Variational theorems for the single-particle probability density and density matrix in momentum space

George A. Henderson*

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514 (Received 8 August 1980)

The existence of Hohenberg-Kohn-like density-functional theorems in momentum space is demonstrated. Invoking principles employed by Levy to construct universal variational density and density-matrix functionals in position space, it is found that (1) there exists a universal variational functional for the one-electron reduced density matrix in momentum space, and (2) for any given external potential, there exists a proper variational functional for the one-electron momentum-space probability density.

I. INTRODUCTION

In a recent paper,¹ Levy provided a unifying theoretical framework for many density-functional studies undertaken in the spirit of the theorems of Hohenberg and Kohn.² He there presented universal variational functionals of the electron density and first-order density matrix in position space. Our purpose here is to investigate extension of those considerations to the corresponding momentum-space quantities.

II. COORDINATE SPACE FUNCTIONALS

Consider the Hamiltonian for N electrons in the presence of a local external potential \hat{v} :

$$\hat{H} = \hat{T} + \hat{V}_{ee} + \sum_{i=1}^{N} \hat{v}(i) \equiv \hat{T} + \hat{V}_{ee} + \hat{U}, \qquad (1)$$

where \hat{T} is the kinetic-energy operator and \hat{V}_{ee} the electron-electron repulsion operator. In position space, \hat{v} is a single-particle scalar operator, while evaluation of $\langle \hat{T} \rangle$ requires knowledge of the single-particle density matrix. The forms of \hat{T} and \hat{V}_{ee} are given once N is specified, whereas \hat{v} is specific to a particular system.

Hohenberg and Kohn proved that to within an additive constant, \hat{v} is a unique functional of $\rho_{\rm GS}(\mathbf{\tilde{r}})$, the ground-state electron density for the system of interest. Thus $\rho_{\rm GS}(\mathbf{\tilde{r}})$ determines the full *N*-electron ground state since it fixes \hat{H} . They then introduced a functional of ρ .

. . .

$$F[\rho] = \langle \Psi_{\rho} | \hat{T} + \hat{V}_{ee} | \Psi_{\rho} \rangle, \qquad (2)$$

where Ψ_{ρ} is the antisymmetric *N*-electron wave function which (1) yields $\rho(\mathbf{\tilde{r}})$ as its electron density and (2) is the ground-state eigenfunction of the Hamiltonian arising from the external potential fixed by the given $\rho(\mathbf{\tilde{r}})$ [not necessarily equal to $\hat{v}(\mathbf{\tilde{r}})$] for the system under study. This functional is "universal" in the sense that it is valid for any N [itself a simple functional of $\rho(\mathbf{\tilde{r}})$] and any "vrepresentable" ρ , that is, any ρ associated with the ground state of some v. The Hohenberg-Kohn variational theorem states that the energy functional

$$E_{\rm HK}[\rho] \equiv \int \hat{v}(\mathbf{\ddot{r}}) \, d\mathbf{\ddot{r}} + F[\rho] \tag{3}$$

has its minimum at $E_{\rm GS}$, the correct *N*-electron ground-state energy when $\rho = \rho_{\rm GS}$, and provides an upper bound to $E_{\rm GS}$ otherwise, so long as the class of ρ functions is restricted to be normalized to *N* and *v*-representable.

Levy¹ presented a universal variational density functional free of the encumbrance of the vrepresentability condition

$$Q[\rho] = \min \langle \Psi_{\rho} | \hat{T} + \hat{V}_{ee} | \Psi_{\rho} \rangle , \qquad (4)$$

where $Q[\rho]$ searches all antisymmetric functions of N position and spin coordinates Ψ_{ρ} which yield the given ρ and provides the minimum expectation value of $\hat{T} + \hat{V}_{ee}$. Since $Q[\rho]$ is valid for any Nrepresentable⁴ ρ and since the kinetic and electron repulsion operators are defined once

$$N = \int \rho(\mathbf{\tilde{r}}) d\mathbf{\tilde{r}}$$
(5)

is specified, it is a universal functional. Further, by invoking the variational theorem for wave functions, Levy shows that

$$E_{L}[\rho] = \int \hat{v}(\mathbf{\ddot{r}})\rho(\mathbf{\ddot{r}})d\mathbf{\ddot{r}} + Q[\rho]$$
(6)

yields an upper bound to the ground-state energy for a given \hat{v} and yields the ground-state energy if provided with the ground-state density. As a result, the ground-state wave function is fixed by the ground-state density via $Q[\rho]$ even if the external potential giving rise to Ψ is not given. For our purposes, the key step was to partition the energy into a portion given immediately by ρ , namely,

19

© 1981 The American Physical Society

$$\langle \hat{U} \rangle = \int \hat{v}(\mathbf{\tilde{r}}) \rho(\mathbf{\tilde{r}}) d\mathbf{\tilde{r}} , \qquad (7)$$

and to define a proper functional of ρ which minimizes the remaining portion of the energy.

In similar fashion, Levy also defined a universal variational density-matrix functional

$$W[D(x \mid x')] \equiv \min \langle \Psi_D \mid \hat{V}_{ee} \mid \Psi_D \rangle , \qquad (8)$$

where D(x | x') is a single-particle *N*-representable reduced density matrix, or one-density (which may include spin), and W[D] searches all antisymmetric wave functions Ψ_D yielding the given D and provides the minimum value for $\langle \hat{V}_{ee} \rangle$. Again, W will provide a variational bound to $E_{\rm GS}$ since $\langle \hat{V}_{ee} \rangle$ is minimum and $\langle \hat{U} \rangle$ and $\langle \hat{T} \rangle$ are obtained immediately from the given D. Note also that W[D] does not exclude nonlocal or spindependent external potentials so long as they remain one-electron operators.

III. MOMENTUM SPACE FUNCTIONALS

These ideas are now carried over to momentum space. We observe that the kinetic and external potential operators exchange roles, with \hat{T} becoming a single-particle scalar operator and evaluation of $\langle \hat{U} \rangle$ requiring the momentum-space density matrix. Thus we may define a variational functional of $\gamma(\hat{p})$, the three-dimensional momentum-space probability density, as follows:

$$G[\gamma] \equiv \min \langle \Psi_{\gamma} | \hat{U} + \hat{V}_{ee} | \Psi_{\gamma} \rangle, \qquad (9)$$

where $G[\gamma]$ searches over all antisymmetric functions Ψ_{γ} of N momentum (and spin) coordinates which yield the given $\gamma(\mathbf{p})$ and provides the minimum expectation value of $\hat{U} + \hat{V}_{ee}$. In a manner entirely analogous to the proofs for $E_L[\rho]^1$ one can show that for N-representable γ 's

$$\int \hat{T}(\vec{p})\gamma(\vec{p})d\vec{p} + G[\gamma] \ge E_{\rm GS}, \qquad (10)$$

where $E_{\rm GS}$ is the ground-state energy of N interacting electrons under \hat{v} , and with the equality holding when the ground-state momentum-space probability density $\gamma_{\rm GS}(\bar{p})$ is inserted on the lefthand side. Note, however, that $G[\gamma]$ is not a universal functional since it requires that \hat{v} be known. Thus some of the power of the positionspace Hohenberg-Kohn and Levy functionals is lost, because a different $G[\gamma]$ must be studied for each physical system.

On the other hand, at the density-matrix level

one recovers complete parallelism between the position-space and momentum-space formulations. Since both $\langle \hat{T} \rangle$ and $\langle \hat{U} \rangle$ are immediately accessible given the momentum-space one-density $\Gamma(q | q')$ (where q specifies the momentum and spin coordinates of a single particle), the appropriate variational functional, defined for N-representable Γ , is

$$\Omega[\Gamma] = \min \langle \Psi_{\Gamma} | \hat{V}_{ee} | \Psi_{\Gamma} \rangle, \qquad (11)$$

where $\Omega[\Gamma]$ searches over all antisymmetric *N*electron momentum-space wave functions Ψ_{Γ} which yield the given Γ , and provides the minimum value for $\langle \hat{V}_{ee} \rangle$. Note that unlike $G[\gamma]$, this functional is universal. It could, in fact, have been obtained by Fourier transformation of Levy's density-matrix functional W[D] to momentum space.

IV. CONCLUSIONS

We see then that one is free to proceed with momentum-space density-matrix functional theories, any related orbital theories,¹ and any computations which may be suggested thereby with the knowledge that such developments rest upon a formal groundwork equivalent to that of the corresponding position-space theories. In particular, the universality of $\Omega[\Gamma]$ makes it (as well as $F[\rho]$) and W[D]) an excellent focus for the development of approximate theories: A good approximation to it is valid for any number of electrons and any external potential. Although the complete parallelism between position-space and momentum-space density-functional theories is lost because of the form of the Hamiltonian [Eq. (1)] which causes $G[\gamma]$ not to be universal, there does, nevertheless, exist a proper variational functional of the momentum-space probability density for any given external potential. Thus direct variational determination of $\gamma(\mathbf{p})$ may be contemplated.

ACKNOWLEDGMENTS

The author wishes to thank Professor R. G. Parr for providing encouragement, support, and hospitality in generous measure during a visit to his laboratory. It is also a pleasure to acknowledge helpful conversations with Dr. W. Weyrich, Dr. M. Levy, and Dr. S. Valone. This work was aided by a grant to the University of North Carolina from the National Science Foundation.

³Term coined by E. G. Larson.

^{*}Permanent address: Department of Physics, Southern Illinois University, Edwardsville, Illinois 62026.

 ¹M. Levy, Proc. Natl. Acad. Sci. USA <u>76</u>, 6062 (1979).
 ²P. Hohenberg and W. Kohn, Phys. Rev. B <u>136</u>, 864 (1964).

⁴A reduced density matrix is N-representable if it can be obtained from some antisymmetric N-electron wave function. See A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).