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Two-photon ionization of alkali-metal atoms in the framework of infinite summations and syin-
orbit coupling
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A theoretical method previously developed for the two-photon ionization of alkali-metal atoms is extended to the
spin-orbit coupling scheme. We have obtained the Green s function of this problem in the framework of quantum-
defect theory and so we have been able to perform the infinite summations related to perturbation theory. The
generalized transition probability rates are calculated in the off-resonant and resonant regions, respectively, for
polarized incident radiation. Destructive interference effects between the unperturbed atomic states in the infinite
summations producing a finite deep minimum in the off-resonant region, are predicted by our theory, both for
linearly and circularly polarized incident radiation. A detailed calculation of electron-spin polarization is given.
Comparisons of values predicted by the present work with experiment and other theoretical calculations are made
for the case of atomic cesium initially in the ground 6S state.

I. INTRODUCTION

In the last few' years, considerable interest has
been shown in the study of experimental and theo-
retical multiphoton processes due to the interac-
tion of intense laser fields with atomic systems.
Since in most of the experiments the external laser
field strength is small compared to the internal
atomic field strength, the theoretical analysis may
be based on the time-dependent perturbation theory
developed to the lowest nonvanishing order. In the
last few years, experimental work has been car-
ried out to determine probability rates for the two-
photon ionization of the cesium atom, "where it
is possible to use laser intensities which are not
too strong. This permits the application of per-
turbation theory, which leads to predicted values
that may be compared to the measured ones, pro-
vided an acceptable atomic model is adopted.

The spin-orbit coupling in unpolarized atoms
causes the existence of an important property of
the ejected electron beam, the electron-spin po-
larization, that was theoretically predicted by
pano in. the single-photon ionization by circularly
polarized light. Although differences exist between
the single and multiphoton cases, the physical
basis is the same: The spin-orbit interaction in
bound states and in the continuum produces the
spin orientation of the photoelectrons, the projec-
tion axis being the direction of the wave vector k
of the incident circular light. While in Fano's
analysis the electron polarization is only due to
the spin-orbit coupling in the &P continuum states
because the initial state is chosen as the 6S dis-
crete ground state of Cs, in multiphoton processes
the spin-orbit coupling in bound states plays an
important role when the ionization takes place
through a real state, i.e., when an intermediate

resonance is present. On the other hand, in the
off-resonance region, when the multiphoton pro-
cess is performed through virtual states, the in-
fluence of the spin-orbit coupling is indirect in the
sense that it introduces a greater number of chan-
nels than those that exist in its absence, so that
it adds more contributions to the total transition
amplitude for the same photon energy. This fact
may significantly change the behavior of total
cross sections as a function of the incident photon
energy as will be shown in this paper, for in-
stance, in the Cooper minimum region. This pre-
diction has been recently confirmed by experi-
mental work performed at Saclay. '

Measurements have been reported on the photo-
electron spin polarization in the two-photon ioniza-
tion of cesium via the 7'P» „»,intermediate
states. ' Theoretical work has been developed in
order to obtain characteristic features for the
same system. '' In both papers, perturbation the-
ory to the lowest nonvanishing order was employed
and the relevant matrix elements were calculated
semiempirically using models for the atomic
structure such as quantum-defect theory and mod-
el potentials as well as experimental oscillator
strengths. Truncated summations over a finite
number of states served as substitutes for the in-
finite summations over the unperturbed atomic
states appearing in the Nth-order perturbation the-
ory. Recently the same problem has been analyzed
in detailed theoretical form when the two-photon
ionization takes place via a resonant intermediate
state using a density matrix formulation. '

In the last years we have developed a theoretical
analysis for multiphoton proce. sses in alkali atoms
based on the Green's-function formalism, ' "a
method that allows us to perform in close form the
infinite summations over the unperturbed atomic
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states appearing when perturbation theory is ap-
plied to orders higher than the first and thus sup-
pressing the ambiguities related to the truncated
summation methods. In the present paper the
spin-orbit coupling has been added, thus extending
this theory. 8ince the Green's function represents
the partial-wave projection of the valence-electron
propagator, that formalism combined with the
quantum-defect theory yields information not only
around the poles of the Green's function, i.e., for
real intermediate resonant transitions, but also
for virtual transitions, thus allowing closed calcu-
lations in the off-resonant region. The layout of
the paper is as follows. Section II summarizes the

fundamental features of the theory here employed
emphasizing the Green's-function method and its
consequences; in Sec. III we introduce the spin-
orbit coupling, discussing the physical conditions
by which we may find the correct Green's function
on the basis of the quantum-defect theory. Section
IV shows the theoretical calculations derived from
the theory and is followed in Sec. V by the numeri-
cal results making a detailed comparison with
measured values and results of other theoretical
calculations of the transition probability per unit
of time, ion asymmetry, and electron-spinpolar-
ization.

II. FUNDAMENTAL THEORY

Time-dependent- perturbation theory developed to the first nonvanishing order in the nonrelativistic
approximation gives the transition probability rate per atom (atomic units are used) for the absorption of
X photons from the initial atomic state ~i) to the final one

~ f ) as'2

(2v ~ Z~)»~
(2v)' fi (2.1)

for an ejected electron of wave vector k, where (d is the angular photon frequency, E the photon flux, and
u the fine-structure constant k= .(8„$~) represents the angular part of the ejected electron wave vector
k and the total probability rate is obtained by integrating over k. The matrix element &f', ' for the transi-
tion between the. unperturbed atomic states in the Wth-order approximation includes infinite summations
over the complete set of unperturbed atomic states ~az), discrete plus continuum, and it may be written
as10

A A

~ g g( ~V~ ) („,IVI „g ( „,IVI

(a, I Vl a,) (a, I Vl a, )

A
w"ere E&; ars t"e atom eigenvalues in a.u. V(&, r) is the interaction operator. between the radiation (unit
polarization vector e) and the valence electron (radius vector r). That operator is reduced to a simple
expression in the electric dipole approximation which we use in this work:

~ DgV(&, r) = V = e ' r,

(2.2)

the electric field of the incident radiation being taken at the nucleus position (r=0).
One of the main difficulties experienced when calculati. ng probability rate (2.1) is related to the infinite

summations appearing in expression (2.2). As is known, infinite summations appear in perturbation theo-
ry as a theoretical condition due to the use of the closure properties of the Hilbert space spanned by the
atomic unperturbed eigenfunctions. Here, we performed these infinite summations with the help of the
Green s-function method now described. If the expansion in eigenfunctions is used, the Green's function
related to the problem for an arbitrary energy E may b'e written in the following form in the coordinate
representation:

~ (r I a&)(a~l r') (rl E')(E'l P')
E,&0 E -E (2.4)

where the unperturbed kets belonging to the discrete and continuum one-electron spectra are introduced
with the corresponding eigenvalues E~ and E'. Thus, from (2.2) and (2.4) we see that the transition ma-
trix element is

&z»,. '= (f (r»)
~
V(e», r„)G (E, + (& —1)~;r„, r», }V(a» „r„,)G(E,.+ (&—2)&;&„&, r», }

x ' ' ' x V(e„r2)G(E, +~; r2, r~) V(a„.r,) ~i (r, )) . (2.5)



TWO-PHOTON IONIZATION OF ALKALI-METAL ATOMS IN. . . 1825

One recognizes that the Green's function is no
more than the partial-wave projection of the one-
electron propagator in the atom. Thus, the rele-
vant transition matrix elements can be evaluated
analytically in closed form if an approximate the-
oretical a.tomic model is adopted. In this sense,
as we are dealing with single valence-electron
atoms, we may reasonably assume that if the
atomic core and the single outer electron interact
according to a central potential, the Green's func-
tion may be factorized as follows:

G(E; r, r') = g g, (E;r, r') YP&(r)Y) i(r'), (2.6)
g, m

where the radial part g, (E;r, r') is the solution of
a Green's differential equation associated to the
Schrodinger equation of the single valence electron
whose angular momentum is E. The symbol r (r')
in the spherica. l harmonics Y & means the angular
part of the electron radius vector r(r').

The method of the Green. 's function applied here
.is limited to the cases where the requisite solution
of the Green's differential equation can be deter-
mined. Since precise solutions are available for
systems whose coordinates are separable, the re-
quired solution is useful only for these cases.
However, in our problem the factorized Green's
function given by expression (2.6) provides that
condition. Now, it is essential to fix the form of
the central potential through which the single out-
er electron interacts with the atomic core in order
to attempt to find a precise solution. In this sense
the assumption is made that the single valence
electron interacts with the atomic core of radius
x, according to an attractive Coulomb potential
with net charge z (for neutral atoms s = 1) in the
range x&r, . Thus this makes it possible to apply
the quantum-defect method (QDM) that yields the
possibility of calculating the Green's function,
which introduces single-electron wave func-
tions."" We point out that the one- channel theory
is applicable to this case since we are dealing with
alkali atoms which may be described as an electron
added to an atomic core which has a large first ex-
citation potential. ""With these assumptions, we
can determinate the Green's and wave functions
for alkali-metal atoms.

In that framework, and an expansion based on
relation (2.6), the Green's differential equation
associated with the radial Schrodinger equation
may be written as

1(1 d 2d l(l+1) 1r' ——=—-E g (E r r')2tr' dr dr

6 (r r')
( -)

eo(e, = (( —e-"")(ee(e e, (Z) e-
1 82r/ A'

)
(2.9)

for 2E =@2&0. From the asymptotic behavior of
the radial part of the Green. 's function at E & 0 and
using (2.9), we have from an analytic continuation
at E & 0 (Ref . 22)

r(l+1 —v) sin[my, , (E)+f]
r(l +1+v) sin[my. , (E)+ v]

(2.1o)

Now, we can obtain the radial part of the eigen-
solutions R„,(E) at E &0 from the residues R~, (E„,)
of g, (E;r,x') at the poles E =E„, From the. gener-
al definition (2.4) and the fact that we can separate
coordinates, we obtain from (2.6)

R„,(r)R+, (r')
n &n~&o nl

+ R, ,, (~)Rg,, (r')
Z &0

(2.11)

where the functions A~,, are. normalized on the en-
ergy scale from the definition of the Green's func-
tion. With the definition of the residue R, and Eq.
(2.11), we have

R„(E„,) = iim [(E E„,)g, (E;r,~')]=R„,(~)R„*,(r').
~ni

(2.12)

The solution of this equation, the Coulomb Green's
function, was fully analyzed in previously pub-
lished works as~~9 In the case of alkali metal atoms
and the Coulomb potential being limited to r &x„
we must add a non-Coulomb term to the pure Cou-
lomb Green's function and consider for r &r, (Ref.
2O)

v r(l+1 —v) 2r&) 2r&)
r (2f 2) )e' )e).I 2 [ )e, r+il2

A
2i"& 2r'+A, W„„,( —~W„„,)rr "' p ) V

(2.6)

where r& (x&) is the smaller (larger) of the two
quantities r and ~', M and S" are the Whittaker
functions, ' v is the effective quantum number de-
fined by E = -(2v ) ' for E& 0, and A is a coefficient
that takes into account the non-Coulomb feature of
the potential through which the outer electron of an
alkali-metal atom interacts with the atmoic core.
To evaluate this coefficient we consider the QDM
which connects the non-Coulomb phase &, to the
quantum defect p, (E) extr, apolated to E &0 from its
values p.„,at the eigenvalues E„,& 0. The energy
is defined by E„,= -(2v2, ) ~ with i(,„,=n —v„„n be-
ing the principal quantum number and v„, the ef-
fective quantum number. Indeed from a result of
the study of Ham" about the quantum-defect the-
ory, we have
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1
1+[sp, (E)lsv]„.„

I

So, considering that

s V, (E)'l 1 /ev, (E)

(2.18)

we have

R„,(r) = [v„',I'—(I+1+v„,)I'(v„, -I)] ' 'w„
&vni j

(2.14)

The assumPtion [SP, (E)/SE, ]s~, «I corresPonds
to the condition of applicability of QDM and is very
well satisfied through the full length of the alkali-
metal atom spectrum.

Likewise, we note that the Green's function de-
fined by (2.11) has a pole for any positive eigenen-
ergy. Moreover, this Green's function is also de-
fined for E& 0 by (2.8) with (2.10), where v =i/k,
which has an asymptotic behavior corresponding
to an, outcoming wave. So, following the collision
theory, "this Green's function may be looked on
as the matrix element of the operator

6'= lim
1

, „a,-(E+i~)
Therefox'e, we are led to consider in the expres-

sion (2.11) 1/(E' —E) as a distribution; then we
write

, =Iim, . =PlE, E i+i~6(E'-E),1 . 1 ( 1
E E',„,.E'- +a~ &E -E)

(2.16)

where 6 is the Dirac distribution and P[1/(E'-E)]
is the principal value of 1/(E' E) in the Ca-uchy's
sense. Note that in expression (2.11) we have

R„,(r)R», (r') g R„,(r)R„*,(r')
~s„,&o o+ E

r (E+ie),s;&o
because E is positive; thus in that case this term
has no poles for E„&0Vn. Thus we have for E&0

R„,(r)R+, (r')
&,s&&&o o&

Rx,,(r)Rg „(r')„E~

+i~R„(r)xg, (r') . (2.16)

Calculating the value of this residue with relations
(2.8) and (2.10) for E&0, it results that

1 1R„(E„)=-
el

„W„„...„,(2r/v„, ) W„„,„„,(2r/v„, )
I'(I+ 1+v„,)1'(v„-I)

Moreover, we can write the expression (2.8) using
the non-Coulomb term like (2.10), but valid for
E&0 in the form2~

i (~&os &or

g, (E;, ')=, '/ l, .)„w,/ „/
(-2'0

)jl

(e«re'6r
&& 2 Rel, .)„, W„, „„,(-2ia &) l,

I, &6 I j
(2.17)

where k = (2E)'/ o, Re means real part, and a, is
the Coulomb phase shift defined by a, = arg[I'(I+ 1
-i/0)]. If we assume Rs, to be real in the general
definition (2.16) of g, (E;r, r'), we have

Im[g, (E; r, r'')] =vRs, (r)Rs, (r'), (2.18)

where Im means that the imaginary part of g, has
to be taken. By putting (2.17) into (2.18) we have

Im[g, (E; r, r')]=,e '/'

(eh a(e fog
& Re~, .„„W,q, „,q, (-2ik~))

(~4 op~ i 6g
x R I, (i)q & wt/a. t.v2(

(2.19)

which is the product of a function of r by the same
function of r' as in (2.18) with R» real. Thus, this
last assumption is valid, and the solution R»(r} of
our problem is real and equal to

I ( 2 )&/2 -~/»
Rs, (r) =—

l

—
lr Irk)

caela)e&5(

x Rel
( )~.i wi/a i.x/2(-»&r) I (2 20)

)

Therefore, we have determined the radial parts
of the Green's function with (2.8) and (2.10), and of
the eigenfunctions for E~ & 0 with (2.14) and E& 0
with (2.20). In the study of multiphoton ionization
of alkali-metal atoms, we consider the initial
state la;) of expression (2.2) as the fundamental
S state. So, we write the, radial part of this state
as follows:

R,(r) = [v',I'(v—„,+ 1)I"(v, )] ~'W„=1

(2.21)

with v~. o= —(2E„.o)
' and E„., is equal to the ioni-

zation energy of the studied atom. This function
diverges near the origin, but due to the fact that
the expression (2.8} is valid only for r& r„we can
perform the integration over r occuring in (2.2)
from r, to infinity, in order to calculate the radial
matrix elements. Moreover, v„.o is alway~ finite
and the argument is limited by 2r, /v„o Finally, . .
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f-„(r„)=4m(—
~

g g (i)'& ' ""~q'(k)
E2a) )*0 +r -i

&&R,(r„)P,"&(r„) .

(2.23)

These wave functions are normalized so that

5{k) jfss(r)f2(r)dr 5(k k') =-(2.24)

with

p(k) = (av) ', (a. as)

which is taken into account in the expression (2.1)
w'here we have -introduced the density of states'
p(E) =k/(av) . IIut, in the same way as above, we

note that in the exPression (2. 23) the function Rs,
defined by (2. 20) depends on a quantity which di-
verges for small values of the argument. In our
problem, we can reach such small positive values
of energy so that ~aikr

~

lies into the region of di-
vergence of W«~ „(/2(-2ikr) even with r &r, In-.
deed, if we consider that for these small values
E &0 this divergence takes place for r &r„r, cor-
responding to the first inflexion point of the Whit-
taker's function and being equal to l(l+ 1)/2 for
l 220 (this is obtained from the radial Schrodinger
equation with E = 0 and d2W/dr = 0), then we can
have r, &r, so that the function S'diverges in the
interval of variation r, «r r, . In order to reduc

' this divergence, we are led to introduce a cutoff
factor B, so that for small values of r we have

Rs, (r) c(-r' as is required by the general theory of

in the neighborhood of zero, the Whittaker's func-
tion Wv„.o, )/, (ar/v„. o) behaves such that expression
(2.21) diverges less quickly than 1/r for small
values of r."

Consequently, this divergence does not affect
the calculations for the values of the argument
which are interesting for us (r& r,). Then we
shall retain expression (2.21) for the radial part
of the initial wave function. In this way, the com-
plete initial wave function appearing in (2.5) will
be taken as

i(r, ) =R „,()(r,) Yo(0, ) . (2.22)

Finally, in the expression (2.1), the matrix ele-
ment K&,

"' involves a final state of the electron
whose wave vector is k. So we must consider the
final wave function in (2.5) as f~(rff), which des-
cribes a stationary state of collision which can be
expanded on the basis of partial waves [Rs, (r„)
I', '(pz)], Rs, (rz) being defined by (2.20). Follow-
ing the method proposed by Messiah" to treat the
scattering by a Coulomb potential plus a short-
range interaction, the requisite decomposition is
given by

central fields, and B,=1 for r &r, . In this way,
we finally obtain

1 2R (r) =- — e '/"
w mk

( eieg

+Rek (,) g ) Wg / y g ) /2(-2ikr)

with

x (c0s5!+i8, sip I!!) )

(I 8-.2 ~r)2 /4(
2

(a. 26)

(2.2V)

III. TKO-PHOTON ABSORPTION KITH SPIN-ORBIT
COUPLING

We now consider the coupling between the
angular momentum vector L and the spin vector
5 of the outer electron. From Dirac's relativistic
equation we obtain the following Schrodinger equa-
tion for the outer electron in the core field V(r )
which is assumed to be central:

1 1 8 , g L'& 1 dV-- ——r' —— . I+V(r)+ —I, S e(r)2r er er r'j 2cr dr

=m(r), (3.1)

where c is the velocity of light in a.u. In order to
solve this equation we introduce the total angular
momentum J =L+S and we can write as usual
L 8 =2 P' —L ' -S') where the operator s L and
8 commute. So it follows that

2 r'er er r')
1 dV+V(r)+, — (J' —L' —S') 4(r) =k%(r).

4p2y dy

In this way, we are led to consider the spin
spherical harmonics F/, (8, ({t)) defined by"jf my

and Tp., =5 V E, as previously used. " Therefore
we consider the final wave function defined by the
relations (2. 23) and (2.26)-(2. 28) .

Finally, we must evaluate the core radius r, ac-
cording to the QDM fram which we have obtained
the above-mentioned expressions. In order to do
this, we use the Slater's orbital method and we
take r, as the radius of the outer complete. elec-
tronic shell of the residual ion (i.e, r, is of the
order of 1 a. u. for alkali-metal atoms). In this
way we have alI the elements to calculate the prob-
ability rate (2. 1). In the coming sections, we will
treat the same problem but will introduce spin-or
bit coupling.
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~. ,(~, 4) =g g &,"')&, e))).
~m

&(E,s, m»m, ~l, s,j,m,.), (3.2)

where m, takes the two possible values +~ of the
electron-spin projection upon some z axis, X
are the eigenspin vectors of the spin operators
S' and S„(l,s, m„m, ~l, s,j,m&) is the Clebsch-
Gordan coefficient, which is real, relative to an
angular momentum / and a total angular momentum
j, nz,. being the eigenvalue of the Z projection on
the z axis of the problem. This z axis will be
subsequently defined from the incident light

. polarization, a fact that will make it possible to
particularize the spin projection direction on that
z axis. The spin spherical harmonics defined by
(3.2) are eigenfunctions of J' and 8, and we write

@(r ) =R(r)Y, (r).
So the radial Schrodinger equation (3.1) is reduced
to

+ V (r) R(r) = ER (r)
1 I'1 d d l(l +1)
2 I,r' dr dr

(3.3a)

with

on the radial parts are only important into the
core region. Then we use an "effective central
field" such that for r&r„V„J(r)= —1/r; for
r&r„V„.(r) is defined by (3.3b) where V(r) is
the atomic-core part of the field approximated
by the non-Coulomb part of the QDM potential.
We note that if V(r) is assumed to have the math-
ematical properties required by the one-channel
QDM for r&r„" the "effective central field"
V„z(r) will fulfil the same properties as well. In
this way, we can apply the QDM to the V„& po-
tential in which the non-Coulomb features explicit-
ly depend on the values of j and l. Consequently,
from the results of QDM in this configuration, we
are led to make explicit the (Ej) dependence of
the. radial solutions throughout the quantum defect
p&, (E) obtained from a (lj) series based on the
values p, ,(E„,,) at the measured eigenvalues of
energy E„» and defined as

E„~, = - (2v„'~g) ', v„„=n p~, (E„-,) . (3.4b)

Based on these considerations, the solution of the
differential Green's equation associated with the
Schrodinger equation with spin-orbit coupling
(3.1) can be factorized just like the earlier Green's
function, but now in the new form

,j(j +1) -l(l+1) --. dV
4c'r dr ' (3.3b) G(E; r, r') = g g»(E;r, r')Y»„(r)Y, (r')

Sly

which is the same equation as in the case of a
particle without spin in a central field. But, now,
the "effective radial field" varies from one doublet
(Ej) to another. On the other hand, considering
the model potential used in QDM, we can note
from (3.3b) that for r& r, where V(r) = —1/r, the
corrective radial term due to the spin-orbit
coupling is negligible compared to the potential
V(r) itself with the ratio of these two terms being
of the order of 10 '-10 ' for r&r, . In other
words, we may write in a more precise form that
the spin-orbit potential departs from the attractive
Coulomb potential by amounts that converge to
zero faster than 1/r. This fact leads to the pos
sibility of introducing phase shifts into the radial
part of the outer electron wave function in order
to take into account the departures from the
Coulomb potential, a method widely used in rela-
tion to the formulation of atomic-structure prob-
lems and the quantum-defect treatments. ' '" So,
we can write, as a good approximation to the
problem, the following differential equation valid
for ryr, :

(3.5a)

with the radial part g»(E;r, r') a solution of the
following equation, valid for r&r, :

1 1 d d l(l+1) 1
2 r' dr dr

——-Eg (Err')
6 r r'-. (3.5b)

The (lj) dependence of this function is due to
the "effective potential». Equation (3.5b) leads us
to the same analytic form of g»(E; r, r') as shown
previously [relation (2.8)], but now, in order to
take into account the (lj) dependence of the con-
sidered "effective potential" accordingly to the
QDM, we must choose the quantum defect V»(E)
defined by (3.4b) and we write for r& r,

v I'(l +1 —v)
gjl( ) 0 ) I P(2E +2)

2r& l (2r&1
M.,g+1 g. v] ' ( v)

1 1 d d l(l+1) 1———
2
—r' ——
dr dr

——R(r) =ER(r), (3.4a)

considering that the effects of spin-orbit coupling

v I'(I+1 - v) sinn[i), qg(E) +l)
rr' I"(2E + 2) sinn [p» (E) + v]

2r . 2r't
x IVv )+.1. lV. i+f12v t v) (3.6a)
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This introduces an analogous term like A in Eqs.
(2.8) and (2.10) that represents the non&oulomb
contr ibutioris to the QDM potential, including the
central spin-orbit coupling. Here the energy E
must be regarded as a given value into the (lj)
series associated with the "effective potential"

V„/ corresponding to the radial part (3.6a). Con-
sequently, the energy E and the effective quantum
number v are implicit functions of j and l by the
following definition:

( 1} 1/2 0(rl) Yr /2 o 1 /o (rr )

(ii) The transition probability rate W"' relative
to the value m&

= —j = —&, the total initial wave
function being

(3.8a)

i(r, ) =R„,/, o(r, )Y,/, , /, (r,), (3.8b)

and weighting them by the degree of degeneracy of
these states which is equal to (2j+1)=2 and con.-
sidering that

(3.6b)
W'» =-'W''»+-'m &2& (3.9)

To simplifly the notation, we omit this implicit
(lj) subscript dependence of E and v, this depen-
dence being explicit as in (3.4b} on the- eigenval-
ues. As done previously, we can obtain the radial
part of the initial wave function from (3.6a}, since
the method here proposed uses some general prop-
erties of the Green's function deduced from the
"central field" V„&(r) Cons. equently we have for
f'& y

1R„,/, ,(r) =- „',/, ,F(v„,/, ,+1}F(v„,/, ,)
-&/2s rr r/a. o(E}

'~

ev
1/2s 0

Njt 1/2&0&1/2P1/20~jl t

which specifies only one value j =—,
' since the

initial state is an 8 state described by E =0 and

j = 2. We must now take into consideration the
fact that we have incomplete information about
the real initial state which is degenerate with
respect to m&. So, in order to calculate the tran-
sition probability rate W ' we shall compute the
following.

(i} The transition probability rate W,"relative
to the value m& =+j =+&, the total initial wave
function being

In the same manner we can obtain the radial part
of the eignesolutions for positive energy so that

] (2
Rs/r =—

~

— e ' ' Re, ,„rWr/o ,rr/( ikr—)

&& (cos5/r +ttBr sin5»)
~»»» )

(3.10)

with 5» = gp z„where p» is extrapolated to the
positive energies as explained before. The cutoff
factor Br is defined by (2.27) and (2.28) and is
reasonably assumed to be independent of j since
the term due to the spin-orbit coupling which ap-
pears in the radial Schrodinger equation does not
significantly affect the values of r corresponding
to the divergence of the solution. Finally, we
must expand the final wave function as in Eq.
(2.23) on the coupled partial waves R»r(r)Y/r /(r)
We now apply the previously described method
in Sec. II but in the L ~ S coupling scheme. We are
led to consider some final states described by
wave functions presenting an asymptotic behavior
and characterized by a given wave vector k and
a well defined spin number projection ng, . Con-
sequently we note the final wave function with

f~ „(r) and in this way the requisite decomposition
is given by

1/2 J+ 2

fZ (r ) =4rr
(

—
) p g (i)re r& r /r'Yr (k)(l, o,j,m,

( l, —,', m„m)Rrr/r(r, )Y r (r, ) . (3.11)
E2)r j r-o / ~ r - /or -/mr -r

These wave functions are normalized so that
I

with m/r = so as it is defined in (3.8a) is given by

p(k, m, ) f& (r }f~. „i (r}rfr =5(k-k')5„

(3.12)

+1 2
W(2) — ~ gr &2& = gr(2~ + W(2)

S t +
m~~- '/2

(3.14}

with

p(k, m, ) =(2rr) '. (3.13)

The density of these states on the energy scale is
p(E , m, ) =k/(2rr)' and the transi'tion probability rate
W,~" relative to a given initial state

~
f) -=~jr, lr,'m/r)

The left indices + and —correspond, respective-
ly, to m, =+

& and m, = -&, that is, ,R'," are
defined by the corresponding final wave function
given by (3.11).

In this way, the transition probability rate W"'
defined by (3.9}may be written as
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W(2) 1( W(2)+ W(2)) +L( W(2) y W(2)) (3.15)

or

gr(2) —gr(2) + gr &a)
+ (3.16)

with

.w"' =-'( w."'+ w,&»),

w"' = —,'(,w"'+ w"').
(3.17)

So, from the previous considerations involving
the initial states and from the definition of,S',"',
thetwo quantities, w(') and W(') defined by (3.1V)
are exactly the probability rates relative to some
final states which are described by wave functions
having an asymptotic behavior corresponding to

pure spin states. In this sense, we can define a
spin polarization P " similar to that introduced
by Fano' for the one-photon ionization and for
the multiphptpn case by I,ambroppulps ' as

W(2) — 5 (2) S (2) — S (2)
~(2) +» . +

gr(2) + gr(2) gr (2) (3.18)

This gives the relative excess of spins up com-
pared to spins down along the z axis of the problem
at large distance from the nucleus after a two-
photon ionization. The upper asymptotic condi-
tions apply, so that, S"&» and 5' ' can be re-
garded respectively as the two-photon transition
probability rates relative to a "well defined final
spin state. "

IV. CALCULATIONS IN THE ELECTRIC
DIPOLE APPROXIMATION

The matrix element Kf",.' is developed in the case of the electric dipole approximation for a given polari-
zation of the incident light. For linearly polarized light we take the polar axis of the spherical coordinates
along the direction of the photon polarization unit vector, and then the interaction operator defined by (2.3)
has the form

(4.1)

For circularly polarized light, we use as polar axis the wave-vector direction of the incoming photons and
we have:

V(&, f)=t ~ ~ =-~—
~

~Y (~),c=

where Y'(y) and Y (z) correspond, respectively, to right and left circularly polarized light.
In this way, - the matrix elements for the two-photon absorption have the following form:

(4.2)

lf o gf-!if-z/2I

l' +1/2 gl

Z 2 g (&z ( (&2) ~& g( ( (&,, 0, ,~2+tv;r), t'2)r~ ~R„., O„@(~,)&l'=O .g =~ l'-i/2[ fft, =-P ~f f

(4.3)

where the index "f"is relative to the final states, the symbol ' occurs for the intermediate states, )n= 0, + 1
according to the light polarization used and the index + (-) corresponds to an initial state such as n)(. =+ 2
(n) ~,

= —~), the index )n, being the value of the spin number associated with the parti. cular final wave func-
tion as previously explained. So, the transition probability rate, W, relative to a given initial state ~i)
= ~n, , —,', 0, + —,) and a fixed value of m, = a ~ is given by

W'*'= (netd)'a f~Z"' ~'rr(, (4 4)

where K(2) is given by (4.3). However, to work out

the angular integrals in (4.3) we must return to
the noncoupled basis with the help of the develop-
ment (3.2) of the spin spherical harmonics
Y» (0). In this manner, we have to calculate
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integrals of the type

I= Y, 2&Yg 0 Y, 'y gdQ (4.5)

hj=0, + 1, 4mf = 0.
For right circularly polarized light:

(4.6)

which can be easily evaluated. The orthogonality
of the eigenspin vectors X and the nonvanishing

S
conditions of the Clebsch-Gordan coefficients give
us the following selection rules in the I S coupling
scheme.
For linearly polarized light:

Sl=. +1, aj=0, ~1, ~mj=+1.

The case bj(040) is excluded since the initial
state is labeled by the quantum number j= —,'. All
these calculations are introduced into a numerical
program using the Racah formula. " Now, if we
note

Z g «. , (~2) I~2~j'l'+ ., 0 U2+~ ~2 ~1)~1 Ift. ,o u'2(~1))
l =O j =)l -g2i m, =-f ff'f S

1

Yj, ~ y2 Y, y2 f, X2dy2 Yf*, , ~ r, Y, Z, ,/2o, ./2y, dr, ,
f

(4. I)

the quantity A;. , „(A&, ) corresponds to an initial state such that m j —+ —,
'

(m; = ——,') and we obtain
~f f ff l f ff $5

l +y/2
'

1) l if+1/2

lje! I'=(4e)*l+p I —,
'

I Z
) ~ l =0 Sy=l y-V2) mj "--j ml e-li l e=0 j -Jlf f f f f'

l
f lfi

-Z f f'
81f mffi fftl ~ lfiP i

f f g ff f ff, lf, half 2& jf ~f [ f 2 ~l &+2tx f 2&jf'&~f,
~
"f y2 l

&6 -6
f f f' f'

(4 8)

this because Af, is real. The radial matrix calculations involved in Af l related to the separation
ff lfmf ff fmf

of the variables x& And x& are performed in the same manner as indicated in a previously published paper. "
With the relation (4.4) and the condition of orthonormality of the functions 1',)(0) we have

0O l +1/2

(2) , 128m' 1,W, =(nF(d) e ji)t (lt, —,gi, m j Ilt, 2, m, , + 2)Aj,
lf-.20 gl =- lf ff ) lf 1/2I mj ~ jf f f f f~f

f f
ff

(4.9)

Finally, from the selection rules (4.6) we can note that for a given value of m, , we have only one possible
value of the quantum number m j (as for m, ). So, in the electric-dipole approximation, with the obvious

ff
condition m j = m, +m„we obtainjf l

00 if+1/2 2

je' '=(ee'te) ( )e) F e &e e()e, ,', jem& ~le, '(m, . —(e')], e ')A),
~l f~o fy I &f-1/2

(4.10)

{2)W c
P W {2)

L
(4.11)

Kith this we are able to calculate W',"and W~' with
relation (3.15) if we note W~" the total two-photon
transition probability rate for a linearly polarized
incident light and if W~" corresponds to the same
concept in the right circularly case. After, from
equation (3.18) we can also obtain P"'. We also
study the ratio

V. NUMERICAL RESULTS

We have calculated the expressions Iii") /P2,
W~')/F' (in cm's photon '), p

' and Pt"'for the
wave numbers (d (in cm ') or wavelengths (in A)
corresponding either to the experimental values
given by Morellec et al. ' (Fig. 2) or to those ob-
tained by Granneman et al.' (Fig. 5). We also
compare our results with previous theoretical
calculations" 2 (Tables I and II). The differences
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TAgLK I. Generalized transition probhbility values per second W' /E for the two-photon ionization of atomic ces-
ium from the 68 ground state for circularly and linearly polarized radiation versus the incident photon energy. Com-
parison between different theoretical calculations and measured values for nine frequencies of the argon-ion laser.
Theor. 1: Ref. 9. Green's-function. formalism, QDM, and electric dipole plus quadrupole approximations. ' Theor. 2:
Ref. 6. Truncated summations, QDM, and electric dipole approximation, and spin-orbit coupling. Theor. 3: Ref. V.
Truncated summations, model potential (Ref. 37), electric dipole approximation, and spin-orbit coupling. Present
work: Green's-function formalism, QDM, electric dipole approximation, and spin-orbit coupling. Expt. : Refs. 1 and 2.

X ( )
cu (cm-') Theor. 1 Theor. 2

w(2 )
(cm sphoton ) Present

work
(Theo r.) Theor. 1 Theor. 3 Expt.

W'
4

)

2 (cm sphoton- )
-2 Present

work
(Theo r.)

5 145
19436

5 017
19932
4965

20 140
4.880

20 491
4 765

20 986
4 727

21 155
4 658

21 468
4 579

21 839
4 545

22 002

4.20 (-50)

1.44(-50)

5.85(-51)

1.52 (-52)

5.08(-50)

1.32 (-49)

9.96(-49)

3.89(-43)

5.28(-47)

4.58(-5O)

1.66(-50)

7.57(-51)

2.35(-54)

4.07 (-50)

1.05(-49)

6.75(-49)

1.53(-47)

4,44(-47)

4.26(-5O)

1.18(-50)

3.95(-51)

1.4O(-51)

6.01(-50)

1.38(-49)

7.59(-49)

1.58(-47)

4.57(-47)

3.05(-50)

9.83(-50)

3.90(-51)

1.54(-51)

5.o6(-5o)

1.24(-49)

8.86(-49)

3.36(-43)

4„91(-47

7.90(-50)

4.62(-50)

3.39(-50)

1.54(-50)

3.81(-52)

7.34(-51)

1.41(-49)

4.14(-48)

1.81(-47)

2.6 + 0.6
(-48)

9.4+ 2.8
(-48)

1.3 + 0.4
(-47)

1.3 + 0.5
(-47)

1.6 + 0.5
(-47)

1.8 + 0.6
(-47)

1.8 + 0.8
(-47)

5.6 + 1.6
(-47)

2.8 + 0.9
(-46)

3.03(-50)

7.91(-51)

2.77(-51)

3.99(-51)

5.92(-50)

1.29(-49)

6.72 (-49}

1.07(-47)

3.76(-47)

TABLE II. Ratio between the generalized transition probabilities per second for circularly and linearly polarized in-
cident radiation and spin-electron polarization values. Theoretical calculations: the same as in the caption of Table I.
Experimental results: Ref. 2.

~ ~A)

cu (cm-')

5 145
19436

5 017
19932

4 965
20 140

4 880
20 491

4 765
20 986

4 727
21 155

4 658
21 468

4 579
21 839

4 546
22 002

Theor. 1

1.38

1.46

1.50

0.10

1.00

1.07

1.12

1.16

Theor. 2

1.38

1.45

1.49

0.003

1.06

1.12

1.18

1.49

1.25

p(2) C
w(2)

w&»
L

Theor. 3

1.19

1.18

1.18

1.19

1.39

1.15

1.15

1.47

1.19

Expt.

0.89
+0.02
0.84

+0.03
0.92

+0.02
0.79

+0.02
0.96

+0.03
0.86

+0.02
0.94

+0.03
1.36

+0.02
1.16

+0.01

Present
work

(Theor. )

1.49

1.42

0.41

1.02

1.07

.1.13

1.48

1.21

Theor. 2

-0.0003

-0.03

-0.04

-0.08

-0.08

-0.12

-0.27

0.65

0.64

Theor. 3

-0.06

-0.10

-0.13

-0.23

0.82

0.34

-0.11

O.V4

0.66

Present
work

(Theor. )

-0.09

-0.22

-0.39

0.72

0.05

-0.02

-0.21

0.68

0.65
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(3

-43— 7P) 7P~—

(2)

7P)~ 7P3~

-47—

-49—

-50- 0.5-

-51—

I i I i I I

1850019000 195002000020500 2100021500 A(g~'I)

FIG. 1. Generalized transition probability rate in
cm~ s photon for the two-photon ionization of atomic
cesium from the 6S ground state for circularly polarized
radiation versus the incident photon energy in cm ~.

between the theoretical methods and the results
of the comparison will be discussed in the last sec-
tion of this paper. The curves on the Figs. 1-4
have been constructed from a series of calculated
values lying in the wave-number range from 18 500
to 22500 cm '. Firstly we see in Fig. 2, where we
have reported the experimental values of Ref. 4,

that we obtain a qualitative agreement with experi-
ment, the main point being now that the experi-
mental deep minimum actually exists. This in-
validates the Granneman et gl."results since it
has been shown4 that in those works an important

(2)P
1

7P~~ 7P3~

0—
I I I I I I I I

1850019000 195002000020500 21000 21500 A(cm ")

FIG. 3. Ratio of the generalized transition probability
rates (circular over linear) for the two-photon ionization
of atomic cesium from the 6S ground state. The values
indicated by arrows have been extrapolated from calcu-
lations close to the intermediate VP states.

wt2I
'

log)0~F2
-43— 7P) 7P3-

2I 2

-45— +0.5—

-4$3—

-49 -,

0—

-51—
-0.5

I I I I I I

18500190001950020000 205002100021500 gg~'I)

FIG. 2. Generalized transition probability rate in
cm4s photon 2 for the two-photon ionization of atomic
cesium from the 6S ground state for linearly polarized
radiationversustheincidentphotonenergyincm . Cir-
cles: experimental values (Ref. 4).

I i I

19500 20000 20500 21000 21500 22000 ~(crn ~

FIG. 4. Electron-spin polarization for the two-photon
ionization of atomic cesium from the 6S ground state for
incident circularly polarized radiation. The arrows in-
dicate extrapolated values from calculations made close
to the VP states.
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Initial Intermediate Final
states states states

(j,, f, , m, . ) (j', I', m, ) (j~, l~, m,. )

(1 /2/ 0/1 /2) (1 /2 I 1 I 1 /2 (1 /2/0 I 1 /2)
(1)

(3/2I 1, 1/2) =(3/2I 2)1/2)

(5/2 I 2 I 1 /2)

Spin
number

(m, )

(+ 1/2)

(+1/2)-1/2) (5.l)
(/1 /2I-1/2)

We have indicated the possible values of m, so that
the Clebsch-Gordan (CG) coefficient in (4.9) is non-
zero for some given values of (j/, l&, m, . ).f

(11) for m

Initial Intermediate Final Spin
state states states number

(j,, l, , m/) (j', l', m/) (j/, l/, m/) (m, )

(1/2/ 0/-1/2) =(1/2/ 1/-1 /2) =(1/2/ 0 I-1/2)

(3/2/ 1/-1/2) - (3/2 I 2/-1 /2)

(5/2/ 2 /-1/2)

(-1/ 2)

(+1/2 /-1/2)

(+1 /2 /-1 /2)

(5.2)

molecular contribution was actually detected in
~

the off-resonant region and not only the atomic
signal as was claimed by the authors. We wish to
point out that a finite deep minimum is now pre-
dicted for both polarizations, but with a higher
value than that given in our earlier work. In
fact, taking the LS coupling into account we have
a larger number ( f possible channels, so that the
annulment due to the dipole-dipole contribution for
circularly polarized light is suppressed, since
radial matrix elements relative to the different
allowed channels are not zero at the same photon
frequency. The same characteristic is observed
in the electric dipole plus quadrupole approxi, ima-

tions, "but the present work shows that the spin-
orbit coupling introduces a more important con-
tribution in the off-resonant region when compared
to the quadrupole effects. Now, before making
comments on the curves of Figs. 3 and 4, we state
precisely the different opened channels in both
light polarizations and then detail the expressions
of P' ' and p' '. We must say that in this case,
the comparison will be made with the experimental
results of Ref. 5. This is not inconsistent with the
previous remarks since the range of wavelengths
studied for those quantities is limited around the
atomic resonances VP„„VP3/„a region where the
molecular contribution is weaker than the atomic
one, the molecular absorption being at different
wavelengths.

'
A. Linearly polarized light case

Taking into account the selection rules given by
(4.6) we have in this case the following possible
transitions.

(i) For m, . =+-,'

Qn the other hand, the property of symmetry of
CQ coeffxcxents

(l, 1/2, j,m,.
~
l, m, 1/2, m, )

implies

/ / /
( ) // //ff f f

(5.5)

with rn& = 2 when j,.= 2 and if 2J' is odd. At last,
the property (5.3) also implies, after lengthy cal-
culations,

(l/, ,',j/, m, ~l—/, —,', (m, —,'), --,')A/, „Jf f 7)iJf

=(l/, —,', j/, -m/ ~l/, ~, -(2+m. ), 2)~. .Jf Jf f f t5Jf

this when )f is even and 2jf odd. From this and
from the definition (4.9) of,W,")we conclude that

~(2) ~(2)
~(2)+ ~(2&

~(2) — gr (2) + + - +
+ % \ +

(5.7a)

and then with relations (3.17) and (3.18) we have

P =Op(dL (5.7b)

Therefore with a linearly polarized light we can-
not obtain polarized ejected electrons when start-
ing from an S state. We define now some quanti-
ties which will be useful further to study the spin-
electron polarization P' ' and the ratio p 2'.

The numerical program yields the result of the
product of angular integrais occurring in (4.7) by
the value of CG coefficient appearing in (4.10). The
values of this product relative to the channel la-
beled (i) in relation (5.1) for a fixed quantum num-
ber m, are (f. is for linear)

Y), ~. ~QY, , QdQ

=(-1)'""JY,', . (Dh", ())));,, „()))d))
(5.4)

With this and from schemes (5.1) and (5.2) and
noting that the radial matrix elements are inde-
pendent of the projection numbers m&, we can con-
clude that the elements A'.

/
defined by (4.7)Jf lIIIt J

verify the condition:
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Channel number

(1)

(2)

"Angular part"

A~= (12))) '

2A.L

(2/M)A,

8. Circularly polarized light case

From identical considerations like the above-
mentioned ones, we obtain the following opened
channels, the notations being the same as previ-
ously. (i) For m), =+-,'

(5)

1
2

1
2

l
2

—g6/5A

(2/5')A,
—g V'6/5AL

(18/5~A~

go 6/5A. L

(6)
(1/2/ 0) 1/2) ~ (3/2/ '1) 3/2) = (5/2) 2 ) /2

(ii) for m). = --,'
(+1/ 2)

Initial Intermediate Final - Spin
state state state number

Initial Intermediate Final Spin
state state state number

(j(,l(, m), ) (j', l', m)') (j/, lz, m) ) (m, )

(5.12)

The corresponding radial matrix elements are
noted as follows:

Pi =«E(./2)0(&2) I&.«i/2&. «. ..&./2&+ ~ &2, &i)

x)'i I+.;0(i/2&("» *

P.=«&„.&.(~.) I~2- &3/»i(8. («./»+» ~2 ~i)

i If~.P(i/2)( .»
P, =(RE(3/2&2(r2) I)'2g&i/2)l(E (0(l/2) + 0) 3'2l )'1)

& il .,0(i/2)( l))

E& /2& ( 2) I 28 &3/2)i( rr.o(i/2) r +2r +l}

&( i Ift. ,0(i/2&()', ))

E&5/2)2( 2 I 2)r (3/2)1(@ 0&1/2) + +2 3 3)

x)'i
I
&.,0 (i/2&()'i))

(5.8)

With these relations, from the definition (4.9) of
,W(') and W" & and from schemes (5.1) and (5.2),
we obtain:

(j„l(,m) ) (j', l', m)') (j),l~, m) ) (m, )

(1/2, 0;1/2) ~(1/2) 1, 1/2)
(()

=(3/2, 2, 3/2)
(7)

(3/2) 1 ) 1 /2): (5 /2 ) 2 ) 3/2)

(+1/2;1/2)
. (5iS)

(+1/2, -1 /2)

Channel number

(8)

(8)

j.
2

1
2

"Angular product"

A = (1/4))))r'6/5

-Ao/3

2A. /3

-Ao/1 5

2A /15

2A, i5

A, /5

In the same way, the values of the "angular pro-
duct" defined before are, considering the schemes
(5.12) and (5.13).

and

(2)
(x:P +4P +4P P +~P +gP

AL

125 4 Yf P3 5 ~2 4 5 2T 3 4

@3
Ps+ ~P4+ PP3+ ~2PSP4

AL

72P P 72 P P ~ (5.10)

The index C reminds us that the incident light is
circularly polarized. We can also note that the
radial parts involved in this case are the same as
in the preceding one since the radial matrix ele-
ments (5.8) do not depend on the quantum number
m&. Now, considering the definition of S'" given
by relation (4.10) we obtain in a similar fashion

(2) (2)S', 2 S",
A2 ' ' A2c C

So from Eq. (5.Va) we have

~P +4m +2P2+~2P2+~~os P +4P P +~P P
L

(5.11)

and the coefficient of proportionality is given by
(4.10) and is equal to

(
128 ~5)(crP&0)2

(2)

h +%(K + TK (5.1 )c
+ P~P3P4,

gr(2)

A2 *5,+ ~P4+ gP3+ T')P5P3+ v'))P5P4c
+ ~P3P4,

the coefficient of proportionality being also equal
to (+8))5)(aE&0)2. From Eqs. (3.15) and (3.14) we
have
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(2)2'
Q2 0 3 k 4 T 8 9 2 4'

C
(5.15)

Therefore, in this case, we see from relations
(5.14) and (3.18) that we can define an electron-

, spin polarization which is generally different
from zero and equal to

(,4, I84P,'P-; -25P—',40P,P, -8P P, -10P,P,
)54P', +P', + 25P', + 1OP,P,

(5.16)

In the same way, we obtain the ratio of the transi-
tion probability rates:

(2) 54P5+ P4+ 25P3+ 1QP3P4
108P25+ 2P24+ 50P23+ 20P3P4+ 25P21+ 100P22+ 100P1P2

(5 17)

C. Study ofP&()

Based on what we wrote before, we have

(2) 9P4 —3P3 —GP3P4
c 11P2+ 5P2+ 2P

(5.18)

With respect to the photon frequency ~, this ex-
pression is an extremum for

P, = -2P, and P,=P,/7 .

Finally, in order to make a rapid qualitative study
of these two quantities considered- as functions of
the frequency &u, we note from Eqs. (5.8) that the
two radial matrix elements P, and P, differ only

by the value of the quantum number j in their
R», (x) functions.

So, from relation (3.10) we can deduce from
QDM results that this dependence is relatively
weak, since the phase shift is sensibly constant
for positive energies, and then we take P4-P, in
expressions (5.16}and (5.17), which we are now

discussing.

the values of P~ ' close to the resonances. Close
to the 7P&, resonance we have P, »P4 and from
equation (5.18) it is

P &"(VP~,}=—O.6. (5.20}

However, close to the 7P&, resonance, we have
the opposite condition P,»P„and it follows that

Pc' '(VPg2)=+ 0.82. (5.21)

p(2)
15

+1

We can remark that these two values are exactly
those obtained in our calculations as can be veri-
fied from Fig. 4. We see also on the same figure
that P~ ' has a similar behavior close to the deep
valley (see Figs. 1 and 4). But in this region, it
is the annulment of P, and P4, not their relative
values that explains the behavior for Pc '. A more
detailed comparison of our theoretical values of
Pc' ' with the measured ones (Ref. 5, Fig. 2) cor-
responding to the resonant 7P&„7P&, region has
been made, which is shown on Fig. 5. We can note

'These values correspond, respectively, to

P"'(max)=+1 and Pc' '(min)= -—', . (5.19)

+ 0 8

+0.5-

'this has been previously theoretically ob-
tained. e' ' 'Therefore we can conclude that the
minimum of Pc' ', which corresponds to P,=P,/7
(i.e. , P,&P, with the same sign), lies before the
7P» resonance. In fact, close to the resonances
the radial matrix elements P, and P, defined by
(5.8) are theoretically proportional to (E+»~,
+(u-E„. , ~,) ' and (E„, , g, +(o-E„...(,) ', re-
spectively. Consequently, while P, and P, have the
same sign, Pc' '(min) is outside the interval
(~a&„u&J &,), where co~&, = (E, , &, -E„., &,) and

this case P,&P„Pc' '(min) is nearer to the VP&,
resonance than to the 7P&, one. At last, as
~~&,»a&, , Pc '(min) lies before the VP&, reso-
nance. From the same considerations, we can
conclude that P~+'(max) lies in the interval
(u&~&, , u&~&, ) and is nearer to the VP&, resonance
than to the 7P&2 one. Finally, we can determine

I

454

-05—
-0.6

FIG. 5. Electron-spin polarization for the two-photon
ionization of atomic cesium from the 6S ground state
for circularly polarized radiation versus the incident
photon wavelength in angstroms in the region of the
7P3 ~~ and 7P~ ~2 resonances. Circles: measured
points (Ref. 5). Squares: measured points on reso-
nances in the conditions indicated in the experimental
work avoiding saturation. Solid line: present theor-
etical calculations. The arrows indicate the extra-
polated values from calculations made close to the

VP3~2 and 7P~~2 intermediate states with wave numbers
taken from Moore tables Nef. 30).
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This ratio is maximum for P& ——-2P2 and its cor-
responding value is

(2) 3
~mm= Y. (5.22)

that our theoretical values (5.20) and (5.21) (ex-
trapolated from the calculated ones close to the
resonances) approximately recover those obtained
in the experiment, but between the. two resonances
the theoretical values are higher than the experi-
mental ones. This last may be partly explained by
considering that the light used in the experiment
is not 100% right-hand circularly polarized a fact
that tends to reduce the degree of spin polariza-
tion of the ejected electrons. Besides, we point
out that the bandwidth of the laser used in the ex-
periment is 12 A (FWHM), this being comparable
with the wavelength interval between resonances
of the order of 40 A, a fact that tends to mix the
electron-spin polarization. This causes a tenden-
cy to reduce the values between resonances. The
theoretical analysis here shown assumes fully
polarized and monochromatic light without intro-
ducing level broadening or saturation effects due
to the incident radiation. According to the authors
of Ref. 5, the effect of the incomplete right-hand
polarization may be partially compensated under
experimental conditions related to the saturation
of the intermediate resonant transitions. Thus
they have measured

Pc (7Pg/2) 0 ~ 55 + 0 ~ 05

Pc '(7P3/2) = +0. 60 + 0.05,
which may be considered in good agreement with
our calculations. We have used for the 7P reson-
ances the transition wavelengths indicated on the
Moore tables which are 21946.66 cm ' (4556. 5
A) and 21 765. 65 cm ' (4594. 4 A) for the 7P»2 and

f /2 states, respectively.

D. Study of the ratio p

With the previous conditions P4-P5, Eq. (5.17)
becomes

(2) q ( 11P4+5P)+ 2P3P4
)~&11P(+5P, + 2P~P~+ QP, + 2PR))

'

(5.22)

This result has been predicted in earlier published
works. With the same arguments as previously,
we conclude that the maximum value of p' ' lies in
the interval (c/p, /2, ~~&/2), close to the 7P«2 re-
sonance because P& )P2. We note that the behavior
or p

' in this region is different of our previous
calculations, ' where the resonant enhancement of
p

' was not found. Thus the present predicted
values in the resonant region become comparable
with the experimental results (Ref. 2, Fig. 2).
This is a consequence of the introduction of the
spin-orbit coupling in multiphoton ionization. For
the other wavelengths in the off-resonance region,
especially in the region of the deep minimum we
could make the same observations as we reported
in one of our previous works. ' We do not present
more precise values of p

"because we do not know
the behavior of P& and P, very close to the 7P&&2

resonance and the relative values of P2 and P,
close to the 7P3i2 one. However, we can point out
the behavior of p

' near the deep minimum which
is explained by the rapid variations of the radial
matrix elements in this region. In fact, there
exist a greater number of possible channels for
linearly polarized than for circularly polarized
light. As a consequence, if one of the P, matrix
element is null, it would be possible to obtain
Wp )Wc' (i.e. , p '(I) and thus p

"canbe a
minimum. Also the great variations of the radial
matrix elements for frequencies lying close to that
region are such that they make possible the exis-
tence of a wave number (d corresponding to P&

=-2P2. Thus p
' can possess a maximum in that

region as was previously pointed out and that is
plotted in Fig. 3. We can also compare our theor-
etical values of p "for those resonances (extra-
polated from the calculated values close to the re-.
sonant wave numbers) with the experimental ones'
and the theoretical values obtained with different
methods" (finite summations, QDM, oscillator
strengths and model potential) (see Table III). The
discrepancy between the experimental and our own
theoretical values for the 7P&&2 resonance may be
explained in two ways. First, according to the ex-
perimental information indicated in the preceding
section, the laser light is not 100% right-hand cir-

TABLE III. Ratio between the generalized transition probabilities per second on the two
intermediate resonances 7P3i2 and 7P~ ~2 for circularly and linearly polarized radiation. In
the present work, the predicted values are calculated close to the resonances E(7P3&2)
—E(6Sf/2) 21946 66 cm or 4556 5 /( and E(7Pf/2) —E(6S&/z)=21765.65 cm or 4594.4 A. .

p(2) C
w(»

g (2)I
~(2)~7P )
V' '(7'�(2)

Expt.
Reference 4

1.22 + 0.01
1.13 + 0.01

Theor.
Reference 5

1.28
1.36

Theo r.
Reference 6

1.23-1.28
1.33-1.36

Present work
(Theor. )

1.23-1.24
1.32-1.39
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cularly polarized, causing a weak contribution of
photons with left-hand polarized light, a fact that
makes possible transitions with the selection rule
~re= -1. This fact results in a we3kening of the
circular light contribution in the ratio p' ' = WP'/
8'~" which tends to diminish its values. Secorid,
the examination of the schemes (5.12) and (5.13)
for circularly polarized light shows that there are
more possibilities for the two-photon'ionization via
the 7P»2 intermediate state than there are for the
7P«2 one. This fact masks the influence of left-
hand polarized. photons for transitions through the
7P3(2 state making those matrix elements in ex-
pression (4.7), where the 7P«, intermediate state
enters, more sensitive to the mixture of polariza-
tions.

VI. SUMMARY AND CONCLUSIONS

In this paper we have developed a theoretical
analysis of the two-photon ionization of alkali-
metal based on the Green's-function formalism
using the quantum-defect theory extended to the
spin-orbit coupling, which has not been done be-
fore. The essential points of the method may be
summarized as follows. In the "effective central
potential" V„&(r) formula (3.3b), the spin-orbit
term converges to zero faster than 1/r, thus in the
framework of QDM approximations, the Green's
function given by (3.6) may be considered as an
exact solution of the corresponding differential
equation for x &x,. This yields correct informa-
tion about real bound and about virtual states, and
also for the continuum by extrapolation, where the
departures of the Coulomb potential are considered
by introducing the non-Coulomb phase shifts 5&„
when the quantum defects p, are obtained from the
study of measured energy states related to series
of quantum numbers (jl). In that sense, the ma-
trix elements entering in the Green's function may
be accepted as reliable as are the numerical re-
sults here presented.

In the resonant region, reasonable agreement is
obtained between the predicted values obtained
here and the measured ones as is shown in Secs.
VC and VD. In the present analysis, neither a
finite laser beam bandwidth nor saturation effects
and mixing of polarizations were introduced, facts
that may explain the discrepancies for the elec-
tron-spin polarization values between the two re-
sonances (Fig. 5). On the other hand, in the off-
resonant region, several observations can be
made. As is shown in Fig. 1, annulment in the
generalized cross section for the circularly polar-
ized radiation in the range from 20250 to 20 500
cm ' is suppressed, similarly the zero of the ratio
circular to linear p

' (Fig. 3), since the matrix

elements of the different allowed channels are not
zero at the same photon energy. Thus the influ-
ence of the spin-orbit coupling is relatively im-
portant there. The electron- spin polarization
PP' shows very rapid variations (Figs. 4 and 1) in
the region about the cross-section deep minimum,
presenting both the minimum (--,) and the maxi-
mum (+1) values in a short wave-number interval,
behavior that is similar to that observed on the re-
sonances, but the physical explanation is quite
different. While in this last region these values
are due to the dominance of the 7P«2 and 7P»2
states, respectively, on the deep valley charac-
terized by virtual transitions, all the intermediate
P states in the infinite summations contribute in
such form that the interferences are destructive.
However, the behavior of the transition rates re-
lated to a well defined final spin state, given by

,W and W ' [see Eq. (3.17)], is not exactly the
same. Indeed, the minima of, R" ' and W ' do
not occur for the same wave number, since, R' '
reaches its minimum nonzero value before that of
8' ', which is actually equal to zero. This fact

explains in one hand that Pc ' (min) e-l, but on the
other hand that Pc2' (max) =+1.

The comparison of very recent experimental
work to our theoretical predicted values of W '/
E for linearly polarized light has been made on
Fig. 2 in the off-resonant region. We also report
on Table I the comparison between previous ex-
perimental results' and other theoretical values.
The new experiment of Saclay group shows that the
deep minimum actually exists- as is predicted in
this paper. This result may lead to the conclu-
sion that the Granneman et al. ' experiment in the
off-resonant region should be considered as being
superceded. The reason for such a mistake can
be found in the following remark: Close to the
wavelength corresponding to the minimum, there
exists a one-step ionization process of the mole-
cule Cs2 which masks the two-photon atomic tran-
sition -at the laser light intensities used in the ex-
periments of Ref. 1. The similar behavior of the
deep minimum is also obtained in another theore-
tical analysis where a model potential and the
Green's-functiori formalism on the basis of the
Sturmian expansion was used. Similarly, the work
of Rachman et al. , where comparison between
measured and predicted values is made for differ-
ent cases of two- and three-photon ionization of
alkali-metal atoms including the electric quadru-
pole contribution, shows the minimum. In order
to attempt to explain the strong discrepancy be-
tween the second-order perturbation theory and the
previous experimental results, ' two main theories
have been advanced: Firstly, Theodosiou and
Armstrong' introduce time dependence by using a.
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sudden coupling between the atomic states and the
field, an assumption that is not fulfilled by the
experimental conditions described by Morellec
et al . Secondly, Armstrong and Eberly ' studied
the effects of laser bandwidth in the case that only
two distinct near-resonant channels of ionization
exist as intermediate unperturbed states, but this
has not been found at all and thus this last explan-
ation seems to be irrelevant.

In the present work, we obtain the essential fea-
tures of the experiment, i.e. , the existence of the
interference destructuve effects and the deep min-
imum. Good agreement has been found for the
value corresponding to the minimum of the gener-
alized cross section for linearly polarized light.
On one hand, the examination of Fig. 2 shows that
the theoretical curve related to the deep minimum
region is displaced about 500 cm ' (less than O. l
eV), but on the other hand, a very good agreement
is found far from this minimum region with re-
spect to the experimental results on the low inci-
dent-photon-energy side. For instance, for the
wavelength value X= 528 nm (2.348 eV) the mea-
sured values of Wl, '/E for the second harmonic
of a single mode linearly polarized Nd ' glass la-

ser were, respectively, (6.2~2. 6) and (7.1+3)
&10"cm s photon for a cylindrical and spherical
focusing, whiie the predicted value obtained in the
present work is 6.598&10 "cm- sphoton . A
possible explanation of the previously indicated
difference may be due to the fact that we have not
introduced higher-order effects. On one hand, it
is well known that these effects are very impor-
tant on the resonant region for a few number of
dressed states which are strongly mixed. On the
other hand, far from resonances, the shift and
broadening of the coupled atom-field states are
weak, but in this case all these states occur with
the same weight in the expression of the general-
ized cross section, thus leading to a cumulative
correction which may become important. This
then suggests possible research on the influence
of higher-order effects in the off-resonance
region.
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