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Variationai theorems for the single-particle probability density and density matrix in momen«m
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The existence of Hohenberg-Kohn-like derisity-functional theorems in momentum space is demonstrated.
Invoking principles employed by Levy to construct universal variational density and density-matrix functionals in
position space, it is found that (1}there exists a universal variational functional for the one-electron reduced density
matrix in momentum space, and (2) for any given external potential, there exists a proper variational functional for
the one-electron momentum-space probability density.

I. INTRODUCTION

In a recent paper, ' Levy provided a unifying
theoretical framework for many density-functional
studies undertaken in the spirit of the theorems
of Hohenberg and Kohn. ' He there presented uni-
versal variational functionals of the electron
density and first-order density matrix in position
space. Our purpose here is to investigate exten-
sion of those considerations to the corresponding
momentum-space quantities.

H. COORDINATE SPACE FUNCTIONALS

Consider the Hamiltonian for N electrons in
the presence of a local external potential v:

H = T + V + g v (i) =- T + V„+U, (1)

where T is the kinetic-energy operator and V„
the electron-electron repulsion operator. In
position space, v is a single-particle scalar op-
erator, while evaluation of (T) requires knowledge
of the single-'particle density matrix. The forms
of T and V„are given once N is specified, where-
as v is specific to a particular system.

Hohenberg and Kohn proved that to within an
additive constant, i is a unique functional of
p~(r), the ground-state electron density for the
system of interest. Thus pos(r) determines the
full N-electron ground state since it fixes H. 'They
then introduced a functional of p,

I

Z [p] =(e,
~

T" + V„i+,), (2)

where +, is the antisymmetric N-electron wave
function which (1) yields p(r} as its electron den-
sity and (2) is the ground-state eigenfunction of the
Hamiltonian arising from the external potential
fixed by the given p(r) [not necessarily equal to
v(r)] for the system under study. This functional
is "universal" in the sense that it is valid for any
N [itself a simple functional of p(r)] and any "v-

representable'" p, that is, any p associated with
the ground state of some v. The Hohenberg-Kohn
variational theorem states that the energy func-
tional

has its minimum at EGs, the correct N-electron
ground-state energy when p= p», and provides
an upper bound to EGs otherwise, so long as the
class of p functions is restricted to be normalized
to Ã and v-representable.

Levy' presented a universal variational density
functional free of the encumbrance of the v-
representability condition

Q[p] =min(P, (T+ V„/4, ), (4)

where Q[p] searches all antisymmetric functions
of N position and spin coordinates 4', which yield
the given p and provides the minimum expectation
value of T+ V„. Since Q[p] is valid for any N

representable' p and since the kinetic and elec-
tron repulsion operators are defined once

N= pr r

&, I el =- ft (Boo)r~+ Q I n1

yields an upper bound to the ground-state energy
for a given v and yields the ground-state energy
if provided with the ground-state density. As a
result, the ground-state wave function is fixed
by the ground-state density via Q[p] even if the
external potential giving rise to 4 is not given.
For our purposes, the key step was to partition
the energy into a portion given immediately by
p, namely,

is specified, it is a universal functional. Further,
by invoking the variational theorem for wave
functions, Levy shows that
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These ideas are now carried over to momentum
space. We observe that the kinetic and external
potential operators exchange roles, with 1 be-
coming a single-particle scalar operator and
evaluation of (U) requiring the momentum-space
density matrix. Thus we may define a variational
functional of y(p), the three-dimensional mo-
mentum-space probability density, as follows:

G [y] =min&+„U+ V„l~„) (9)

where G [y] searches over all antisymmetric func-
tions 4'„of N momentum (and spin) coordinates
which yield the given y(p) and provides the mini-
mum expectation value of 0+ f „. In a manner
entirely analogous to the proofs for E~[p]'
one can show that for N-representable y's

7.
'

p y p dp+G y =-EGS,

where EG8 is the ground-state energy of N inter-
acting electrons under i, and with the equality
holding when the ground-state momentum-space
probability density yos(p) is inserted on the left-
hand side. Note, however, that G[y] is not a
universal functional since it requires that e be
known. Thus some of the power of the position-
space Hohenberg-Kohn and Levy functionals is
lost, because a different G [y] must be studied for
each physical system,

On the other hand, at the density-matrix level

(10)

(ri&= fUlrlpCr)ar,

and to define a proper functional of p which
minimizes the remaining portion of the energy.

In similar fashion, Levy also defined a univer-
sal variational density-matrix functional

W[D(x~x')] —= min(4
~

V ~4' ), (8)

where D(x ~x') is a single-particle N-representable
reduced density matrix, or one-density (which
may include spin), and W[D] searches all anti-
symmetric wave functions 4D yielding the given
D and provides the minimum value for (V„).
Again, W will provide a variational bound to
Eoa since (V„) is minimum and (U) and (T) are
obtained immediately from the given D. Note also
that W[D] does not exclude nonlocal or spin-
dependent external potentials so long as they
remain one- electron operators.

III. MOMENTUM SPACE FUNCTIONALS

one recovers complete parallelism between the
position-space and momentum-space formulations.
Since both (T) and (U) are immediately accessible
given the momentum-space one-density I'(q ~q')
(where q specifies the momentum and spin co-
ordinates of a single particle), the appropriate
variational functional, defined for N- representable
I', is

~1[1]-=min(4'r
~
V„~+r), (ll)

where 0[I') searches over all antisymmetric N-
electron momentum-space wave functions 4 r
which yield the given I', and provides the minimum
value for (V„). Note that unlike G[y], this func-
tional is universal. It could, in fact, have been
obtained by Fourier transformation of Levy's
density-matrix functional W[D] to momentum
space.

IV. CONCLUSIONS

We see then that one is free to proceed with
momentum-space density-matrix functional the-
ories, any related orbital theories, ' and any com-
putations which may be suggested thereby with the
knowledge that such developments rest upon a for-
mal groundwork equivalent to that of the corre-
sponding position-space theories. In particular,
the universality of A[1"] makes it (as well as F(p]
and W[D]) an excellent focus for the development
of approximate theories: A good approximation to
it is valid for any number of electrons and any ex-
ternal potential. Although the complete parallel-
ism between position-space and momentum- space
density-functional theories is lost because of the
form of the Hamiltonian [Eq. (1)] which causes
G[y] not to be universal, there does, nevertheless,
exist a proper variational functional of the mo-
mentum-space probability density for any given
external potential. Thus direct variational deter-
mination of y(p) may be contemplated.
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