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The electronic energy loss and straggling of swift charged particles in weakly interacting plasmas are described in a
quantum-mechanical formalism that includes thermal effects. It applies to plasmas over wide ranges of densities and

temperatures reaching from degenerate to nondegenerate systems, as they are found in solids, stars, and in dense and

dilute fusion plasmas. Using approximations for the dielectric function, we calculate the stopping power S and the

straggling 0 for slow particles in plasmas of varying degree of degeneracy, and discuss the dependence of the results

on particle velocity and plasma temperature T. For nondegenerate. plasmas, one obtains the relation 0' = 2kTS
'

between these quantities.

I. INTRODUCTION

(

During the last five years interest has focused
on the penetration of swift light and heavy atomic
particles through media under conditions of ex-
treme pressure and temperature, stimulated by
the exploration of laser or heavy-ion-induced inert-
ially confined fusion (ICF). The physical conditions
during pellet implosion pose intriguing questions
as to the energy transfer between moving particles
and plasmas of rapidly changing density, and the
concomitant changes of the range-energy relations
that determine the retention of the particle kinetic
energies within the samples. Previous analyses
of this problem were based on the quantum-mech-
anical dielectric theory' or the classical binary-
collision approximation. 2 The results were applied
to the medium at zero temperature. Thermal as
well as quantum-mechanical effects were taken
into account by Skupsky, ' who made use of the
dielectric formalism to derive the energy loss of
charged particles with velocities lower than those
of the electrons in the plasma. These results
were applied to the slowing down of the 3.5-MeV
a particles produced in the dominant deuterium-
tritium (DT) reaction in ICF.4 Current feasibility
studies of different inertial confinement fusion
programs require a complete and accurate de-
scription of the energy-loss process for a variety
of ionic species, over a wide range of nonrelativ-
istic ion velocities in very dense and hot plasmas.

In this paper we present a quantum-mechanical
t'reatment of the energy loss in plasmas under
conditions which include those of cold, dense con-
duction electron fluids in metals, hot and dense
plasmas of interest for ICF, and dilute plasmas in
magnetically confined fusion (MCF). To clarify
our ideas we have prepared a map of plasma con-
ditions as shown in Fig. 1. The ordinates repre-
sent the electron plasma temperature T and
the abscissa displays the one-electron radius

r,(a.u. ), related to the electron density n(upper
scale) as (4w/3) r', = I/na, '. Degenerate or "cold"
plasmas and nondegenerate or "hot" plasmas are
separated by the line where the reduced tempera-
ture 8=kT/E~ -has the value 8=1; k denotes the
Boltzmann constant and E~= 1 84/r2 .the Fermi
energy of the electrons in atomic units (1 a.u. =

27.2 eV). The domain marked M covers metals
ranging from r, =1.5 for W to z, = 5.9 for Cs; its
upper bounds are given by the melting and boiling
points. Another important plasma in our environ-
ment is the sun, indicated by the shaded band. The
solar plasma stretches from &,-0.3 at the center
to &,-100 near the surface, and becomes very
dilute in the corona where y, &10'. By comparison,
conditions in the interior of Jupiter correspond to
g, -l at T-10 K and in white dwarfs to y, -0.01
at T 107 K.

A question of general interest is the distinction
between weakly and strongly interacting plasmas.
The parameter X' =- e'/who~ measures the ratio
between potential and kinetic energies of the elec-
trons in a degenerate electron- gas. ' Nondegen-
eracy can be included in this parameter through
the expression

3 Om'I' ' V

10m 4) I7'

where V= e /r, a, . The mean kinetic energy Ss will
here be approximated by

1&=-zm v', = 5 g + ~ yZ',

where &E is the mean kinetic energy of a fully
degenerate electron gas, and &AT is that of a
nondegenerate plasma. With this simple extension,
Eq. (1) becomes X'=0.166r, (l+ ~8) '. Our range
of interest in goeakly interacting plasmas (y'&I)
covers the whole area above the line drawn for X'=
1 in Fig. 1.
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FIG. 1. Plasma conditions in metals (M), the sun, and man-made plasmas of interest for nuclear fusion in the context
of inertial confinement (ICP) and magnetic confinement of plasmas (MCP). The line denoted X =1 separates the condi-
tions in strongly interacting plasmas from those in weakly interacting plasmas. The lines v~ =vq and v~ =vo/3 indicate
the transition region between the lower right-hand quadrant, where classical theories describe the energy loss, and all
other plasmas where quantum-mechanical descriptions are appropriate. Below the line e = QT/Q~ -$, the -plasmas-
are degenerate or "cold,"above the line they are nondegenerate or "hot." /

The extent to which a classical- or a quantum-
mechanical description is appropriate to derive
the rate of energy loss in a medium is gauged by
the parameter" f= Z*e'/hv, -where Z* e is the
effective charge' of the ion moving with velocity

To indicate the transition between classical-
($ »1) and quantum-mechanical ($ &(1) descrip-
tions we replace the projectile velocity v by the
mean electron velocity v, estimated from Eq. (2).'
The dashed lines in Fig. 1 correspond to v, = vo-=

e'/k and v, = v, /3. They give an indication for
light ions, with Z -1, of the transition region
from the classical description, applicable in the
lower right-hand corner of the figure, to the
quantum-mechanical treatment of the energy loss
that is applicable to most plasma conditions.

Measurements" of the energy loss of light and
heavy ions in a Cs plasma at T=—2000 K and n =
10" cm ' have been performed in the classical

domain indicated by the point Cs in Figs. 1. The
conditions in prototypes of fusion reactors based
on magnetically confined plasmas (MCP), such as
in tokamak experiments, fall in the domain marked
MCP. The numbered points refer to plasmas pro-
duced in (1) Alcator A, M.l.T., (2) Princeton Large
Torus 1, (3) Kurachatov tokamak T-3, (4) Prince-
ton Large Torus 2, (5) Princeton tokamak fusion
test reactor (projected), and (6) International
tokamak reactor (projected). The laser-induced
or heavy-ion-induced implosion of fusion fuel
pellets starts from normal solid-state conditions
and leads to the extreme conditions of inertiaQy
confined plasmas in a distinct domain of high den-
sities and temperatures marked ICP in Fig. 1. The
shaded area indicates the region of interest for
the ignition of DT fusion reactions. Clearly, the
treatment of the stopping power of these manmade
plasmas require a quantum-mechanical formula-
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tion in all ranges of O. In the following we general-
ize the quantum-mechanical description of the
energy loss in a way that can be immediately app-
lied to plasmas under these various conditions.

The second quantity of interest to characterize
the slowing down process is the energy-loss strag-
gling 0, which describes the statistical fluctuations
of the energy loss of the particle. ' To be consis-
tent with the usual definition of the stopping power
S = - hE/hx, as the magnitude of the mean energy-
loss per unit pathlength, we define 9' as the square
of the standard deviation of the energy-loss dis-
tribution per unit pathlengt'h, i.e. ,

where N(v) = [exp(Phu) -lj ' and P= 1/kT.
The temperature dependence is contained in the

dielectric function q(q, v) and in the Planck func-
tion N(co). The energy-loss rate is given by

dE " fPP&
kQ)B(q, M)

where a&—= ~(j5, $) is determined from

2

k(u(p, q) =—E(p') —E(p) = Iq v+ (6)

In Sec. II we adapt the dielectric function forma-
lism for the description of the energy dissipation
of a heavy particle in a thermalized medium,
taking into account the contributions from both
emission and absorption processes. As a result,
the energy loss is given, to first order, by an in-
tegral over only spontaneous emission events.
The straggling integral is obtained from contri-
butions of all absorption and emission processes.
In the high-temperature limit, however, both in-
tegrals converge, resulting in the simple relation
0'=2kTS. Using analytical forms for the dielectric
function, we illustrate in Sec. III the behavior of
the energy loss and straggling for slow particles
in electronic plasmas of all degeneracies over the
whole range of 6 values.

In Sec. IV, we give an illustrative example for
the straggling of 3.5-MeV alpha particles in inert-
ially confined DT plasmas. The implications of
our work are summarized and discussed Sec. V as
they may be of interest for studies of plasmas
under fusion conditions and in astrophysical pro-
blems.

II. ENERGY LOSS AT FINITE TEMPERATURES

A comprehensive treatment of the energy-loss
problem, in terms of the equilibrium dielectric
function &(q, w), can be formulated by starting
from the scattering rate

4pZe» Pg
R(q, (o)=, —, S(q, (o),

in terms of the incident velocity v=p/M and the
mass M of the projectile. For heavy particles
M &&m, recoil effects are small and we can ex-
pand Eq. (5) in terms of b, &o-=k@2/2M to obtain

dE dE dE
(7)

where the first two terms are

fdE, (Ze 1,
' '

~N(~) -I
)ddt, ( &) q' e(q, ~)

(8)

dE) (Ze)
' I

a
dq —co% + Im

~(0 E(q, &)

The integrals range over both negative frequencies
(loss processes) and positive frequencies (gain
processes}, but it is here more instructive to trans-
form them into integrals over positive frequencies
only.

We can simplify the expression for the main
term (dE/dt)0, Eq. (8), by splitting the integral
into the v&0 and ~&0 parts, and then making use
of the relations N(w)+ N(-u) = -1 and q(q, &u) =

&*(q, &o); this leads to an expression of the form

for energy transfer bar = E(p') —E(p) and momentum
transfer Sq=p'-p, which applies to the scattering
of a particle of charge Ze, with initial momentum

p and energy E(p), to the final state given by p',
E(p'). The dynamical structure factor S(q, ur) is
related to the dielectric function E(q, a&) through"

&dz
d'qN(~)f(q ~)

0 td)O

d3qXm+1 q, co
td ) 0

(10)

2

S(q, ar) = ~q, N((o) lm
4m e' e(, &)

(4) The two terms in N(&o) cancel exactly, with the
result for the stopping power S,
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« -1 ~«E~)
d& v (fff ~0

2 Ze
~

dq -1

d
), (lf(o)' R(q, (o), (12)

which can be expanded as

Q 9+0+ ~ ~ ~
0

with

Z ew
rPv

Q7d'q —, N(ar) Im~q' fe(q, &)

(13)

g2 e2@2

2ff'M v ~ Ro

x &u2N(+) Im «~ ~ ~-a. e

(14)

For the balance between positive and negative
frequencies in the 002 term, all the contributions
from stimulated absorption (e & 0), proportional
to N(fo), and those from stimulated and spontane-
ous emission (&o& 0), proportional to [N(fo)+ 1],
are collected, and one obtains

2Z'e'k [' " dq
7' a0 g

x d~ co'[2N(co}+ 1] Im
f /

. (15)
0 ~s q, u»/

The temperature dependence of Q0 is contained in
N((o} and e(q, (o}.

%e discuss now our results for low and high tem-
peratures. When kT «8'ar, N(~) -0, and we re-
trieve the expression for the energy straggling in

The only temperature dependence is now contained
in the energy-loss function Im[-1/q(q, &o)J, and
arises from a thermal redistribution of the oscil-
lator strengths in the medium. One can interpret
this result as a cancellation between the processes
of stAnulated absorption and stimulated emission
of energy Sv by the projectile, "since both process-
es are proportional to the Planck distribution N(ur)
that characterizes the thermal equilibrium of ex-
citation quanta in the medium. Thus, the energy-
loss rate is only determined by spontaneous emis-
sion processes, which are independent of N(~).

A similar analysis can be made for the energy-
loss straggling Q,

a degenerate electron gas. '" Explicit integrations
of $ and Q for T =0 exist already in the literature. "'
In the opposite l,imit kT && S~, we can approximate
[2N(u}+ 1J —=: 2kT//f&u. The straggling integral
Eq. (15) then becomes identical to the stopping
integral Eq. (11)multiplied by 2kT, i.e. , straggl-
ing Q and stopping power $ are related as

n'(v, n, T) =- 2kTS(v, n, T), (16)

III. APPROXIMATIONS AND RESULTS FOR LOW
VELOCITIES

The simultaneous action of thermal and quan-
tum-mechanical effects in the processes of energy
exchange between a slowly moving particle v ~ v,
and a plasma of varying degree of degeneracy,
give rise to important effects in the dissipation
of the particle's kinetic energy. The slowing down
phenomenon for v &&g, can be described in terms
of the low-frequency approximation for the real
and imaginary parts of the dielectric function"

(q, &u) = e, (q, ~)+ i&,(q, ar). The temperature-
dependent function' becomes

e, (q, ~) —~,(q) = 1+ q', /q',

2m'e'ar 8'q'
q, (q, ur) =—

(
„—exp -fl) + 1 . (19)

(18)

Here q, is a wave vector that determines the
screening of a nearly static charge in a plasma.
The degeneracy parameter fV= //, /kT depends on the
chemical poteptial ff and, at all degeneracies, is
related to 8 as F«2(fi) = —,'8 '/ through the Fermi
integral F, /, (q). The value of q, is given in terms
of the logarithmic derivative of Ff/, (fi) as q', = q2v

Ff / 2 (fi)/F f /2 (f/) . A good approximation' (5%) is

for all values of v, n, and T such that the condition
hco «kT is fulfilled. Since the frequencies of
interest fall in the integration range from zero to

= 2mv(v+ v,)/lf, Eq. (16) will apply when

2mv(v+ v,}skT . (1V)

In the limit 8 = kT/8„—» 1 one approaches —,'mv, —=

2akT, and Eq. (1V) defines the domain v 4 0.15v,
corresponding to projectiles much slower than the
thermal electrons in the plasma. The velocity
dependence of 02 is the same as that of S, viz. ,
02~v. By contrast, in a degenerate electron gas
at low velocities, 0 is a quadratic function of v."

The applicability of Eq. (16) to a hot plasma
kT»E„accords with a classical description, in
terms of the Fokker-Planck equation, for the fluc-
tuations in the energy of a slow particle in a
thermalized medium. It pertains, moreover, to
a general quantum-mechanical relation between
the generalized resistance and voltage fluctuations
in linear dissipative systems. "
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provided by the interpolation between the low- and
high-temperature limits

(20)

where q»= (3&v+v~)
' is the Thomas-Fermi (TF)

wave number, q& ——(m&u2+/kT)'~2 the Debye screen-
ing wave number, &op = (4vne'/m)' ' the plasma
frequency, and v~ = (3m p)'~' k/m the Fermi velocity
of the electron gas.

With the approximations Eqs. (18)—(20), we have
performed numerical integrations of Eqs. (11) and
(15) for a fixed electron density n= 10" cm ' (r, =

0.54) and for various plasma temperatures in the
velocity range v a@,. The results for v/vz =0.1,
0.5, and 1.0 are shown in Fig. 2 as a function of
the reduced temperature 8=kT/E~. In Fig. 2(a),
the values of the energy straggling 0 and of the
stopping power S were scaled to make them in-
dependent of Z, as 0'/g (solid lines) and as 2kTS/
Q~ (dashed lines) where Q~ = 4wnZ e' is the Bohr
value for the straggling of a high-velocity particle
(i.e. , g»g, ). Figure 2 (b) shows the straggling-
to-stopping relation A'/2E~S versus e. This illus-
trates how the asymptotic behavior, Eq. (16), is
approached when the condition imposed by Eq. (17)
is fulfilled.

An analytical result for the low-velocity stopping
power and energy straggling, valid for kT»E~,
can be obtained by further approximating Eq. (19)
for a nondegenerate electron gas, viz. ,

0.01
0.1

10—

v/vF = 0.1

I I I I I L

I

10
e= kT/EF

2m'e'co ne ( 2m '~ -e'q''=
(kq) 2 I, kT '~8 kT ~

(21)

With Eq. (21), Eqs. (11) and (15) can be integrated
simply, and yield

g' = 2kTS

4 2~~'k
nZ'e'v[(1+ y )e"E, (y) -I],3 kT]

where E,(y) is the exponential integral of the argu-
ment y=l'qD2/8mkT=(he~/kT)'/8. For y«1,
E,(y) = In(1/y)-0. 577, and we finally obtain

0' —= 2kTS =——
~

— nZ'e'g In~ +—
3 kkT . (S(op 4,

(23)

This result is shown with dash-dot curves in Fig.
2(a). It quickly approaches the numerical results
when e becomes larger than one.

We can now make a few comments on the physical
meaning of our results. For 9 =0, only electrons
close to the Fermi surface can participate in the
energy loss of 3, slow particle. The stopping power
starts from a value close to the one calculated by
Fermi and Teller" at T = 0, and then decreases

01 + I I I I lllll
0.1 1

e-"~REF
10

FIG. 2. (a) Values of the stopping power 8 and energy
straggling 0 for slow heavy QVl» rn) particles, e/v&
=0.1, 0.5, and 1.0, in an electron gas of density n=10 ~

cm, as a function of the reduced temperature 8 =—kT/
E+. The values are scaled according to 0'/0& (solid
lines) and 2kTS/0J (dashed lines), where 0~=4m'nZ e
is the straggling for a swift particle of charge Ze. The
high-temperature approximation of Eq. (23) is shown
with dash-dot lines'. (b) Results for the relation 0 /2E~$
as a function of the electron gas temperature. For 6& 1
thermal fluctuations dominate the energy straggling and
the relation 0 /$ becomes independent of density and
velocity, as predicted by Eq. (16).

monotonically with increasing temperature; when
kT »E~, it becomes ~ eT '~'

In(kg /k~ )
asymptotic behavior is analogous to t(e well-known
Bethe-Bolch dependence v 2 ln (2m' /k(o~) at high
velocities v&& v, applicable to both cold and hot
plasmas. In fact, they are two manifestations of
the decrease in the energy-loss rate with increas-
ing relative velocity between the particle and the
electrons in the medium.

The situation is different for the energy strag-
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gling. With increasing temperature there is an
initial increase in the energy straggling, as more
electrons are able to absorb energy. This is
followed by a maximum and then a decline proport-
iona& to gT '~2 ln(kT/K~z). The energy straggling
for a slow particle in a hot electronic plasma
(kT»E~) is a decreasing function of the relative
velocity v, @=v,= (kT/m)'~2. By contrast, the
high-velocity dependence of the straggling, in
both cold and hot plasmas, is simply given
by Q~=4mnZ e . These two limiting conditions
are, for the straggling, qualitatively different.
At high velocities v && v, spontaneous processes
are dominant [N(a&) « 1 for large energy transfers
k~] and the medium temperature is unimportant,
just as in the behavior of the stopping power. But
for a slow particle v «v, in a hot plasma, the
occurrence of induced processes, i.e. , successive
events of emission and absorption, stimulated by
the existence of a large number of thermally ex-
cited quanta in the medium [N(&o) » 1 for all the
frequencies of interest ], becomes the dominant
mode for the fluctuations in the particle energy.
Curiously, the straggling in this high-temperature
limit becomes essentially equal to the stopping
power, Eq. (16), which depends at all degeneracies
on spontaneous processes alone.

Figure 3 shows the velocity dependence, of the

1.0

straggling for v 4 vF and three temperatures of the
plasma. Curve (a) is for a nearly degenerate elec-
tron gas where n'~ g', curve (b) is for the transi-
tion regime kT-E~, and case (c) corresponds to
a hot plasma kT» E~ where 0' ~ v. As found by
Skupsky, ' the stopping power S in the low-velocity
region considered in this paper is, at all plasma
temperatures, proportional to the particle velocity
Vo

IV. AN ILLUSTRATIVE EXAMPLE

(6E)' = ' n'dx=
& n'(E} „,

S(E )E
(24)

We discuss two limits of 9 =-kT/Ez.
l. Hot piasma e» 1. With Eq. (16},we obtain

immediately

(5E) =2kT(E —E).

Over the range of the particle E«F. the energy
straggling due to electronic process becomes

Consider an a particle of kinetic energy E =

3.5 MeV as produced in the dominant DT reaction
of a fusing plasma. This situation pertains to the
energy transport in controlled fusion or in stellar
matter. The accumulated straggling in energy,
5E, after the particle has slowed down to some
energy E&E, over a trajectory of length x becomes

5E = (2k T E }'' (26)

0.5—

independent of the plasma density. At the ICF and
MCP ignition temperatures, T-108 K. This is
comparable to the width of the initial distribution
of E caused by the thermal motion of the reac-
tants. We find 5E = 260 keV. In stars, where
kT-1 keV, this value becomes 5E =80 keV. If

'

one adds nuclear straggling and stopping in Eq.
(24}, n2 becomes larger by a factor -1.4 while
S does not change perceptively, and so, I in-
creases by at most 20 due to nuclear scattering.

2. Cold, dense plasma 9«1, X =v,/mv„«1, and
v &v~. The stopping power takes the form" ""

0.0
0.0 V/V F

2 Z'e4m' nv~

3 PT @ Vo

and the straggling"

(2'l)

FIG. 3. Velocity dependence of the energy of heavy
charged particles in an electron gas at finite straggling
temperature. Curve (a), for e =10 2, corresponds to a
nearly degenerate plasma, where 0 ~e; curve (b), e
=1.1, corresponds to the transition region AT -EJ;,
curve (c), 6=510, is for a hot plasma where g2acg, as
given by Eq. (23).

n'= n~ (v/q„)',

so that

Q 21%vpv

S ln( vs /tpo)

and Eq. (24) yields

(28)

(29)
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(~E) =—8 &~E v (
3 ln(7fvp /vo) vp i 'v

in terms of Ez = ~ mv), v, = (2 E /~, )' ' = &vo ~
v =

(2E/M )'~, and M =4u, the mass of the c. particle.
At electron densities n-l. 0 ' cm ', for which

x,=0.25 and v~= Bvo, and at temperatures such
that kT «E~ -1 keV, the straggling, when v «v
becomes 5E 40 keV. These examples demonstrate
the content of Fig. 2(b), viz. , that straggling in-
creases with temperature despite the slow change
of 0' with 8 depicted in Figs. 2(a). Such effects
influence the range straggling in ways that should
be unimportant for confinement fusion.

V. CONCLUSIONS

The quantum-mechanical treatment of the energy
loss in an electron gas in thermal equilibrium, as
formulated here, applies to a wide range of non-
relativistic plasmas, which includes most of the
cases found in nature Equ. ations (11) and (15)
provide the basis for a unified description, where
the temperature-dependent contributions from
energy-gain and -loss processes to the stopping
power and straggling integral have been accounted
for explicitly. A comprehensive quantum-mechani-
cal analysis of the energy loss and straggling of
ions in plasmas calls now for a thorough study of
the temperature dependence of the dielectric func-
tion. q(q, ur).

In this paper we have concentrated on the main
new effects, which occur for partially degenerate

systems, kT-E, in the velocity range v& v, and
can be studied in terms of low-frequency approxi-
mations to q(q, v). This permits us to describe
the transition from degenerate to nondegenerate
plasmas, of much interest for studies of laser and
ion-beam ignition of fusion reactions via the in-
nertial confinement of DT pellets. In this velocity
range, the temperature and velocity dependences
of the stopping power S and of the energy straggl-
ing 0 have been studied.

A relation between S and 0 is obtained, namely,
Q' = 2 ATS, which applies to a slow particle moving
in a hot plasma. A first analysis indicates that this
relation could provide a method to evaluate the
electron temperature of a plasma under working
conditj. ons of tokamak machines using, for instance,
a proton beam probe. One should, however, be
aware of other sources of energy-loss fluctuations
in the case of heavy-ion beams" due to fluctuations
in the charge state of the ions. For partially ioniz-
ed plasmas, the contribution from excitations and
ionizations of the ion cores should be added to the
results of our treatment.
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