifying
theoretical framework for many density-functional
studies undertaken in the spirit of the theorems
of Hohenberg and Kohn.? He there presented uni-
versal variational functionals of the electron
density and first-order -density matrix in position
space. Our purpose here is to investigate exten-
sion of those considerations to the corresponding
momentum-space quantities.

II. COORDINATE SPACE FUNCTIONALS

Consider the Hamiltonian for N electron’\s in
the presence of a local external potential v:
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where T is the kinetic-energy operator and f/ee
the electron-electron repulsion operator. In
position space,  is a single-particle scalar op-
erator, while evaluation of (T') requires knowledge
of the single-particle density matrix. The forms
of T and V,, are given once N is specified, where-
as v is specific to a particular system.

Hohenberg and Kohn proved that to within an
additive constant, ? is a unique functional of
pus(T), the ground-state electron density for the
system of interest. Thus pgs(T) determines the
full N-electron ground state since it fixes A. They
then introduced a functional of p,

Flpl=(¥,|T+V,,|¥,), (2)

where ¥, is the antisymmetric N-electron wave
function which (1) yields p(¥) as its electron den-
sity and (2) is the ground-state eigenfunction of the
Hamiltonian arising from the external potential
fixed by the given p(¥) [not necessarily equal to
o(%)] for the system under study. This functional
is “universal” in the sense that it is valid for any
N [itself a simple functional of p(¥)] and any “v- ,
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representable””® p, that is, any p associated with

the ground state of some v. The Hohenberg-Kohn
variational theorem states that the energy func-
tional

Eaxlol= [ 5@ dF+F ] 3)

has its minimum at Egg, the correct N-electron
ground-state energy when p=p.s, and provides
an upper bound to Eg otherwise, so long as the
class of p functions is restricted to be normalized
to N and v-representable.

Levy' presented a universal variational density
functional free of the encumbrance of the v-
representability condition

Qlpl=min(¥,|T+7V,|¥,), (4)

where Q[p] searches all antisymmetric functions
of N position and spin coordinates ¥, which yield
the given p and provides the minimum expectation
value of T+V,,. Since Q[p] is valid for any N-
representable? p and since the kinetic and elec-
tron repulsion operators are defined once

N= [ par | 6)

is specified, it is a universal functional. Further,
by invoking the variational theorem for wave
functions, Levy shows that

E,lol= [ 5®p@dz+Qlp] (6)

yields an upper bound to the ground-state energy
for a given ? and yields the ground-state energy
if provided with the ground-state density. As a
result, the ground-state wave function is fixed
by the ground-state density via Q[p| even if the
external potential giving rise to ¥ is not given.
For our purposes, the key step was to partition
the energy into a portion given immediately by
p, namely,
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D= [ @@t ™

and to define a proper functional of p which
minimizes the remaining portion of the energy.

In similar fashion, Levy also defined a univer-
sal variational density-matrix functional

W[D(x|x)] = min(¥, | 7,, |9 ), @®)

where D(x|x’) is a single-particle N-representable
reduced density matrix, or one-density (which
may include spin), and W[D] searches all anti-
symmetric wave functions ¥, yielding the given

D and provides the minimum value for (f/ee>.
Again, W will provide a variational bound to

Eqq since (Vee> is minimum and (U) and (T') are
obtained immediately from the given D. Note also
that W[D] does not exclude nonlocal or spin-
dependent external potentials so long as they
remain one-electron operators.

III. MOMENTUM SPACE FUNCTIONALS

These ideas are now carried over to momentum
space. We observe that the kinetic and external
potential operators exchange roles, with 7 be-
coming a single-particle scalar operator and
evaluation of (U) requiring the momentum-space
density matrix. Thus we may define a variational
functional of y(P), the three-dimensional mo-
mentum-space probability density, as follows:

Gyl =min(¥, |T+7,,]¥,), )

where G[y] searches over all antisymmetric func-
tions ¥, of N momentum (and spin) coordinates
which yield the given y(p) and provides the mini-
mum expectation value of U + Vee. In a manner
entirely analogous to the proofs for E[p|*

one can show that for N-representable y’s

[ @y @ap+6111> Egs, (10)

where Eg is the ground-state energy of N inter-
acting electrons under f}, and with the equality
holding when the ground-state momentum-space
probability density v4s(P) is inserted on the left-
hand side. Note, however, that G[y] is not a
universal functional since it requires that v be
known. Thus some of the power of the position-
space Hohenberg-Kohn and Levy functionals is
lost, because a different G[y] must be studied for
each physical system.

On the other hand, at the density-matrix level

one recovers complete parallelism between the
position-space and momentum-space formulations.
Since both (7') and (f]) are immediately accessible
given the momentum-space one-density I'(g [q')
(where g specifies the momentum and spin co-
ordinates of a single particle), the appropriate
variational functional, defined for N-representable
T, is

Q[T]=min(¥ |V, |¥r), (11)

where ©[T'] searches over all antisymmetric N-
electron momentum-space wave functions ¥
which yield the given I'y and provides the minimum
value for (V). Note that unlike G[¥], this func-
tional is universal. It could, in fact, have been
obtained by Fourier transformation of Levy’s
density-matrix functional W[ D] to momentum
space.

IV. CONCLUSIONS

We see then that one is free to proceed with
momentum-space density-matrix functional the-
ories, any related orbital theories,! and any com-
putations which may be suggested thereby with the
knowledge that such developments rest upon a for-
mal groundwork equivalent to that of the corre-
sponding position-space theories. In particular,
the universality of 2[I'] makes it (as well as F[p]
and W[D]) an excellent focus for the development
of approximate theories: A good approximation to
it is valid for any number of electrons and any ex-
ternal potential. Although the complete parallel-
ism between position-space and momentum-space
density-functional theories is lost because of the
form of the Hamiltonian [Eq. (1)] which causes
G[y] not to be universal, there does, nevertheless,
exist a proper variational functional of the mo-
mentum-space probability density for any given
external potential. Thus direct variational deter-
mination of y(p) may be contemplated.
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