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Green's-function approach to nonresonance multiphoton absorption in the alkali-metal atoms
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An exact Green's function is constructed for the one-electron Schrodinger equation using a central potential

obtained from a piecewise linear approximation to —rV(r) of Herman and Skillman. With the Green s function

two- and three-photon ionization cross sections are calculated for He(ls)(2s) 'S, 'S, and the, alkali metals, and

compared to other calculations and experiments. Resonances in the cross sections occur at model eigenvalues rather
than experimental energy levels. It is demonstrated that the resonances can be made to occur at experimental values

either by simple shifts in the wavelength scale, by adjusting the ionization energy in the calculation, or by including

the eigenvalue differences in a finite sum. However, .as these are perturbation-theory calculations and not applicable

at very high intensities or on resonance, only the wings of the resonance structure are included in the calculation.

I. INTRODUCTION

Theory and experiment on multiphoton absorption in atoms appears to be following the historical pat-
tern of single-photon absorption. Experimentally, the early measurements" are at discrete wavelengths
on the noble gases and alkali metals, but as technology develops continuous sources become available. ' '
Theoretically, hydrogenic calculations are done early, "followed by the quantum-defect-method (QDM)
calculations. " ' The QDM calculations, being semiempirical, are remarkably accurate when the assump-
tions underlying the method are satisfied. Later, when numerical calculations on single-photon absorp-
tion with a one-electron model become available, '" good agreement with measurements on low-Z ma-
terials was found, disagreements were found at higher Z, and even more sophisticated calculations were
performed. "' The method and calculations reported here for two- and three-photon absorption are nu-
merical calculations with a one-electron model.

In single-photon absorption one calculates the matrix element (i
~

r
~
f), whereas in n-photon absorption

the matrix element is

(i I r I 1)(1 I r I 2) (n —1 I r If)
» „,(E, —E, —z)(E. , —E, —2ur) ~ [E, E„,—(n ——I)z. ]

'
~ ~ ~

~

where 1, 2, . . . , n —1 indicate a complete set of
atomic states. '"" One may evaluate M„by
truncating the sums, but there will be a truncation
error. To compare calculations with measure-
ments obtained with continuously tunable dye lasers
requires calculations over a range of co, and each
portion of the range may require a tedious trunca-
tion analysis. Zon et al. ' have pointed out that
the sum over one-electron matrix elements of the
form Z,.

~
j)(g

~

/(X —E&) is the eigenfunction expan-
sion of the one-electron Green's function for the
Schrodinger equation. Further, if the Green's
function can be written in a characteristic form,
x. e. ,

Q ( )
-0,(&( &5'2(&»~)

then the infinite sum over j is eliminated from the
calculation when the characteristic Green's func-
tion representation is substituted for the eigen-
Vunction expansion representation. The charac-
teristic Green's function is known for the hydro-

I

genic atom, "and, for the general atom, a quan-
tum-defect-method approximation can be de-
veloped at large x. " When the multiphoton ab-
sorption matrix element depends principally on the
large portion of the integrands, the QDM Green's
function should provide adequate estimates. But,
as with the truncated sum, one may have to verify
that at each w the matrix element does depend
principally on the large-x integrand.

The technique developed in Sec. II uses an ap-
proximate atomic central potential for which an
exact Green's function can be written. For a
central potential I approximate the quantity Z(r)

xV(r) of Herm-an and Skiliman" by a series of
straight lines. The Schrodinger equation is then
exactly solvable, for both discrete and continuum
orbital&, in terms of Whittaker functions. " The
model was developed originally" to permit the
rapid generation of realistic atomic continuum
orbitals. The model has been applied to photo-
ionization calculations, "Born approximation elec-
tron-and proton-ionization rates and stopping
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powers, and Auger transition rates, "all of which
exploit the model's capability of rapidly generating
continuum orbitals. But since the solution to the
model irivolves known special functions an exact
characteristic Green's function can be written
(Sec. II).

The advantage to this approach is that it can be
used whenever the multiphoton matrix element
can be structured in terms of one-electron Green's
functions, and requires no further assumption as
to the validity of the QDM approach. It can be
used for inner-shell multiphoton absorption and/or
for multiphoton absorption from partially filled
outer shells. The disadvantage of the approach,
a disadvantage inherent in any one electron model,
is that the bound-state level structure differs
from experiment, and resonances in the multi-
photon absorption cross section will appear at
the wrong wavelength. This is particularly true
for resonances involving low-lying bound levels.

There are several mays of adjusting the model
calculations to produce resonances at the experi-
mental energies. First, if the resonances are
isolated and the wavelength difference is not
large, one can adjust the wavelength scale near
the resonance, bringing the resonance position
into agreement with experiment. Second, one can
change the initial-state ionization energy to pro-
duce a resonance at the experimental position.
Third, if for only a finite number of levels is
there a significant difference between model and
experimental eigenvalues, one has

Ij )(jl ~ Ij &(jl
(Z-E, ) ~ (X -E,'.)

II. GREEN'S-FUNCTION AND CROSS-SECTION
EXPRESSIONS

From the discussion in the introduction it is
clear that the Green's function has dimension I/
energy. Thus, if G(Ry) is the Green's function in
rydbergs and G(H) is the Green's function in
hartrees, then G(H)=2G(Hy). In rydbergs and
Bohr radii the Green's function for the Schro-
dinger equation with a spherically symmetric
central potential is

[V' —V(r)+E]G(r, r', E)=5(r- r ').
If hartree units are used the delta function is mul-
tiplied by two. Since

l

6(r- r')= —,5(r —r') Q Q Y',*„(8',y')Y, (8, q),
3 =0 e= -l

a trial solution of the form
oo

G(r, r', E)= Q g, (r, r', E)Y, (8', q ') Y,„(8,y)
1=0 e=-

leads to

1 d', (l + I)
, [rg, (r, r', E)]—I, g, (r, r')

-[V(r)-E]g, (r, r') = —,~(r-r'). (4)

With g, (r, r')=h, (r, r')/r, Eq. (4) becomes

d, [h, (r, r')] —l,—h, (r, r') —[V(r) —E]h, (r, r')d', (l + I)

l~)(jl { E ) ( Eo) I
= —S(r - r'). (5)

=g,(r„)q,',(r„X)

(E~ —E~)~ ~+ lf)(sl(~ E )(~ E,),
where E&(E&~) are the experimental (model) eigen-
values. All three approaches mill be illustrated
in later sections.

In all the calculations reported here the experi-
mental ionization energy is used, and spin-orbit
splitting is neglected as near-resonance effects
are neglected. A careful discussion of range of
validity of the perturbation theory has been given
by Beers and Armstrong. "

In Sec. II the Green's function is developed. In
Secs. III-VIII the calculated two- and three-photon
absorption cross sections of He, Li, Na, K, Hb,
and Cs are presented and compared with other
calculations, and where possible with experiment.

For a central potential of the form

V(r) = 2Z, /r+-a, ,.

with

—2Z /r + 6;=-2Z;, /r + b;„,
r, =0, ~ =0& Z& = Znucleus &

and with

o,.=Z,/(n. , -E)'", E&~,.

=fZ,./(E —~,.)"', E~ ~,

the homogeneous Schrodinger equation for
h, (rr', E) is solved by a linear combination of
Whittaker funtions M, , »,(2rZ, /o. ,) and

W&«„&,(2rZ, /n;}. 'o The Green's function is then
determined by standard techniques, "and is
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1 o., 1 I'(l, y 1 u, ) ~Z. Z,
At(+~ 'r ~E) =+

(& )(& ) 2Z I (2l ~ 2) ~i, ~ ~i, i+i/2 & &. ji.~ ~i
~ i+i12

SJ 2r)
&

M j, l+1/2 r) 0, ~j,2 +g, l+j. /&

The inner function satisfies the boundary condition at r=0 with

ci„, I'(l + 1 —n,„).
(

)" f;,[Wo. ,„,Mo, ]+f, [Wn. ,. „W,.]),
5+1

u;„ I'(1+ 1 —o.,„)
fi+1, 2 2 Z P(21 2)

(f , I[ '' oi+1] +fi 2I Wail

Mai�oli])

5+1

with f»-—-1, f».——0. The terms in brackets are modified Wronskians, i. e. ,

2rZ ~ d Z 5+1 Zf y d ~z[W;,M, „]=W. , ,„„—' —„Mo., „, , „„2~ '" -M. ,„,„„2~ '" —„W„, 2r ~
The outer solution depends on the choice of boundary conditions at large r. The recursion relations are

n,. r(1+1 n, )-.
Ai, 2 2 Z P(21 2) (Ai+lyl[ &i I &i+1] i++1,2[ Ni& &i+1]) &

5

o,. I' I+I-o., i

(10)

with g~, =-1 and

0, discrete levels,

A~, I 0, incoming waves,

, I'(i+I+in. „) „.,(-1)',
l )" e" ii, outgoing waves.

The choice of A» for incoming and outgoing waves is a consequence of the choice of W „,&,(2xZ/u),
rather than W, ,», (-2i'Z/n) as the second Whittaker function. The quantity S, in Eq. (7),

S, = -(ii,/2 Z, )I'(l + 1 —o.,)/[A, ,I'(2l + 2)],

S, = -(aq/2 Zi) I'(l + 1 —o ~)/[I (2l + 2)(fi,Ai, —g, ,f, ,)], (12)

evaluated at j=1. S& is independent of j and arises from multiplying Eq. (4) by mdiv and integrating be-
tween r' —e and r'+q. With S,. =S the integral is

d
d, [~A, (~, ~', E)1~, „,—d, [~A, (~, ~', E)1~„„-.= —,,

cf 1
(13a)

01

S dM, dS', dM, . dW, .

les J
(13b)

or

S(f, ,g, ,[M, , M, ]+f, ,[W, , W„,.]+ (f, ,g, , f, ,g, ,)[M, , W,—]j=1. (13c)

The first two modified Wronskians vanish identically and

[M „W,.]= (2 Z, /n, .)W(M „W„,) = —(2 Z,./ u,.)I'(2 l + 2)/ I (l + 1 —o. ),
where W(M, W ) is the Wronskian. " Thus

S = —(iii/2Zi)1 (l+ 1 —o,.)/[I (2l+ 2)(f, ,A, , f, ,g, ,)]—
(13d)

(13e)

That is, once we choose a sign as r-0 for the inner portion of the Green's function, Eq. (7) fixes the
overall sign of the Green's function. The sign used by Zon et al. ' changes from paper to paper.

Qne can evaluate S at j=N, and using v= cy&, one can write the Green's function for r, r'' &r„, in a
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neutral atom (Z» = 1) as

(14)

I'2~ 1
M„,„/2I —= I'(2l+2)G, 2r, —, (v)"

1 v I'(l+1 —v) /2r& f», /2r&
'

2r&

(r )(r ) 2 iv(21 ~ 2),i+1/2I f,1+1/2I &&, 1+1/2
2

where v=v' 1/-E and E is negative for bound states.
To show the relationship of Eq. (14) to the QDM Green's function, we use the Hartree" decomposition

of the Whittaker functions, i.e. ,

2rl I'(l+ 1+ v) 1 ) 1
W„,„/, —I=, „„G,2r, —,

I
cosl/v+ H, 2r, —, sinv

V] ~-V) '
V ] V

where G, and H, are slowly varying functions of 1/v'. Then

f» . (f. »-1,.[M., M«-i]+f1-1.2[ ., «-1])
(f»-l, l[ v& «-1] f»-1,2[ v& «-11)

[(-1)'I'(2l + 2)/I" (l + 1+ v)](f, ,[G„M „,]+f, ,[G„W „,))
cosl/v(f» 1 1[G1 M» 1]+f»»[G1 W» 1 }+sinvv(f»»[H1 M» 1]+f»»[H1 W» 1])

'

Let

(16)

D=Of»-l, l[G(&M«1] f» 2, 2[G1& «1]} (f» 1,1[H( M&«1] f»1,2[H1&W~» 1]}~
sinn(p, , + l) =(f, ,[G„M „,]+f„,,[G„W,])/D,

cosm(y, , + l) = (f»»[H„M«, ]+f »»[H„W «])/I1,

where p, is defined as the quantum defect. Then,

f„, I'(2l+ 2) sinn(p, , + l)
f„, I'(l+1+ v}sinn(p, , + v)

and

(18)

1 v 1 (l+ 1 —v) ~(2r, 1"(l+1 —v) sini/(p, , + l) (2r 2r l
(r )(r ) & r(&i+&) """(v r(i+1+v) &ivv(V, +v) "'"i 'i v "'" '( v J

'

Equation (18) differs from the widely quoted ex-
pressions of Ref. 8 by a factor + —,'. The factor —,

'
arises from the use of rydbergs rather than har-
trees, and the sign has been discussed above. To
illustrate the agreement of the model potential and
the Herman-Skillman potential, "Table I lists the
Z,. and r, parameters of the model potential for Cs,
the one-electron eigenvalues (in By), and a com-
parison of experimental" and model effective
principal quantum numbers. The model eigen-
values agree with those of Herman and Skillman"
to better than 3%. The 6s effective principal
quantum number (n*) is 1.970 with the model,
1.954 with the Herman-Skillman potential, but
experimentally, it is 1.869. In Mann's2' Hartree-
Fock calculations the n* for the 6s electron, ob-
tained from the orbital binding energy is 2. 011.
Thus, while the model potential does not reproduce
the measured 6s ionization energy, it is no worse
in this respect than other, more sophisticated
approaches. In comparison with experiment the

I

ns and nP levels are too loosely bound. Small
parameter variations in the potential do not sig-
nificantly affect the n* values. Large parameter
variations can improve the agreement with ex-
perimental ns and nP levels but the price is to
greatly enhance the difference with nd levels. It
is concluded that the difference between model and
experimental n* values is inherent in the use of a
one-electron model.

The generalized cross sections used here are
obtained from the transition rate

dS'
(sec ') = g v„E",

n=l

~;= 4~(~ Z/Z, )'~ [(H,'„)'+ -'. (H', „)'],
c,' =4v(~ Z/Z, )' ~(ft', „)', (20)

where E is the photon flux in number/cm' sec, and

o„ is in units cm'" sec" '. For two-photon absorp-
tion from an initial s orbital
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TABLE I. Model parameters Z and x for Cs. For bound levels the model and Herman-
SkQlman (HS) eigenvalues (Ry) are listed. For excited levels the model and experimental
(Ref. 22) effective principal quantum numbers are listed.

1
55.0

0.070

2

47.0
0.155

3 4
39.1 28.0
0.335 0.570

5
19.4
1.02

6
9.80
1.78

7 8 9
5.40 2.00 1.00
2.95 4.10

level
1S
2s
2p
3s
3P
3d
4s
4p
4d
Gs

Gp

6s

E(mod)
2572
381.6
357.8
81.12
71.91
53.84
15.85
12.45
6.332
2o133
1.254
0.258

E(HS)
2531
389.5
368.0
81.91
72.60
55.14
15.79
12.39
6.437
2.119
1.254
0.262

level
6s
7s
8s
9s
6p
7P
8p
9p

10p
5d
6d
7d
8d

n*(mod)
1.9700
2.9898
3.9963
4.9994
2.3925
3.421 7
4.4322
5.4373
6.4401
2.5655
3.4772
4.4622
5.4572

n*(expt)
1.8688
2.919
3.933
4.939
2.350
3.394
4.409
5.415
6.419
2 ..551
3.532
4.529
5.528

where 4E is the photon energy in rydbergs, the
superscripts L and C refer to linear and circu-
larly polarized radiation, E0 = 3. 22 && 10"/cm' sec
and

R'..., , = r',dr, y, ,(r, )
0

and we use the rydberg Green's function. For
three-photon absorption from an s orbital

175 (R0123)
(21)

&& r23cr2 y, (r,) g}2(r„r„E;—10)

R'. . . , = r,'dr, d, (r,}J r,'dr, d, (r„r„d,. —tr) f r', dr, d, (r, )d, ( r„r2dtr}.
0 0 0

These expressions differ from ones given by Manakov" et al. by a factor 2" '. The difference arises
from using hartree rather than rydberg energy units, and is accounted for by the product of factors 2 N

from the (4E/E0) coefficient, 22~ ' from the Green's function, and 2' from the normalization of the con-
tinuum orbitals. Alternative expressions exist in the literature, '"with the difference arising from the

continuum electron normalization.
The ratio of cross sections for circular to linear polarized light (R„=(7~c/v„) is a useful quantity. For

two-photon absorption R, =1.5 when R',»»R,'», and R, =0 when R'„,»Ro». For three-photon absorption
R = 2. 6 when R0», dominates (R,'„,+ 0. 8R0»,), i. e. , when either R,'», is large or when R,'», —-0. 8R,'», .

III. THREE-PHOTON IONIZATION OF THE He(ls)(2s) ~

3S METASTABLE LEVEL

Three-photon ionization of the He metastable
levels is of interest as there exist a variety of
discordant calculations ' and some measurements.
Bakos et al. "measure a cross section of
10,","cm' sec' for three-photon ioniza-
tion of the 'S metastable at 6944 A (ruby laser
wavelength). The error bars in the measurement
are so large that it is irrelevant to the intercom-
parison of various computations. In Figs. 1(a)

I

and 1(b) my calculated three-photon ionization
cross section for the 'S and 'S metastable levels in

He are shown. Also shown are the ratios (R) of
circular cross section to linear cross section.

These figures illustrate some general points.
The predicted resonance position (solid lines) dif-
fer from the expected experimental positions
(dashed lines). .In He this is due to the neglect
of electrostatic splitting in the (Is)(nl) interme-
diate configurations. The maximum value of R
is 2. 6 from Eq. (71). This is approached but

generally not reached at nd resonances, because
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FIG.l. (a) g+~andRvskfor He (ls) (2s) S. (b) o.
3 andRvskforHe (ls) (2s) 8S. (c) o.

e for He (ls) (2s) S and 3S (solid curves).
The dashed curves A-E are from Bef. 25 and discussed in the text. The open triangles are curve B shifted downward

by 40 cm

both 8,», and R»» diverge, but R,», is not pres-
ent in o~c. At (ns) resonances R=O, but this is
not apparent in the figures as the resonances are
narrow and the calculations are done at only 60
points.

Figure 1(c) is a detail of the cross sections near
6944 A (14400 cm '). In this region (14 540—14260
cm ') for linearly polarized light the triplet cross
section is flat while the singlet cross section
(solid curve) contains both the 6s and 6d reso-
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nances. The calculated position of the 6s reso-
nance (14380 cm '}differs from its expected ex-
perimental position (14420 cm ') by 40 cm '

I the
measured He (ls)(6s) 'S-'S splitting in 80 cm ' and
electrostatic splitting has been neglected]. Also
shown are four other calculations (A D)-near the
resonance at 14420 cm '. Curve A is the trun-
cated sum calculation of Olsen et al. 2' It is an
order of magnitude lower than the other calcula-
tions at lower wave numbers. Curve B is the
QDM calculations of Olsen et a/. " Except for the
40 cm ' difference in resonance position curve
I3 is in excellent agreement with my results. The
triangles in Fig. 1(c) are points on curve B
shifted 40 cm ', showing the excellent agreement
in shape and magnitude of the two calculations.
Curves C and D are alternative calculations re-
ported by Bakos et al. , and in comparison with
curve 8 show the variability in reported QDM
calculations. Curve Z is the QDM 'S cross section
of Olsen et al. " It is at least an order of magni-
tude below my cross section (the solid
curve).

Bakos et al. 26 report a ratio o ~('S)/cr ~('S) = 10
+5. 3 at 14412 cm '. At 14372 cm ' I calculate a
ratio of three. However, Bakos et al. measure
1/R('S) =0. 5 + 0. 15 at 14 414 cm ' and 1/R('S)
=0.35+0. 15 at 1440'7 cm '. At 14371 cm ' I
calculate 1/R('S) =12.2, and 1/R('S) = 10.8 at
14406 cm '. The QDM calculation of Olsen et al .
is 1/R('S) =6. 36 at 14414 cm ' and 1/R('S) = 1.93
at 14407 cm '. The values of 1/R measured by
Bakos et al. indicate both 'S and 'S cross sections
are dominated by R»», i. e. , they are close to the
limit 1/R =0.40. But there is no nd resonance at
14414 cm '. Further, my 'S calculations indicate
a large dip in R('S) between 6600 and 7400 A

(13 500-15150 cm '), which arises from a zero in

Rpy23 in the 'S calculation, while the sm al l value
of R('S) is due to the 6s resonance.

Lompre et al. "have recently measured o~('S)
and o~('S) at 14398.5 cm '. They find v~('S)=3. 3

+1.9@10 ", somewhat smaller than the calcula-
tion of Olsen et al. "(1.6x10 ") at 14400 cm ',
and my value 8 x 10 "at 14 360 cm ' (with a 40
cm shift). There is a significant disagreement
between theory and experiment for the ratio
o, ('S)/o, /'S) at this wavelength. Lompre et al. 27

measure a ratio of 11, in agreement with the ra-
tio measured by Bakos et al. , Olsen et al. 25 (at
14400 cm ') calculate a ratio of 34, while 1 find a
ratio of 1. The value of o~('S) obtained from the
measurement of Lompre et a/. "is in excellent
agreement with the calculation of Olsen et al. The
large disagreement in cr~3('S) far from any reso-
nances suggest that a measurements on 0, for I i
would be useful.
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~p 0+ ooooau'I pooooo ~oo o~ c7c)-47
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I
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FIG. 2. {a) 0.~& and R vs 'A for Li. The open triangles
are the calculations of Ref. 28. (b) g ~& and R vs X for
Li.

IV. TWO- AND THREE-PHOTON IONIZATION
OF LITHIUM

Except for the 2P, the calculated n* values for
excited states in Li were in good agreement with
the experimental values [to the resolution of the
wavelength scale used in Figs. 2(a) and 2(b)J. The
results for two-photon ionization are shown in
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Fig. 2(a). As mentioned in Sec. II, R = 1.5 cor-
responds to R,'»»R», . Near the nP resonances
both R',» and Ran» go through zero (antiresonances)
but in the calculations they do not go through anti-
resonance at the same wavelength. This accounts
for the structure in R near the resonances. Be-
tween 3400 and 4500 A, R = 1.24 + 0.04. At 3472
A Manakov et al. '4 find R=1.42, and o, =3.44
x10 ", whereas I find cr, =0.70x10" cm'sec.
The triangles in Fig. 2(a) are Mizuno's" calcula-
tions for o, . My results are in good agreement
with Mizuno's.

The results for three-photon ionization in Li
are shown in Fig. 2(b). The broad dip in R at
5960 A is the result of a zero in R,'»3 as was seen
in R('S) in He at 7100 A. A small dip in R and
peak in o ~3 is seen at 5724 A due to the 4s reso-
nance, a surprisingly narrow structure. At 5300
A Manakov et al. '~ find cr, = 7. 1x10"and
R =0.045, whereas I find v, = 2. 0 x 10 "and
R =1.16. Near 5300 A there is a zero in my cal-
culated Rpypy and this probably accounts for the
difference in the two calculated R values.
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V. TWO- AND THREE-PHOTON IONIZATION IN Na

In Fig. 3(a) the two photon cross section and R
values are shown. At 3472 A Manakov et a/. "find
o, =5.6x10" cm sec and R=0. 89, while I find

o, =2.4x10 "and R=O. 75. With the resolution
used, no variation was found in R at 3300 A the 4P
resonance. The structure in R and a, near 3600
A arises from a zero in Roy2 The open triangles
in Fig. 3(a) are Mizuno's" calculations for a,~.

My. calculations are in excellent agreement with
those of Mizuno except for a 120 A difference in
the location of the minimum due to a zero in Rpy2.

In Fig. 3(b) the three-photon cross section aao

and R=apo/a~a are shown. At shorter wavelengths
both quantities show considerable structure. The
departure of the model n~ values from experiment
and the resulting difference in resonance position
are shown by the solid and dashed markers. At
5300 A I calculate cr, =1.1x10 "and R=0.80.
Manakov et a/. "find g, = 7. 8x10 "cm'sec' and
R=0. 33, while Delone et al. "measure R=0.42
+ 20%. The large R value I find arises from a
zero in R,'», near 5300 j,. At 6944 A I calculate
g 3

—7 x 10 "cm se c' and R = 2 .49 . Manakov
et al. "calculate a~3 =9.3x10 "cm'sec' and
R=2. 49, while Isenor" reports 0~3=56.Ox10 "
cm'sec' and R= 2. 35+0.10. Figure 3(b) indicates
that R is not a sensitive function of ~ near 6944 A.
A't this wavelength the two calculations are in
agreement but the absolute cross section is a factor
of six lower than experiment. The plateau regions
in R near the 3d and 4d resonances result from the
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FIG. 3. aP and R vs X for Na. The open triangles are
the calculations of Hef. 28. (b) 0~3 and R vs & for Na.
The data point with error bars and open triangle at 6944
L are from Hefs. 30 and 24, respectively.

dominance of the matrix element Rgy23 The dip in
R between 6000 and 6400 A results from a zero in

R,'„,near the 5s resonance. This structure is
substantially broader than the comparable struc-
ture, near the 4s resonance, in Li. Clearly, mea-
surements of R for three-photon ionization over a
broad spectral region would be interesting. Fea-
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tures arising from zeros in matrix elements are
of special interest as they are a test of the calcu-
lational procedures.

VI. TYCHO- AND THREE-PHOTON IONIZATION IN K

TABLE II. Model and experimental (Ref. 22) effective
principal quantum numbers for K and Hb.

n+

Level model expt
n*

level model expt

4s
5s
6s
7S
8s
4p
5p

1.821
2.834
3.838
4.840
5.841
2.270
3.293

1.770
2.801
3.809
4.812
5.814
2.233
3.264

6p
7P
3d
4d
5d
6d

4.301
5.304
2.740
3.532
4.452
5.419

4.273

2.853
3.795
4.768

gQ

Level model
n*

level model . expt

5s
6s
7S
Ss
9s
5p
6p

1.870
2.886
3.891
4.893
5.894
2.334
3.359

1.804
2.844
3.855
4.860
5.862
2.292
3.325

7p
8p
4d
5d
6d
7d
8d

4.368
5.373
2.729
3.595
4.548
5.529
6.519

4.337

2.766
3.705
4.683

Of the elements studied with the one-electron
model, the excited levels of potassium showed
the greatest departure from experiment. Table II
compares the model and experimental" n* values.
The ns and nP levels are less tightly bound than
the experimental levels, but nd n* values are sig-
nificantly smaller than those measured. At Z=21
the 3d shell is partially occupied in the ground
state, and in going from Z = 18 to Z = 21, the nd
orbitals show a rapid decrease in n*. In my one-
electron model, the decrease is too rapid. How-

ever, the disparity in n* values provides a testing
ground for adjusting the wavelength scale so that
resonances occur at their experimental energy.

In Fig. 4(a) the two-photon cross section and
R values are shown. The difference between
model and experimental resonance positions is
small, and is shown by solid and dashed markers.
The dips in R arise from zeros in R», . At 3742
A, Manakov et al. "calculate g, = 3. 3&&10 "and
R=1.08, while I find g, =3.5~10 " cm sec, and
R =1.0; excellent agreement. At 5300 A Manakov
et al. calculate g, =1.9&&10" and R=1.16, while
I find g 2~= 5. 4&&10 4' cm' sec and R = 1.28. Delone

et al. 28 measure 8= 1. 2+30%%uo at 5300 A. The two
calculated R values are within experimental error,
and the cross sections agree to a factor of three.
The open triangles in Fig. 4(a) are calculations of
Mizuno. " Unlike Li and Na where there is good
agreement, for K my calculations and Mizuno's
differ by as much as a factor of three.

In Fig. 4(b) the three-photon ionization cross
section g, and R values are shown. The figure
illustrates several interesting points. Isenor"
reports g c=0 93&&10 "cm'sec' at 6944 A where
Manakov et al. ' calculate g, =0. 46&&10 "cm'sec .
In Fig. 4(b) the measurement is in the wings of'the
5d resonance, and my calculated 5d resonance is
160 A higher in wavelength than its experimental
position. Shifting the Isenor measurement 160 A
upward in wavelength leads' to excellent agreement
with my calculation. However, Isenor reports
R = 2. 66 + 0. 11, Manakov et al. calculate R = 2. 49,
while I find R = 1. 3 at 7100 A. The broad dip in

my calculated R is due to a zero in R,'», at 7260 A.
With this 160 A shift in wavelength scale, the

calculation is in good (factor of two) agreement
with the measurement. However, between 7300
and 7700 A there are resonances due to 4d and 4p
levels, and the resonances are interchanged in the
model calculation. No simple shift in wavelength
scale can predict a cross section with experimen-
tal resonance energies. However, as the 4P reso-
nance occurs in the 4s-vP matrix element and the
4d resonance in the vd-gl matrix element one can
separately modify the E,. value to reproduce both
resonances at their experimental energies. The
results of the calculation are shown in Fig. 4(c),
where the modified cross section and R are shown
as solid lines and the results from Fig. 4(b) as
dashed lines and solid triangles. Alternatively,
one may use the finite sum subtraction technicIue,
mentioned in the introduction. Here the terms
4P)(4P ~[ I/(& -&„)—I/(~ - &0,)] and
4d)(4d [I/(X —E«) —I/(X —Z,'„)], were included

in the modified Green's function. The results for
g, and R are shown as open and solid circles,
respectively. The g, values calculated with
modified Green's function and unmodified energies
is in good agreement near the resonances with g,
calculated with unmodified Green's function and
modified energies. The R values differ princi-
pally due to the distortion introduced by the en-
ergy modification, i. e. , the location of the 6s
resonance and the zero in R»» are shifted to
shorter wavelength by 330 A, the shift in the 4d
resonance. Teague and Lambropoulos" "have
calculated g, near the 4P resonance. Their re-
sults are shown as open squares in Fig. 4(c).
Their resonance is considerably narrower than in

my calculation.
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FIG. 4. (a) z& and R vs X for K. The open triangles are the calculations of Ref. 28. (b) 03 and R vs X for K. The data
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latter to account for the shift of the 5d resonance in the model. (c) The solid curves are gs and R, adjusted so the 4d
and 4p resonances occur at their experimental energy. The dashed curve and solid triangles are the unadjusted model
values from Fig. 4(b). The open and closed circles are &3 and R, respectively, obtained with a modified Green's func-
tion.

VII. TWO- AND THREE-PHOTON IONIZATION IN Rb

The model and experimental n* values for Rb
are listed in Table G. As with K the model ns and
nP n* values are larger than the experimental

values. The model n* values for nd are smaller
than the experimental values, but the difference
is not as large as in K, i. e. , the experimental n*
values are lower and model n* values higher in Hb
than in K.
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In Fig. 5(a) the two-photon cross section o 2c and
B are shown. Also shown are calculated values
of Manakov et al. 24 (open triangles) and Lambro-
poulos and Teague, " (solid circles) both using the

QDM method. The three calculated cross sections
agree to a factor of two. At 3472 and 5300 A
Manakov et al. calculate A = 1.43 and 2. 14, res-
pectively, while I calculate R = 1.00 and 1.39, at
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3

and R, adjusted so the 6d and 6p resonances occur at their experimenta1. energy. The dashed curves and solid circles
are the unadjusted model values from Fig. 6(b). The open and solid triangles are a3 and R, respectively, obtained
with a modified Green's function.

the same wavelengths.
In Fig. 5(b) the three-photon cross section oc3

and 8 values are shown. As with K, in Bb the 5P
and 5d resonance positions are interchanged. A

goes to zero at the ns resonance, and in addition,
near 6825 and 7520 A where Rpy23 has zeros. The
Gd resonance in the model is 60 A above its ex-
pected experimental position. Measurements at
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6944 A are in the tail of the 6d resonance. The
measured o, reported by Isenor" and the calcu-
lated value of Manakov et al. ' are shown both at
6944 and 7004 j,. My calculated cross section is
in reasonable agreement with the shifted measured
value. At 7004 p my calculated R = 2. 44. At
6944 j, Isenor" reports a measured value of
R=2. 16+0.13, Delone et al. ' measure R=2. 17
+.13, and Manakov et al. '4 calculate 2. 35.

In Fig. 5(c) are shown g, and R (solid lines)
calculated with E,. modified to produce 5P and

5d resonances at their experimental positions.
0 3 and R without the en e rgy m od ifica tion are
shown as a dashed curve and solid circles, re-
spectively. Also shown are @3' and R (open and
solid triangles} calculated using model energies
but a modified Green's function, i.e. ,
5P)(5P ~[ I/(X —E„}—I/(X —E'„}]and

5d)(5d [1/(& —E,~) 1(a —E—'„)] Nea.r the reso-
nances v, calculated with different modifications
are in excels"-,nt agreement. Near 7300 A there
is a dip in R and a peak in 0, in the calculation
with modified Green's function. This is a nu-
merical artifact resulting from the subtraction of
two large numbers. At 7380 J}, the unmodified
calculation leads to 0, three orders of magnitude
larger than in the modified Green's function cal-
culation. Near 7500 A there is a zero in Rpy23 and
in R, and its position varies in the three calcula-
tions.

VIII. TWO- AND THREE-PHOTON IOMZATION OF Cs

Over the past five years the two-photon ioniza-
tion cross section of Cs has received substantial
experimental'4 "and theoretical" "attention; the
reason being the orders of magnitude disagreement
between theory and experiment for 4600 & X & 5200

However, the recent remeasurements of the
two-photon cross section by Normand and
Morellec, "and by Morellec et al. ' have resolved
the disagreement. In Fig. 6(a) I show my calcu-
lated cross section o, as a solid line and R as a
series of connected open circles. The calculated
0, values of I.ambropoulos and Teaque" are shown
as isolated open circles and their R values as solid
circles. The calculated o 2~ values of Manakov
et al. 24 are shown as open triangles. With all-
owance for the 50 A shift in 7p resonance position
my calculations are in reasonable agreement with
those of Lambropoulos and Teaque, though the
agreement is only qualitative near 4800 A (the dip
in o', ). The measurements of Granneman and
Van der Wiel'4 are shown as open circles with er-
ror bars. The measurements of Morellec et al. "
are shown as solid triangles (they measured o,
which I converted to o, with my calculated R

-values). The calculation of I ambropoulos and
Teaque" is in good agreement with the measure-
ment of Morellec et al. , considering the diffi-
culty in accurately locating the cross-section min-
imum. My calculations are somewhat higher than
the measurements. This arises from the incor-
rect location of the 6P level with the Green's-func-
tion approach, and could be corrected by includ-
ing a term of the form

~

6P)(6P ~[(l/(& —E,~}
—(I/~ —E'„)].

The calculated three-photon cross section 0 3

and R values are shown in Fig. 6(b}. The cal-
culation is in excellent agreement with the mea-
surement reported by Isenor" at 6944 p, when
the 9d resonance peak is shifted 20 A, to bring it
into agreement with the expected experimental 9d
resonance energy. At 6944 j„ the calculation of
Manakov et al. '4 is an order of magnitude larger.
At 6944 g Isenor" reports R = 2. 24 + 0. 11, I cal-
cu1.ate R =2. 25, while Mankov et a/. '4 find
R =1.45.

In Fig. 6(c) the three-photon cross section oc3 is
plotted for 8200 & ~ &9400 j. The solid curves for
0, and R were obtained with an energy adjustment
to produce the 6P and 6d resonances at their true
energy. The dashed curve and solid circles are 0 3

and R without the energy modification. The solid and
open triangles are 0, and R without the energy modi-
fi cation but including ( 6P)(6P ~[1/(X —E,~) —1/
(& 'E~)] an—d (~ 6d)(6d [1/(X —E«) —1/(& —E,'~)] as
discussed in the introduction. This modification
produces a 0, in excellent agreement with that ob-
tained with the energy modification. The R value
is significantly different at shorter wavelengths
because the energy modification distorts the loca-
tion of the Bs resonance, affecting o, but not 0, .

IX. CONCLUSIONS

It has been shown that the infinite sums appear-
ing in multiphoton absorption matrix elements can
be replaced by atomic Green's functions, and I
have shown that an explicit Green's function can
be constructed for realistic one-electron atomic
central potentials. The multiphoton absorption
matrix element is then reduced to angular-mo-
mentum coupling coefficients and multiple inte-
grals, which are approximated as sequential sums.
For one-electron systems, the multiphoton ab-
sorption matrix element is then no more difficult
to calculate than a one-photon absorption matrix
element. The disadvantage in the model Green's-
function approach is that the resonances occur at
model eigenvalues, not at experimental energy
levels. In two-photon absorption this is not a
serious problem as the model eigenvalues and ex-
perimental energy levels are in reasonable agree-
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ment. The wavelength scale can be shifted slight-
ly to move the calculated resonances to the ex-
perimental energies. In three-photon ionization
the differences between model eigenvalues and ex-
perimental energy levels leads to relatively lar-
ger disagreements in resonance position and, more
seriously, to the interchange of resonances. This
precludes using a simple shifting of wavelength
scale. However, the resonances arise in dif-
ferent Green's functions, and can be shifted by
using different ground-state ionization energies
in the different Green's functions. Alternatively,
one can retain a finite sum in relating the infinite
sum to a Green's function, and use the finite sum
to shift the resonances.

The model Green's-function technique is appli-
cable to any element for which the multiphoton
matrix element can be formulated in terms of a
one-electron Green's function. The calculations
presented here are for the alkali metals and the
He metastable levels. For these elements there
exists experimental data, and calculations using
both truncated basis sets and the quantum-defect
method. For two-photon ionization in the alkali
metals, my calculations are in excellent agree-
ment with those of Mizuno" for Li and Na, in

. agreement to a factor of three with Mizuno" for
K, and in reasonable agreement with I.ambro-
poulos and Teague" "for Rb and Cs. For three-

photon ionization my calculations are in excellent
agreement with the measurements reported by
Isenor" for K, Rb, and Cs at 6944 A, while for
Na my calculation is a factor of five smaller than
the measurement reported by Isenor. " My cal-
culations, as well as those of others, for two-pho-
ton ionization of Cs, are in good agreement with
the recent measurements of Morellec et a/. "but
as much as two orders of magnitude lower than the
measurements of Granneman and Van der Wiel. "

For three-photon ionization of helium my calcu-
lation for (1s)(2s)'S is in good agreement with the
quantum-defect calculation of Olsen et a/. "near
the 6s resonance, but is considerably above the
truncated basis set calculation of Olsen et a/. In
addition near 6950 A my 'S cross section is at
least an order of magnitude larger than the cal-
culation of Olsen et a/. , which is in reasonable
agreement with a recent measurement. " In sum-
mary, the model Green's-function calculations
agrees reasonably well with other calculations and
the measurements of Ref. 30 on the alkali metals.
The model Green's-function technique is currently
being applied to more complex atoms.
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