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We study inhomogeneously broadened three-level atoms (A configuration). Two energy levels are strongly coupled

by an intense standing wave. A weak laser field at an adjacent transition is used as a probe. The probe response is

calculated by Green s functions involving continued fractions. The general solution is extendable to other three-level

configurations as well to other types of multimode saturators. The connection of various approximate solutions to
the exact one is discussed. We. concentrate on the Doppler-free case where both transitions have nearly equal

frequencies. For this we derive a reasonably accurate closed-form solution, the parameter dependencies of which are
investigated in detail. In addition to its average changes the dynamics of the saturated transition plays an important
role in the steady-state probe response. The spectra show sharp resonances which cannot be explained in terms of
traveling wave superposition models. The width of the velocity distribution has a strong effect on the shape of the

spectrum —some resonances are smeared away because of incomplete Doppler dephasing. The relaxation processes
influence differently the resonances, which facilitates their interpretation.

I. INTRODUCTION

A two-level atom dressed by a strong laser field
poses several fundamental questions besides pro-
viding a basic theory model for many laser appli-
cations. The properties of this system can be
studied with the aid of a second laser beam cou-
pled to the same transition (two-level system) or
to an adjacent one (three-level system). Both
cases have received much attention, ' but due to
the versatility of the nonlinear interactions there
has remained many unexplored problems. The
probe response in a three-level system saturated
by a monochromatic traveling wave (TW) is well
understood. The situation changes if the saturator
contains several modes or is a standing wave (SW).
Because of the nonlinearity, the induced polariza-
tion components interfere which gives rise to new

spectral features. Undoubtedly the interpr etation
becomes more complicated, but at the same time
one gains in novel well-resolved resonances —let
the family of multiphoton Lamb dips" ' and anal-
ogous multiphoton resonances of three-level sys-
tems4' serve as examples. To achieve a high
enough degree of saturation it may be necessary
to place the sample inside the laser cavity; for
instance, many infrared double-resonance experi-
ments are performed this way. ' The SW saturator
is also encountered in laser-design problems: One

may, e.g., ask when does single-line operation' or
mode locking' occur in lasers capable of oscillat-
ing simultaneously in two lines sharing a common
level?

A three-level atom interacting with an intense

SW saturator and probed by a weak laser field has
not been the subject of extensive theoretical ef-
forts. A solution valid for an arbitrary saturator
intensity has been derived by Feldman and Feld. '
The present paper generalizes their model and in-
troduces improved approximate results. Najmbadi
et a/. ' have discussed the characteristics of two-
wavelength lasers within perturbation theory. Be-
sides the intensity restrictions (recently numerical
studies in the intense field region have been per-
formed"), additional limitations, from the view-
point of a spectroscopist, are caused by the self-
consistency requirements which usually lead to a
situation where the various nonlinear processes
are not manifested in a best possible way. A

homogeneously broadened three-level system can
be solved in a closed form. " Further support of
the present problem is obtained from the multitude
of two-level calculations. "" It is also worth
pointing out the relationship between our model
and the studies on stimulated Raman scattering
in atomic-beam configurations. ' On the other
hand, the mathematical formalism to be developed
here can be applied to problems like multimode
pumping of far infrared and dimer lasers.

An interesting question is how much of the SW
configuration can be understood from the basis of
simpler saturation models. The superposition of
results" valid for a co- and counter-running TW
saturator is expected to apply for detuned situa-
tions only —when do the interference effects be-
come important~ A complementary view is ob-
tained by considering the dynamics. Instead of a
pure sinusoidal Rabi flipping occurring in TW
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fields a moving atom experiences a time-dependent
saturator in the SW case —how does the modulation
in the flipping frequency manifest itself?

In Sec. II we introduce the model atom and field
configuration (A type}, and solve the probe re-
sponse with Green's functions involving continued
fractions. Part of the mathematics is deferred to
Appendix A. The general solution is rather time
consuming and, therefore, various approximations
are desirable. These and their qualitative validity
conditions are discussed in Sec. III. The subse-
quent analysis concentrates on the case where the
probe and saturator are assumed to have nearly
equal frequencies. This is of interest because of
the exact cancellation of Doppler shifts. A con-
venient approximate closed-form solution is intro-
duced in Sec. IV. Some details involved in its
velocity averaging are given in Appendix B. The

response is split into two terms by their depen-
dence on zero-field population differences (D'„
=. N', —N', ). In the D~» term there occurs no aver-
age changes in the strongly coupled transition 1—2 and it thus reflects the dynamics of the
dressed 1—2 system; in the D,', term additional
features appear because of the average polariza-
tion and population changes of the transition 1—2.
The parameter dependencies of both contributions
are discussed in some detail. The approximate
solution of Sec. IV is shown to be quite accurate
even for high saturator intensities. If we relax
the Doppler-limit approximation the spectra are
considerably modified because of the cutoff of the
wings of the velocity-dependent spectra. This
study allows us to interconnect the homogeneous
and inhomogeneous limits. Finally Sec. V gives
a summary and discussion of the results.

II. GENERAL THEORY

We consider the three-level configuration depicted in Fig. 1. The field E,= —,[E,(z) exp(-iQ, t)+ c.c.] is
coupled to the transition 1—2 and the field E,(with. frequency Q,}to the adjacent transition 2 —3. The
density-matrix elements p, , of the system obey within the rotating-wave approximation (RWA) the equa-
tions

P2 [4 + .(~21 Q )]P21 . 1(P22 Pll} 2P13

p23 —. [Y23+ Z(%23 Q2)] p23 2 2(p22 —p33)+ 3 lpl3 Il

P13 = -[&13+i(&13+ Ql Q2}]P13— &u2P21+—iul P23

Pll 1(nl Pl 1} ~21P22 31P33 m( 1P21}r

P22 2(N2 P22}+2 ™(1P21 2P23}

P, = I', (n, —p„)+ I'»p»+ ll'»p„—2 Im(u,*p23

K18+ ~ e-&K1
1 +

and E, is a traveling wave (TW probe}

e jX2s
2 2

(2.8)

(2.9)

The steady-state solution is obtained as a spatial
Fourier series

p, ,=P p;, (m) exp(imK, z) (ij= 11,22, 33,21)

(2.10}

p, , = exp(iK2z) g p, ,(m) exp(imK, z) (ij= 23, 13)

(2.11)

where p„=p„exp(iQ, t), p„=p, exp(iQ, t), p„
= p» exp[i(Q2 —Q,)t], and p, , = p, , are assumed to
be slowly varying, the dot represents the convec-
tive derivative (8/Bt+ 113/Bz), and the flipping
frequencies are given by

u, = t121 ~ E,(z)/2R, u, = t123 ~ E2(z)/28. (2.7}

In this paper we will discuss the case where g,
consists of two counter-running waves (SW satu-
rator}

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

p23(m) —iI 23(m)[u, p13(m —1)+ u p13(m+ 1)]

= -iu, I „(m)[p,',"(m) —p'„"(m)],

p»(m) —i&»(m)[u~p»(m+ 1)+u*p»(m —1)]

= —iu, p,",'(- m)*

(2.12)

(2.13)

I

Insertion of (2.10) and (2.11) into (2.1)-(2.6) yields
coupled recurrence relations between the coeffi-
cients p;,(m).

In the following we simplify the situation by a.s-
suming the wave Z2 to be a weak probe —the field
E, is allowed to attain an arbitrary intensity. The
solution is then given as a perturbation expansion
with ot2 as a small parameter. To zeroth order,
p2&,

' and p,', ' vanish. Formulas for the matrix ele-
ments p".,' of the strongly coupled transition 1—2
have been derived previously" and are reproduced
in Appendix A for our readers' convenience (note
tha, t p33' is also modified, because of spontaneous
emission and collisional transfer of population}.

To first order in u2 we obtain for p23 and p13
from (2.2), (2.3}, (2.10), and (2.11) the equations
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component p»(0} which has the right spatial de-
pendence'6 exp(iK, z) we find

m OO

0„(0)=0(d(0)+g 2 (-2)S (-4) "S ( )d( )
m =-2

+g S,(2)S,(4) ' 'S.(m)d(m)), (2.22)
1' =2

where the descending and ascending continued
fractions are defined by the recurrence relations

S (m)=-c(m+2)[a(m)+ b(m —2)S (m —2)] ',
(2.23)

S,(m) = -b(m —2)fa(m) + c(m+ 2)S,(m+ 2)]-',

(2.24)

and the Green's function G= G(0, 0) is given by

G= [a(0)+ c(2)S,(2)+ b(-2)S (-2)] 2. (2.25)

FIG. 1. The model configuration and its relaxation
scheme. p;. describes spontaneous emission, ~;- de-
scribes collisional transfer of population between the
lower levels; phase-changing collisions are included in
the off-diagonal decay rates y;;. The SW saturator
couples to the transition 1 2 and the TW probe to
2 3. Incoherent pumping is related to the zero-field
populations.

L„(m)= [y„+i(~„-&, + mK, v)] '. (2.16)

Elimination of p» leads to the inhomogeneous dif-
ference equation

a(m)p»(m)+ b(m)p»(m+ 2)+ c(m)p»(m —2)= d (m),

(2.17)
where the coefficients are

a(m)=LES(m)+ c(,L,S(m —1)+ o.'L,s(m+ 1},
(2.18)

b(m)= ~ ~;L„(m+1);
c(m) = o(,o.*L„(m—1),

and the source term is

d(m) = -ic(,[p,',"(m) —p,",'(m}]

(2.19)

(2.20)

(for simplicity we drop the superscript from p,",)
and p(~~3)). The complex Lorentzians are defined by

L»(m)=[y»+ i(u&» —&,+ K,v+ mK, v)] ', (2.14)

L»(m) = [y»+ i(~»+ &2 —&, + K,v+ mK, v)] ',
(2.15)

The probe absorption (dispersion) is obtained from
the imaginary (real) part of p»(0) in the usual
manner. '~

The probe response has already been derived
by Feldman and Feld. ' We have preferred the
Green's-function techniques to their variational
approach. Besides this technical difference our
model is more flexible in the choice of field and
relaxation parameters. Instead of a pure SW
saturator" we allow arbitrary values for the am-
plitudes n, and o. ; one advantage obtained is that
pure TW' effects are readily extracted by letting
either e, or o. disappear and there is no need to
go to the off-resonant limit. We can also easily
distinguish interference terms by keeping track
of products of &'. and n2. The general relaxation
scheme adopted facilitates the tracing of various
contributions like those due to p» coherence. We
have kept y, , ~ ~(I', + I', ) as free parameters and
included both spontaneous decay from level 2 to
levels 1 and 3 and collisional population exchange
between levels 1 and 3. (The model is, of course,
oversimplified to give a full account of collisional
effects."}

It is convenient to divide the terms appearing
in p» according to their dependence on the field-
free population differences D', , between the levels
j and j. This term classification has been used
before and can be realized experimentally by
properly adjusting the incoherent pumping rates. '
According to (A21) and (2.21) we have

+ u,~.L„(m —1)pn('2) (1 —m)*

+ u, ()' L„(m+1)p,",'(-1 —m)* (2.21)

d (m) = -i&,D,', 5„,—io', f(m)[D„(m) - D,,b,]
+ u, o.,L„(m l)p2, '(I m)*

(note that we write ~a P=o.").
We have soived (2.17) with Green's-function

techniques (for details see Appendix A). For the

+ o.,c I.„(m+1)p(;)(-1—m)', (2.26)

where the function f(m) is defined by (A22) and

D„(m) = p( )(m) —02p(20)(m). The first term multi-
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plied by the Green's function G in (2.22) gives
rise to the D,, term.

If we have D,', = 0, the saturator does not induce
any average polarization or population changes in
the strongly coupled transition 1—2. The re-
sponse is entirely due to the D,, term. At first
it is somewhat embarassing that this term (called
also a light shift' or background signal) still de-
pends on the saturator. To understand this one
must ponder the dynamics of the strongly coupled
system. An atom originally created onto level 2

(or 1) experiences Rabi flipping which the probe
field is able to feel. As regards the saturated
transition the upward and downward flipping rates
cancel and no net changes in the populations of
levels 1 and 2 occur. The probe transition, how-
ever, is selective to the probability amplitude of
the common state 2 and thus it matters in what
state the atom enters. The periodic modulation
is included in the Green's function G which repre-
sents an effective propagator p»- p»- p» in the
frequency space. Its poles give the eigenfrequen-
cies of the dressed system 2 3.

The D,', term contains both a population [second
term in (2.26)] and polarization-induced contribu-
tion (-p~&~o'), which can be partly distinguished by
their relaxation or detuning dependence. The
Green's function 6 enters the D,', term, too, be-
cause in excitation chains like -p»- p23 or

p2$ p$3 p23 the dynamic s of p» is deter mined

by G. A loose classification is preferreP here
because various low-intensity processes like step-
wise and Raman-type transitions interfere strongly
in the high-intensity region.

Equation (2.22) is readily evaluated numerically.
Rather long computing times are, however,
needed. Furthermore, the complexity of the
equations tend to obscure the underlying physics
and hamper the extraction of parameter depen-
dencies. Some simpler closed-form approxima-
tions are, therefore, desirable. These are dis-
cussed in the following sections.

IH. APPROXIMATE SOLUTIONS AND THEIR
RELATIONSHIP

As in the corresponding case of probing a
strongly coupled two-level system, "the full so-
lution (2.22) can be expressed in a closed form in
a few special situations only. For stationary
atoms (v=0) the continued fractions S,(m) [as also
those of the strongly coupled system, see (A12)
and (A14)] become periodical which permits us to
calculate them exactly. The infinite sums in
(2.22) reduce to geometric series and are easily
performed. We have checked that Eq. (2.22) in-
deed reproduces the previously given formulas. "
The continued fractions and infinite sums in (2.22)

are exactly truncated for a TW saturator (u', n'
=0}. A third exception which leads to a closed-
form solution arises when we have a resonant S%
saturator, and in the relaxation scheme adopted
by Feldman and Feld' the restriction I'y I2 is
made. The result can then be expressed as a
ratio between complex-order Bessel functions.
The special cases above provide convenient check
points for numerical computations and approxi-
mate formulas.

In general, the summation in (2.22) can be cut
off once the product of the continued fractions
S,(m) and the source terms d(m), which depend
on the continued fractions of the strongly coupled
transition 1—2, becomes small enough. The con-
vergence of S,(m} can be inspected by carrying out
an equivalence transformation in them. The
emerging convergence factor turns out to be

](m) = b(m)c(m+ 2)/a(m)a(m+ 2) .
According to (2.18)—(2.20) the magnitude of this
is roughly determined by the product o.mo." ~L»~'

~L»~' (for simplicity we drop the index m). The
following possibilities enter.

(i) u', =0 or u'=0, i.e., we have a pure TW
- saturator.

(ii) n', u' is small which justifies a perturbation
expansion in terms of the interference terms of
the saturator components [a kind of independent-
field approximation (IFA}]. If u'. and u' are also
assumed to be small we obtain the ordinary per-
turbation solution.

(iii} ~
L»~' is small, i.e., p» coherence is neg-

ligible. This occurs, e.g., when y»- ~ or far off
from the two-photon" resonances. The modula-
tion of the population p» is the dominant effect as
has been discussed by Feldman and Feld' (we pre-
fer to reserve the term IFA for case ii above). If
we furthermore neglect the spatial variations of

p» (let u', u'- 0) we obtain the familiar rate-equa-
tion approximation (REA).

(iv) ~L» ~

' may be small because of a large value
of y23 or a detuned intermediate level. This case
is of minor spectroscopical interest except near
the two-photon resonances (Raman-type pro-
cesses).

(v) By a proper choice of the probe and saturator
detuning we may avoid the overlap of resonances
due to I » and L» and thus keep the product

~ L»L»~
small (cf. iii and iv).

The magnitude of $(m) does not, however, solely de-
termine the accuracy of the approximation chosen.
In the velocity integration (especially in the Doppler
limit) many seemingly large terms may disappear
and the model turn out to be much better than ex-
pected.
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Although the formulas of Sec. II have been de-
rived for a general A configuration, and can be
extended to cover V and cascade configurations
too, we want to restrict the parameter analysis.
Of special interest is the situation K, = K, =K in
which Doppler shifts are exactly cancelled in
Raman-type processes. In the following section
we introduce a. novel approximation for this special
case which considerably improves the population
sensing model (case iii above) of Feldman and
Feld. ' In this we retain the Doppler-free Lorent-
zian L»(-1), but neglect all other functions
L»(m}. This becomes partly justified by noting
that only a narrow velocity group satisfies the
resonance conditions arising from L»(m) whereas
all atoms contribute to L»(—1).

IV. DOPPLER-FREE (QUADRUPLE-COHERENCE)
APPROXIMATION (DFA)

A. Derivation and general characteristics

With the assumption L„(m)=L„6,Eq. (2.22)
reduces to [p» ——p»(0)]:

P23 ——& d 0 + L 'f —2i d -2 (4.1)

d(-2) = -in, D„(-2)+u, u I.„p2&", (1)*. (4.4)

The population difference D„(m) = [ p,',"(m)
—pz&03~(m)] and the off-diagonal component p,',"(m)
are the zeroth-order perturbation solutions in the
probe amplitude [see (A19) and (A21)]. The source
terms D» and p,', ' still contain continued fractions.
To further simplify the calculations we adopt the
REA solution for the strongly coupled transition
1 —2, i.e. , we take D»(m)=D»(0)6 0. This,

.together with the assumption L»(m)=L»5 „ is
equivalent to making a RWA in (2.1)—(2.6) with re-
spect to the phasors exp(imKz) with

~
m

~

~ 2 (in the
rest frame of the atom a RWA in the radio-fre-
quency domain). From Eqs. (4.1)-(4.4), (A19),
and (A21) we find

where G, d(0), and d(-2} a,re now given by

G= [L,',(0)+ u', L„[1+n'I. „I„(-2)]'j ', (4.2)

d (0)= -iu2D23(0)+ umu, L~3p2&~'(I)* ) (4.3)

I'

p23 = -iumG (D20, +f[D2,(0) —Dmo] + iu, p2&,
& (1)*L,~[1 + u L,3(L2,'(-2) + u L ~3) ']}, (4.5)

p2&i'(I }= -iu. L»(1}Dmi(0} (4.7)

d G is given by (4.2). The quantities f=f(0)
and g=g(0) are defined by (A22) and (A18), re-
spectively. In,the following we neglect collisional
transfer of population between levels 1 and 3 («»
= «»=0) and have

g=(r, + r, r„)/r, r„
fg= (r3 —r2s)/r2rs ~

(4.8)

(4.9)

[Note that after insertion of (4.6) into (4.5) only
the product fg remains. ]

%'e call the approximation scheme leading to
Eq. (4.5) Doppler-free (quadruple- coherence) ap-
proximation (DFA}. The velocity average of p»
(denoted by brackets (p»)) is easily performed
numerically; analytical results valid in the Dop-
pler limit are derived in Appendix B. For a TW
saturator Eq. (4,5) reproduces the probe response
exactly in the co-running case (uz = 0), but gives
only the REA-type expression in the counter-
running configuration (n', =0}. This could be
remedied by retaining the Lorentzian I »(1) in
addition to I.»(-1); this kind of independent-field
approximation is used, e.g., in Ref. 20. The IFA

where

D„(0)= D,', I&1+2g[u', ReL»(1}+u' ReL»(-1}]}',
(4.6)

of Feldman and Felde follows from (4.1) by letting
L„-0 when p„- -iu, L»(0)D»(0); then the full
structure (note the REA made in the &FA} of the
population difference D»(0) is scanned by the sim-
ple i,orentzian L»(0) replacing the Green's func-
tion (4.2}.

23 23 2& 21 21 1 ' (4.10}

Contributions of various orders can overlap: For
instance, the pairs [L»(0),L»(-3)j and [L»(2),
L»(-V)j both give rise to a resonance at b» —6»/3
which, indeed, appears in some of the spectra;
also when b» —0 or. 6» —b» all I »(m) and L»(m),
respectively, are resonant" for p= 0. For in--
tense saturators one, therefore, should expect a

B. Propagator G(e)

It turns out that many of the features observed
in the probe spectra are caused by the Green's
function G, which thus, is worth a more detailed
analysis. In the low-intensity limit G(v) reduces
to the simple Lorentzian L»(0) centered at Zv

+23~ Higher- order expansions of the exact
G(v), Eq. (2.25}, contain products of the Lorent-
zians L»(p) (p is odd) and L»(m} (m is even}. The
requirement that the respective resonant velocity
groups coincide leads to the general resonance
condition /&» ——M» where k and l are arbitrary
odd integers and
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+ —,'i(u', —u')I, „, (4.11)

where L» (y»+ ——i&») '. If we have a SW satura-
tor, i.e., u3= u'= —,'u', Eq. (4.11) simplifies to

Kv =~(~„ iy„)(1+ ,'u'L„,L—„)'~'. (4.12)

By neglecting the decay rates for a moment, we
see that (4.12) attains purely imaginary values in
the detuning ranges

2z 4 13
max(0, ~„} a„-—,'~„+—,'(~'„+2u')».

The absence of resonance atoms indicates a de-
crease of the probe response. " For small values
of +2 y one must take into account the decay rates y
in the vicinity of &» ——0 and therefore (4.13) is in-
applicable. Equation (4.12), too, suggests that
appreciable structure may appear near this point

quasicontinuum of multiphoton resonances. The
heights and shapes of the corresponding peaks de-
pend on the order of the process and also on how

they survive the velocity averaging. In fact only
a finite number of.observable extrema remains in
the probe spectrum, and even if one were able to
label a certain peak, large power deformations
(shifts, broadening, and splitting) in it must be
accounted for.

A perturbation analysis of the approximate G(v),
Eq. (4.2), suggests just the two resonances 4» —0
and &» ——&». Instead of this we study its poles
(and the corresponding residues) .In the complex
velocity space these are located at"

Kv= +(4,3 —iy»)[1+ (u', + u')L, 3L,3
3 (u3 u2)2L3 L2 ]3/2

because then the corresponding velocity groups
partly overlap.

Calculations"" for T% saturators predict the
resonance groups (for simplicity put y, , =0)

a„+u'/(a, , a„) (4.14)

for3 the co-running case (u', =u', u'=0) and
I

Kv= ——(3&„—&„)
3[(& + 4 P+ 8u3)'/3 (4.15)

for the counter-running case (u', = 0, u'= u').
Equation (4.11) reproduces (4.14), but gives only
Kv= -4» instead of (4.15). Owing to the neglect
of the Lorentzian L»(l) the approximate G(v) fails
near 2K'= &» —~». Note also that in contrast to
(4.13) in the TW models resonance groups always
exist, although very large shifts in (4.14) may take
place for &„=&„.

Figure 2 displays the exact Green's function
(2.25) and the approximation (4.2) for a resonant
SW seturator. The representative values chosen
for ~» are indicated in Fig. 3 which gives the
velocity-averaged response (D,', term, see Sec.
IVC). The DFA result is a Lorentzian-like curve
slightly power shifted from the center point Kz
= -4»., the structure near the symmetric point
Ey= 4» is almost negligible. Large power broad-
ening which in fact is due to splitting [cf. (4.12))
occurs when we have ~» —~» ——0. In the xact
Green's function the two-photon peak at Kg
= —,'(&» —&») due to L„(1)is clearly seen; higher-
order multiphoton resonances give rise to the fine
structure near Ke= 0. Except when these strongly
overlap with the dominant peak at Kg —--&», their
integrated area almost vanishes as is indicated by

1.0-- --1 0 ~23/723

0.5--

1 0--
~23/»3--2 --10

23/$23=0

I I I I I I

0 5 10 Kv/y -10 -5 0 5 10 Ky/y

FIG. 2. The velocity dependence of the Green's function (in units of y23) according to the exact formula (2.25) (solid
line) and the DFA [Eq. (4.2), broken linej at various probe detunings b,23. A resonant Q2f 0) SW saturator with
0. =5y23 is assumed; F3=0.1&23.

2 2
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the accuracy of the DFA in Fig. 3 (cf. the sum
rules'4). The dip appearing at Av=0, for &» ——0
becomes important when the width of the velocity
distribution is decreased as will be demonstrated
in Sec. IVD. Note also how the peak heights are
reduced in the case &» —-y23 which roughly satis-
fies the condition (4.13).

62gy2~--- 0

30 40

-1.0

--0

20 10

6»/F» =10

A
0

»/~» = ~

If we have a detuned saturator, Figs. 4 and 5, the
various resonances are more easily distinguishable
because of weaker interference between them. The
main feature of G(v) is still the (slightly) power-dis-
torted peak at Ev = -&». 'This and the narrow reso-
nance at Kv = 2 (&» —&») (absent in the DFA) overlap
for & = -&» which explains the split spectrum in the

case &» ——-15y». According to (4.13) no reso-
nant atoms are found if b»/y» falls in the range
(-1.5, 0) or (15, 16.5). Indeed in the cases
b,»/y» —-1.6 and 16.6 the reduction in the probe
response is visible in both Figs. 4 and 5. Again
some fine structure due to multiphoton processes
develops (mainly near Zv= 0) when b» —0 or b».
The only one that clearly survives the velocity in-
tegration is the &»/3 dip visible at &»-—4.4y» in

Fig. 5 (note the splitting of the corresponding
curve in Fig. 4). The interference is strongest
near &»——+2] Very large shifts and broadening
take place in G(v); in the vicinity of the maximum
at b»-—14.9y» G(v) is extremely flat when this
peak is easily smeared away if its wings are cut
off by a Gaussian velocity distribution. On the
contrary, the maximum at ~»-—17.6y„ is affected
to a much lesser extent.
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FIG. 4, The same as Fig. 2 but with Q2i ——15y23 and
0' =50')3 Only the main portions of Be(G) are displayed
(note the changes in the abscissa axis).

C. 823 term

If the incoherent pumping rates are chosen such
that D,', = 0, only the term proportional to D,', in

(4.5) contributes. It gives the ordinary Voigt pro-
file of the transition 2 —3 in the limit n, —0. We
also want to remind our readers that it is just the
velocity average of the Green's function G(v). In
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FIG. 3. The velocity integral of Be(G) (arbitrary units)
in the -Doppler limit (the broken line gives the DFA re-
sult). The arrows indicate the probe detunings corres-
ponding to Fig. 2.
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FIG. 5. Integrated spectrum Be ((G)) corresponding to
Fig. 4. Probe detunings selected in Fig. 4 are denoted
by the arrows. .
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the Doppler limit we find

2~[+ o»L»(+~~ »L»} ]

(4.16)

for a SW saturator (see Appendix B).
Figures 6 and 7 display the absorptive part of

(4.16}for various saturator intensities. In the
resonant case (~» —0) the most prominent fea-
ture is the peak occuring at &» ——0. Its shape
is given by Re(L~»L~») in the limit n2-0 and by
Re[(L»L»)'~'] when n'-- (a pure Lorentzian if
y» ——y»). Thus in both limits neither power
broadening nor power shifts are present. The
width equals roughly min(y», y»j. The peak
height is given by

13~23

The relevant dimensionless saturation parameter
is, hence, u'/y»y». As n' is increased the
growth of the maximum value slows down from +4

to 0. but does not saturate to a constant value. For
very large a2 one should not, however, rely on
the DFA and, furthermore, the Doppler-limit ap-
proximation is expected to fail.

Excluding the central peak at 4» —0 the regions
of weak absorption are readily explained by (4.13)~

The side maxima having approximately the width
—,'(y»+ y») appear at 6» —-a(n'/2)'". Their height
increases only as o'~' in the limit o -~ which
makes the contrast of the central peak even larger.
Their apparent dispersive shape actually results

from a square root of a complex Lorentzian [see
(BV)]. If ~' changes either spatially or (slowly)
in time, the side maxima move and are partly
averaged out of the integrated response.

For an off-resonant saturator the probe spectrum
has its main variation near the points &23 0 +$3
='», and ~» ——~&»+-'(~22, + 2&')'~' according to
Eq. (B4}(note that this structure does not appear
in Ref. 9). Again the regions of weak absorption
are explained by (4.13). When intermediate satu-
rator intensities are applied the resonance shapes
are approximately square roots of Lorentzians and
the relevant interaction parameter equals u'/! '»!p
where Z is either y» or y» depending on the peak
considered. This is evidenced by the asymmetry
of the curves with y» ——O.ly» in Fig. V (note also
the widths} ~ All four maxima experience power
shifts as also shifts due to the skewed background
caused by the nearby peaks, but they are only
modestly saturated and power broadened. The
variations of u' affect l.ess the averaged inner-
most maxima than the outer ones. The detuning
dependence of the D„ term is qualitatively sum-
marized in Fig. 8.

D. Effects due to finite Doppler widths, accuracy of the
DFA

In practice the velocity distribution (here we as-
sume a Gaussian exp(- v'/u')/v' 'u) has a finite
width. The observed probe spectra may, there-
fore, considerably differ from those predicted by
formulas based on the Doppler-limit approxima-
tion, e.g., Eq. (4.16)~ This is illustrated in Figs.
9 and 10. A comparison between these and Figs.
3 and 5 reveals that some resonances are com-
pletely smeared out. To understand this one has
to know how the Green's function G(v) depends on
the saturator and to remember that the Gaussian
velocity distribution weighs the contribution of

d/} =200

!

--3 13 23
-2 2 =200

23 ]QQ
2

-10 10 20

.-2

I I

-10 0 10 Apg/yp3

FIG. 6. Imaginary part of the D~o term (probe absorp-
tion spectrum when the zero-field populations of the
strongly coupled levels 1 and 2 are equal) in arbitrary
units at various saturator intensities according to DFA.
A resonant saturator is assumed; y~s=y23.

I

-lO 0 20 b, 23/y~

FIG. 7. The same as Fig. 6. but with Q2~=15p23 and
two different values for p~3.
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FIG. 8. This figure illustrates the qualitative behavior
of the D23 term. The horizontal line both gives the zero
level of absorption and indicates the saturator detuning.
In the shaded region determined by (4.13) resonant atoms
are absent. Two examples of perturbation theoretical
resonance predictions are shown, too: In the case 423
=6tt/3 (broken line) a dip appears, but in the case ~t'
'=-&2~ (dash-dotted line) the emerging structure is negli-
gible.

atoms with slow velocities (~ v
~
& u). The width

of the Gaussian also determines how much of the
extra structure absent in the approximate Green's
function is integrated away (cf. Sec. IVB) and thus
directly influences the accuracy of the DFA.

I et us first consider a resonant saturator for
which case the Green's function is illustrated in
Fig. 2. We already mentioned that the structure
of G(v} which the DFA is unable to repeat has al-

most zero area when &»10 and, therefore, the
DFA is expectedly quite accurate for large Dop-
pler widths Zu. Near the resonance &» ——0 the
values of G(v) around Kv = Obecome the more impor-
tant the smaller Ku is. DFA underestimates the
saturation of the probe response [e.g. , the neglect
of L»(1) is not justified for Kv= 0] which explains
its wrong behavior in Fig. 9. Note also that the
Gaussian cuts off the wings of G(v) in just those
regions where DFA is reasonably good. Accord-
ing to (4.12) the width Kgv of the resonant velocity
group is approximately (y,', + n'y»/y»)'~', i.e. , ca.
5y» for the parameters of Fig. 9. That Ku has to
exceed K5& gives one criterion for the applicability
of the DFA and indeed it is quite satisfactory al-
ready when Ku= 10y23.

As Fig. 9 shows, the central dip of the homoge-
neous case turns over to a maximum as Ku is in-
creased. Analogous modifications occur also for
a detuned saturator (Fig. 10). The most promi-
nent one is the disappearance of the sharp maxi-
mum in Fig. 5 at ~»- 14.9y» as Ku is decreased.
This is readily explained by the excessive broad-
ening of G(v) in this parameter range (see Fig. 4).
In other detuning regions G(v} just experiences
modest shifts and broadening when the magnitude
of the Doppler width has only a minor effect on the
accuracy of the DFA. The additional structure
present in the exact G(v) is again efficiently inte-
grated out (zero-area property). A rather large
value of Ku is required before the ~»/3 dip, pri-
marily due to the Lorentzian L»(-3), becomes.

.visible. In experiments this kind of small struc-
ture may completely disappear because of noise
and variations of laser parameters.

Figures 9 and 10 demonstrate that the DFA is
remarkably good even for the rather high saturator
intensities chosen [note that usually one has to per-

Ku/g =0.001 Ku/y„=1 Ku/y23 =10

l
I
I
I

f

I

I:— I I I

-5 0 -10 -5 0 -10 2/~

FIG. 9. This figure illustrates how the width ~ of the Gaussian velocity distribution affects the shape of the absorption
spectrum (D23 term in arbitrary units). The accuracy of DFA (broken line, numerically integrated) improves as Kg is
increased. The spectra in the Doppler limit are shown in Fig.-3. Parameters: B2~ = 0, G =5y23, and yf3 0 1+23.
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FIG. 10. The same as Fig. 9, but with &2~ =15p23 and 0.'=50y23. Note the absence of the maximum near 423= 14p23
which occurs in the Doppler limit (Fig. 5).

form the velocity averaging of (4,5) numerically
instead of using (4.16)]. The main features of the
spectra are correctly predicted by it; only small
shifts and errors in the contrast of the dips appear
in addition to the missing of some small scale
structure. We have illustrated the quantitative
accuracy of DFA in Fig. 11 in the special case

623 0.

E. Do&& term

If we have D,', w0, the saturator induces average
population cha.nges and polarization p,', ' to which
the probe field reacts in addition to experiencing
the dynamics of the strongly coupled transition.
In the Doppler limit the velocity average of the
D2j term of the DFA can again be performed by
contour integration (the lengthy expression is de-
rived and briefly discussed in Appendix B}.

According to (4.5} and the exact formulas (2.21)
and (2.22} the following kind of effects can be dis-
tinguished.

(i) The Green's function G(v) multiplying the
source terms of (4.5}gives rise to a structure
similar to the D„ term. If the source terms vary
slowly versus velocity. (for instance, because of
strong power broadening) they can be taken outside
the velocity integral. As they also partly replace

the role of the velocity selective Gaussian the re-
sults of Sec. IVD can be exploited.

(ii) The population-induced contribution, i.e.,
the second term in the curly brackets of (4.5),
produces two power-broadened symmetric bumps
at 4»—- ~d» (Bennett holes). These are, how-
ever, strongly masked by the polarization-induced
contribution and furthermore they are convoluted
with the rather complicated function G(v).

(iii) The polarization-induced contribution [third
term in (4.5)) is mainly responsible for the asym-
metry of the dips at b» ——~4» (recall the differ-
ence between forward and backward Baman-type
signals). For a finite value of Ku this contribution
dominates the population-induced processes when
the saturator is detuned outside the Doppler pro-
file.

(iv) For simplicity all other effects are grouped
into this category. These are typical high-inten-
sity phenomena heavily mixed and only occasion-
ally- give rise to a clearly distinguishable peak in
the strongly power-distorted probe spectrum. "
They include corrections to G and to the source
terms (beyond DFA), and interference terms be-
tween them and those belonging to (i)-(iii).
Within the parameter range we have investigated
the main features of the D2, term are describable
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by the DFA which allows considerable simplifica-
tions in the computational work.

We do not aim at giving a full account of the pa-
rameter dependencies of the D,', term. Figures
12 and 13 display the exact and DFA curves for
various sets of relaxation parameters (note that
changes in the decay rates also affect the degree
of saturation). In the case b,» ——0 the D,', term
seems to be composed of a broad Lorentzian-like
background and a superimposed narrower, more
complicated peak. The former structure is due
to population induced processes and the latter one
to G(v). This ean be concluded by considering how
the relaxation rates inQuence the spectra —in-
creases in E',. sharpens the background whereas
the central peak depends mainly on the value of
yg 3 As in the D,, term, DFA slightly over esti-
mates the contrast of the central sharp resonance.
This can be explained by noting that G(v) calcu-
lated with the DFA lacks the structure near Kg = 0
(see Fig. 2), which in the D,, term is weighed by
the source terms (instead of the Gaussian). The

tNTENSITY
FIG. 11. The upper graph gives the relative error of

DFA versus the saturator intensity 0.'/p223 for various
Doppler widths (y~3

——y23) in exact resonance (b,~ =623= 0).
In the lower part the peak height is shown for XN =1000&3
{solid lines} and E~ = 0 (broken line). Note that in the

.homogeneous case the dimensionless saturation parame-
ter is 0 /pgap23 when only one curve is needed; this
scaling holds only approximately for Xz & 0.

overall agreement between the exact and DFA
curves is, however, astonishingly good —accord-
ing to a perturbation expansion of (2.22) DFA
should be correct only to order 0(u'). The ne-
glected terms probably contribute to the broad
ba, ckground and are heavily power broadened for
large satur ator intensities.

When the saturator is detuned (&,, e0) the reso-
nant velocity groups move apart and interfere to a
lesser extent. In Fig. 13 the saturation dips
caused by the co- and counter-running TW com-
ponents are seen in the gross shape of the spec-
trum —most clearly in the case I',. =y» when ex-
cessive power broadening is absent. Near the
point &23: +2y DFA overestimates the signal.
This is partly due to ignoring the L, »(l) Lorent-
zian, and partly due to the fact that the REA does
not account for splitting effects in the two-level
system. " The discrepancy may be nonnegligible,
but can easily be remedied by retaining I,»(I)
terms in the model. It is worth pointing out that
the accuracy of the DFA improves as the popula-
tion decay rates diminish: The reason for this is
that the source terms are broadened and corre-
spondingly the coherence terms ignored are more
efficiently integrated away.

The spectrum near &» —~2y is more complicated
than could be anticipated from a co-running TW
configuration. For instance, in the case I",.= y, ,
the TW model predicts a simple Lorentzian in-
stead of the split resonance appearing in Fig. 13.
The sharp structure is due to interference between
the TW induced-polarization components and de-
pends strongly on p» coherence. Some minor
variation due to G(v) is observable near &»-0,
but there is very little evidence of the &»/3 dip
which occurs in the D,', term. The latter feature
is expected because the dip disappears also from
the D,', term when Ku is reduced. The overall
agreement between the exact and DFA curves is
very good (except the position &» —-4»). We do
not present here a study on how finite Doppler
widths inQuence the D,', term. We just note that
the effect of Ku is probably less important than in
the D,, term because the velocity selection is al-
ready performed by the source terms.

F. Role of various processes

In this chapter we brieQy discuss how much the
various processes contribute and study to what
extent the SW spectra can be interpreted with the
aid of the simpler TW models. As regards the
D,, term the structure seen in Figs. 6 and 7 is
solely due to interference caused by the two satu-
rator components: The TW formulas reproduce
just a flat background in the Doppler limit. The



PROBE SPECTROSCOPY IN AN INHOMOGENEOUSI. Y. . . l885

1,5 — 1 2 3 ~23

713=723

1.0—

1" 2 3 723

713-723

I"„=f =I" =Q1y

13- ." 23

I

- 1.5

I

I

I

I

I

0.5—

I

-1Q0 -15
I I I I I I I

-15 -10 -5 -1Q -5 0 -15 -5 w/y»
FIG. 12. The D2g term (probe absorption in arbitrary units when the zero-field population difference of the probed

transition is zero) for various sets of decay rates. The solid lines give the exact results; broken lines are DFA pre-
dictions. We have chosen 4~~ = 0, 0' =5&23, and assumed the Doppler limit. The curves are symmetric with respect to
&23 ~

situation does not change if for G(g} we use the
independent-field approximation G(g) = I/a(0) [see
(2.25)]. When the Doppler width is reduced some
structure appears. In the extreme case Ku- 0 we
find the following from (2.25) by neglecting cross
effee ts (S,= S = 0):

(pRS) = Z 2 23623(1 2 13~23) (4.18)

which is correct to order 0(&') only, ""as ex-
pected.

In the simple case when we have I'Qy 1"23——0 and

y, ,=-,'(I',. + I',.), the superposition of TW results
suggests that the D,, term should comprise two
Lorentzians having the widths

y, = 2[r~+ r~(1+ n~/r~r2)~~ ],
y =—'[I' + (I' + 2I' )(1 + u /I' I' }~~2],

(4.19)

(4.20)

and being located at 423 +2g and &23 +my re-
spectively. Both Lorentzians are too highly power
broadened to explain the sharp structure occurring
in Fig. 13 which, therefore, must be due to inter-
ference effects. (Note that the above assumption
of relaxation rates is not essential. )

A measure of the importance of interference ef-
fects in a SW field is obtained by comparing (4.19}
and (4.20) or the power-broadened width

r = y„[1+—,'o.2(r, + r, —r„}/y„r,r,]'~' (4.21)

[for n» —0 replace u' by 2o.", cf. (B3) and (B10)]
to the saturator detuning ~». I' describes the

width of the source terms in (4.5). The magnitude
of the convergence factor $(m), Eq. (3.1), deter-
mines the strength of interaction between a', and
0.' within the Green's function G; when using the
DFA we can readily apply the dimensionless satu-
ration parameter o.'/y»y» for 4» —0 or o."/y

~
&» I

for a detuned situation.
We want to emphasize that arguments concerning

the resonant velocity groups are strictly valid for
the population-induced processes only. Off-reso-
nant groups contribute considerably to the polar-
ization-induced processes and can partly cancel
the step-wise terms —for instance, in (4.19) there
is no trace of the width (y»+ r) that would result
from the convolution between I.»(0}and the Bennett
holes in p,',". The relative importance of popula-
tion- and polarization-induced contributions de-
pends strongly on the relaxation scheme in addition
to the laser detunings. In resonance the ratio of
their magnitudes is roughly measured by the quan-
tity I', /y„—a large value of I', implies that popu-
lation processes are heavily suppressed.

According to (4.21) the transition 1—2 is heavily
power broadened if the population decay rates are
small. Then the dominant structure in the D,',
term arises from G(v) —the situation is the same
as in the D,', term: The excitation of the 1—2
system is only poorly velocity selective. The
similarity between the dip regions in Figs. 7 and
13 clearly results from the absence of atoms sat-
isfying the resonance conditions of G(z) [cf. (4.13)].
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FIG. 13. The same as Fig. 12, but with b2~=15p23 and & =50&23. Note how the accuracy of DFA near &23 — +2f
proves as p~ 2 is decreased; the magnitude of pg3 affects the behavior near 423 Q2f mainly.

Small differences between the D,, and D,', terms
are explainable by effects due to the finite width
I" of the excited velocity distribution.

In Figs. 14 and 15 we have separated the various
contributions to the overall D2y term. The graphs
are based on the exact formula (2.22) and the divi-
sion is such that the population term includes the
D»(0) part of d(0) (multiplied by G), the polariza-
tion term the rest of d(0) [see (2.21)], and the sum
terms are all grouped together. The IFA model of
Feldman and Feld' is obtained by replacing the
Green's function 6 by a I orentzian in the popula-
tion term. As seen from the figures it is unable
to reproduce the sharp structure, in contrast to

DFA (cf. Figs. 12 and 13), but accounts satisfac-
torily for the broader background. , The popula-
tion-induced processes are clearly causing the
background. This is further manifested in Fig. 16
where an increase in I'2 destroys the background.
The rapid variations in the population term due to
( G) vanish because of velocity selection but re-
main in the polarization-induced contribution which
is restricted to a rather narrow region in the vi-
cinity of &» ——+gy Away from this resonance we
expect the zero-area rule to be valid for the co-
herence processes. The small residual absorp-
tion is a nonresonant correction. The remaining
sum term, part of which is included in the DFA,



PROBE SPECTROSCOPY IN AN INHOMOGENEOUSLY. . .

1.0-

0.5-

-10

II
ii

'1

I&

IJ

l~

)I

~l
II
)I

I
I
I

) I

I
C~bl rM

FIG. 14. Various contributions to the D2~ term in the
Doppler limit (for total spectrum see Fig. 12): The so-
lid line gives the population term, the broken line gives
the polarization term, and the dotted line gives the r'est;
the dash-dotted curve is the independent-field approxi-
mation of Ref. 9. Parameters are 62f Oy + 5$+y F$
= r2= r3= v)3=0.1v23.

has a similar shape as the polarization term and
does not add any remarkable new features. We
can conclude that a simple superposition-of TW
results explains the broad background of the D,,
term. The regions of strongly reduced absorp-
tion, as also the sharp peaks appearing in the vi-
cinity of &»——+2y are entirely due to interference
effects.

V. SUMMARY AND DISCUSSION

In this paper we have solved the three-level
problem where one transition is saturated by an

arbitrary intense standing wave and an adjacent
transition is probed by a weak field. The model
system includes a rather general relaxation
scheme and allows unequal. ampl. itudes for the TW
components of the saturator which extend the
validity of previous theories and facil. itate the
identification of various contributions.

The general solution expressed in terms of con-
tinued fractions is rather cumber some and therefore
we have derived the DFA with which the parameter
analysis is expediently performed. In addition to
the assumptions ordinarily made in the steady-
state three-l. evel models (RWA, degeneracy,
phenomenological collision rates, etc.), DFA also
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FIG. 15. The same as Fig. 14, but with 62g=15p23 and 0' =50&23 and the total response given in Fig. 13 (bottom spec-
trum).
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FIG. 16. This figure manifests how the population induced contribution in the D2g term vanishes as I'2 is increased
from 0.1y23 to 1.9p23. Other parameters as in Fig. 15. Note the reduction of the height of the peak at 423 =14y23 which
is partly explainable by the velocity cut-off arguments.

presumes that K, =E, which allows us to neglect
all other p» coherences except the one free of
Doppler effects. The condition lK, -K, lu&y„
may be quite restrictive. Solutions which relax
this are, however, easily obtained by truncating
the general formula more symmetrically —e.g. ,
by retaining the Lorentzian L»(1), too. The
validity of DFA has been verified by a numerical
comparison to the exact results in a relatively
broad parameter range.

We have split the response into two according to
zero-field population differences. The D„ term
reflects the dynamics of the strongly coupled sys-
tem 1-2. In the D, , term average population and
polarization changes (which themselves are also
distinquishable) introduce additional features.
Although DFA may be largely erroneous for some
velocity groups the Doppler average of both con-
tributions is quite accurate leaving out only some
minor structure —higher-order coherences are
dephased (zero-area property). We have also
demonstrated that important SW modifications
occur in the response as compared to simple TW
superposition models.

The dominant structure of the probe response
appears near the detunings +,=0, &», and QD2y

+ 2(d2, +2o.")' '. The actual shapes of the reso-
nances are shown to be sensitive to the width of
the velocity distribution which preferentially
samples the contribution of slow atoms (in time
space this means incomplete Doppler dephasing).

The qualitative differences between the homo-
geneous and inhomogeneous spectra reveal the
weakness of the argument that zero-velocity atoms
give rise to- the sharp structures —in fact, off-
resonant atoms are equally important.

The ac-Stark effect which is clearly manifested
in G(v) for a TW saturator is much more obscure
in the SW case. This is, of course, due to the
fact that a moving atom sees a periodically modu-
lated field amplitude and its simple sinusoidal
Habi flipping is replaced by a more complicated
time dependence. The splitting taking place in the
velocity-averaged response can be explained by
the lack of resonant atoms in TW configurations.
The same argument seems to apply to the SW
case, too. A physical explanatiop to this would
certainly be worth further studies.

The model system considered has a rather
complicated saturation behavior. Ordering action
is measured by the flipping parameters a', ; de-
phasing appears because of 6», 6», and Kv (note
the resonant enhancement); real 'relaxation phe-
nomena are represented by the decay rates l

&
and

y~&. A comparison between n and the dephasing
times (6 ' or y ') reproduces the saturation
parameters mentioned in Sec. IV. This kind of
view emphasizes the role of the dynamics even
though the main intensity dependence of the
steady-state spectra may be disguised in power
broadening.

The relative magnitude of the relaxation rates
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strongly affects the shape of the spectra by stress-
ing certain physical processes. They also deter-
mine which approximate model should be pre-
ferred. The IFA of B,ef. 9 is expected to hol.d in
a laserlike transition where the lower levels decay
rapidly (y»»y»); narrow resonances, on the
other hand, are found in the DFA region (y» «y»}.

Finally we want to mention a few topics worth
future work. First of all the case E,K, is of
considerable interest and can be treated with the
results of Sec. II. Analogous approximations such
as DFA are quite easily found. We have assumed
a weak probe which does not cause any saturation.
In experiments this may be impracticable when

the theory should be extended. Higher-order per-
turbation expansion in terms of a., can be per-
formed, but then the mathematics becomes ex-
tremely tedious. It might be, therefore, advisable

to do the simplif'ying approximations already in

Eqs. {2.1}-(2.6). Also the probe may be a standing
wave, e.g. , a laser mode near threshold. Then
there appears coupl. ing between the T% compon-
ents of the probe" which can give rise to new in-
teresting phenomena. As regards the basic phys-
ics it would be valuable to study the dynamics of
the considered configuration in more detail in
order to get a better understanding of the mech-
anism causing the disappearance of resonant
atoms.
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APPENDIX A: CONTINUED FRACTION SOLUTION

Inserting (2.6)-(2.11) into (2.1)-(2.6) yields the recurrence relations

L,,'(m)p„(m) = —i aD»( m—1) —in D»(m+1}+in,p,*,(-m),

L,,'(m)p»(m) = —ia,D»(m) +in, p»(m —1) +in p»(m +1),

L,,'(m)p»(m) = —ia, p,*,( m) +i—n*, p»(m+1)+in*p»{m —1),
(I', +imK, v)p»(m) = I',n, (m) +1»p»(m) + z»p»(m) —W»(m),

(I;+imK, v)p»(m, ) = I',n,'(m) + W»(m) —W» (m),

(I;+imK, v)p»(m} = I;n,'{m)i+ I'»p»(m)+ x»p»(m) —W»(m),

where

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A6)

(A9)

D,~(m) = p;;(m) p;; {m),—

W»(m) = —i[at' p»(m +1)+ a*p»(m —1) —n, p,*,(l —m) —a p,*,(-1 —m)],

W»(m) = i[a2 p»—(m) + a2p»( m}]-
and the Lorentzians L;, (m) are defined by (2.14)-(2.16) and I'~n~~(m) is the Fourier component of the inco-
herent pumping rate —in the following we take n', (m) =no~6~, . A solution of (Al) —(A6) valid for an arbitrary
a, might be found by exploiting matrix techniques for the recurrence relations. ' '" Instead of this we use
perturbation theory keeping o., as the small parameter.

Zerothwrder solution where the continued fractions R+ are defined by

This case has been discussed before" and we
just l.ist the equations needed to evaluate p&~. For
D»(m) we have

R, (m) = —C(m)[A(m)+B(m)R, (m+2)] ',
R (m} = —B(m)[A(m) +C {m)R (m —2)] ', (A14)

D»(m) =R, (m)R+(m —2) ~ ~ ~ R, (2)D»(0) (m &0)

(A10)

A(m) =I+g(m)(a', [L„(m+1)+L,*,(1 —m)]

+ n' [L,,(m —1) + L,*,(—1—m)]),
D„(m) =R (m)R (m+2) ~ ~ ~ R (-2)D„(0) (m&0)

(A11)

D„(0)=D2g[A(0)+B{0)R,(2) +C(0)R (-2)] ', (A12)

B(m) = n ,*n(g)m[ »L( m+) I+L(—1 —m)],

C(m) = a*n+g(m)[L»(m —1) +Lf, (l —m)],

(A15)

(A16)

(A17)
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1
g(m)= F

(I', +imlf «)(I', —);,+«mÃ, «) —«„)"„)3 j 2 21
~

~

(F~+ imK~v) (F~+ imK)v) —K»K3~

(Ai8)

Do, is the zero-field population difference [put
W» = W» = 0 in (A4}-(A6)]. The off-diagonal com-
ponent p,',"is given by

pm~~0)(m)= —iI»(m)[n, D»(m —1)+n D2, (m+1)].

The populations pI;) (m) are obtained by solving
(A4)-(A6) in terms of W»(m) which is related to
D„(m) by

D„(m) =D,',&„,+g(m) W„(m) . (A2O)

[Note that W»(m) =0 in the zeroth order. ] For the
"decoupled" transition 2 —3 we have p,',"=0,
p,', ' =0, and the population difference

(A19)
I

D„(m)=D b„,+f(m)[D„(m) -D„b„,], (A21)

(F,+imK v)(I' +imK, v —F»)+K (I' +imK, v —I', —K )
(I" +imK, v){I',+ I' —F„+2imK,v) -n„(v„+F„)

with the aid of D»(m) we can evaluate all zeroth-order terms p,.",.'(m).

First-order perturbation

The level populations and p»(m) do not acquire
any first-order corrections. The nonvanishing
components p»(m) and p»(m) (we drop the order
index) are determined by (2.12) and (2.13) readily
obtained from (A2) and (A3). The inhomogeneous
difference equation (2.17) can be solved with

Green functions G(m, m') defined by

a(m)G(m, m')+b(m)G(m+2, m')+c(m)G(m —2, m')

(A23)

The complete solution reads then

p„(m) =Q G(m, m'}tf(m'}.

Equation (A23) has exactly the same form as the
one derived for D»(m) in the zeroth order, and

we find

G(m, m') =s,(m)s, (m —2) ~ ~ ~ s,(m'+2)G(m', m')

(m& m') (A26)

G(m, m') =s (m)s (m+2) ~ ~ ~ s (m' -2)G(m', m')

(m &m') (A26)

G(m, m') =[a( m) b+(m')s, ( m' +2) c+( m)s (m' —2)] ',
(A27)

where the continued fractions are defined by

s,(m) = —c(m)[a(m)+b(m)s, (m+2)] ', (A28)

s (m) = —b(m)[a(m)+c(m}s (m —2)] '. (A29)

Next we relate G(m', m') to G=G{0,0). From
(A27) we obtain with the aid of (A28} and (A29):

G(m', m')= ', , G(m'-2, m' 2)
s.(m')b(m' -2)
C %2 S SZ —2

s (m')c(m'+2)(,) (, )
G(m'+2, m'+2) .

(A30)

Inserting G(m', m') expressed in terms of G(0, 0)
into (A24) and introducing the transformation

«

(A31)

S.(m) = s, (m),
b(m 2)

(A32)

we get the final result (2.22) given in the text. The
source term d(m}, Eq. (2.21), is according to
(A19) and (A21):

4 {m)=in~(D~~~&„0+ f(m)[D»(m) -D &„02,] I.»(m 1)L~»(1 m) [n',D„(m)+ n, n*D„(m 2)]

—I,„(m+1)I,;,(-I m)[n nD„(m+2)+ n'D„(m)]).

One can verify that p»{0) does not depend on the relative phase between n, and n . Note also that all com-
ponents p»(m) are obtained by (A24), though we need only p»(0}.

APPENDIX B: DFA

Insertion of (4.6) and (4.7) into (4.&) yields
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where &(0) and f=f(0) are defined by (A15) and (A22), respectively. For E,=Z2=& and &', =o"=—,'&' the
poles of G are given by (4.12):

Av = ax =+iI » (1 + —,'o"I„I„)v'

and the zeroes of &(0) by

+~ =+X~=~ ['4i - yni -2 y»g~ ~ i (4yni+si+ 2ynp &+ai - ~yai~ g } ] (as)

where g=g(0), see Eq. (A18). We make the sign
convention Im(x}&0 and Im(y, }&0. The velocity
average of (B1) can be performed with the aid of
the plasma dispersion funciion (for details see,
e.g., Ref. 2S), or in the Doppler &mit (lx I, Iy, l

«Ku) by a simple contour integration, which case
is assumed in the following.

For the D,', term we get the result (4.16) which
can be written also as

.
Qi gl/2 oi2 ( j ) ]/2

{P») If» 8 I 1$» I ir-i 2/-23' 13+~

(B4)
In the limit 0'.2- 0 we have

(as)
The two terms in (B4) producing resonance struc-
ture at &»= 0 or 4» and at h„=2+,+ 2 (&»+2o )"

I

become sepaiated as Qt' increases. Then we ob-
tain the approximate line shape

(BS)

for the case &'II»I»l »1. This is a pure
Lorentzian when 421 and ~13 ~23 for +210
the absorption follows the. shape Re[(Q, - iy») "']
near L»=0 and Re[(b,»- L»-iy») ~2] near s»

For the side peaks we similarly derive,
e.g.,

iu,m"' (~v 2 l &'

x [(&„-o'/~2) 2i (y„-+y„)]~' (a'I)

for Is»- (u'/2)~'I, y„, y»«(~'/2)~', and a»
=0. The asymmetry of Im({p»)) is easily seenby
putting y»=y» =0.

The D20, term is given by Q,3=v» = 0)

0. 0.2m~
D,',[(x+y,)(x+y )(y.+y )] '

Ku

F F ~ +&d + —a L — x+y, +y -1I' -I' . , y +&»
2 3 &X+7-

I

+ Iis xy++xy-+y y--(y»+«»)

+(y, -ia )(y»+i~) ni ni (x+y, +y ) -1I
Xg 4,g )

(BS)

By a manipulation of the residues of (Bl}we have
removed from (B8) the apparent singularities like
(x -y,). The advantage of the complicated ex-
pression (B8) is that the velocity averaging is
exact.

For a resonant saturator (4»=0) we have

=Zj 21

y, =sr =i (y3»+ y»g~')v',

x =iI »L =U, ', .(I+ g&'J „I»)~',

which inserted into (B8) yield

~2gl/2 ' D0
2 21r+ii-

(»)
(alo)

(B11)

(»2)
The limit L13- 0 reproduces the familiar BRA

l
expression. Resonance structure appears near
~=o (II ill and II ~ I

»rge} and near
I &»I

= (c"/2)"' (I O'I large). The central structure is
described by the Lorentzian.

( )
i+q+ 7f~ Do

I'
P» 4K~ Bi r + ((y3/2)v2

(als)

provided that we have ct'lI »I »I »1 and y» y».
Note that the peak height increases as 0'2. In the
limit

I +i I
- ~, Eg. (BS) correctly predicts the

expected TW result near 0,» = h „but gives only
a REA formula near h = —b, (counter-running
case). Expansions of (BS) which take into account
the interference between the T% components
(especially near b»= 4„)are rather complicated
and are not reproduced here.
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