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Charge transfer in proton-hydrogen-molecule collisions
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Charge transfer into a number of excited s states of atomic hydrogen by proton impact on hydrogen molecule has
been studied for both gerade and ungerade transitions of the molecular ion for the energy range 50 keV to 5 MeV.
Using a contour integral representation of the hydrogenic wave function, the molecular Brinkman-Kramers
amplitude has been expressed in a closed form, while the molecular Jackson-Schiff' amplitude involving proton-
proton interactions has been reduced to a one-dimensional integral over the real variables. Just as in the case of
ground-state formation of hydrogen atoms, molecular effects play a significant role in the case of excited-state
capture of an electron; and a hydrogen molecule cannot be regarded as a pair of independent hydrogen atoms at any
energy in the considered range. The cross sections at a particular energy satisfy the inverse n law approximately.
The charge transfer involving the gerade transition of the molecular ion is the most important process; although,
depending on the choice of the molecular wave function, there is a 10-28 % chance of the charge-transfer process
involving the ungerade transition.

I. INTRODUCTION H'+ H, —H(nlm)+ H, '.
The study of charge-exchange processes is im-

portant in understanding various physical pheno-
mena occurring in planetary atmospheres, in
interstellar medium and in plasma devices. This
has gained further impetus for its role in the
production of high Rydberg states of atoms. Be-
cause of its simplicity, charge-transfer studies
for proton-hydrogen-atom collision continues to
draw attention of theoretical physicists. ' It is
difficult, however, to measure these cross sec-
tions in atomized gases and as such there has
been a number of experiments' on the charge
transfer in proton-hydrogen-molecule collisions.
For comparing theory with experiment, it has
been customary to assume that a hydrogen mole-
cule behaves like a pair of independent atoms.
Naturally, the question arises as to whether .it is
justified to regard a hydrogen molecule as two
independent hydrogen atoms. To resolve this
question %ittkower et a/. ' performed an experi-
ment and showed that the molecular charge-ex-
change cross section o„ is (2.40+0.15) times the
atomic cross section 0„ in the energy range 110-
250 KeV. This contradicts the conclusions of the
theoretical work of Tuan and Qerjuoy4 for E& 400
KeV. Recent calculations of Ray and Saba' on the
ground-state capture of an electron from mole-
cul.ar hydrogen shows that o„=2o„at no energy
and their calculated o~ is in close agreement
with the experiment. ' There has, however, been
no theoretical calculations (to our knowledge)
for the capture of electrons into excited states of
the formed hydrogen atom in the process

The purpose of the present investigation is to
study the nature of the charge-transfer cross sec-
tion for capture of an electron into any excited
state of the formed hydrogen atom. In particular,
we are interested in (i) checking whether a hydro-
gen molecule may be considered as two indepen-
dent hydrogen atoms for excited-state capture and
(ii) the behavior of the total cross section o„as
the principal. quantum number n of the formed
atom increases includirig the asymptotic case
(n~ co)

Since our problem involves a many-body sys-
tem, we cannot expect an exact solution of the
relevant Schrodinger equation. %e have thus- used
the first Born approximation (FBA) to study this
problem. ' For rearrangement collisions, whether
the FBA. appropriates the exact situation or not
is indeed related to the convergence question.
Furthermore, it has been well known' for a long
time in the context of proton-hydrogen-atom
charge transfer that neither the Brinkman-Kram-
ers approximation using only the electron-nu-
clear interaction nor the Jackson-Schiff approx-
imation using both the electron-nuclear and
nuclear-nuclear interactions is correct. The
main failings result from (i) the nonorthogon-
ality of the initial and final wave functions and
(ii) the nonphysical inclusion of nuclear-nuclear
interaction by Jackson and Schiff in the transition
matrix element when such a term should not in-
fluence the probability of charge transfer. In the
absence of any other calculations for the charge-
transfer process H'+ H, -+ H(nlm)+H, ', the FBA
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with all its l.imitations, however, does provide
useful estimates of cross sections possessing
the correct general characteristics.

The outline of the present paper is as follows:
In Sec. II, we derive the charge-exchange am-
plitudes using a contour integral representation
of the wave function of the formed hydrogen atom.
In Sec. III, we discuss the asmptotic nature of the
transition amplitude as g- . Section IV is de-
voted to the discussion of our numerical results,
while Sec. V gives concl. uding remarks.

2 8
II. THEORY

A,. Formulation

The Schrodinger equation for rearrangement
collisions of the proton-hydrogen-molecule sys-
tem may be written as (atomic units are used
unless otherwise stated)

I' 1, ( 1 2~a, + 1'r &= II'+&~ -&'n, + "/~ (1)=E)f'~
y

where H„, H» and H„are the Hamiltonians for
H» H, ', and H respectively; V,. is the prior in-
teraction and V& the post interaction.

The coordinates of this system are shown in
Fig. 1, where the numbers 1 and 2 represent the
two electrons in H, with coordinates F, and F„
respectively, while 4 and 8 are the protons in
the molecule separated by internuclear distance
p. C is the incident proton positioned a." 8, re-
lative to the center of mass of the molecule,
while R, gives the position of the center of mass
of the formed hydrogen atom, relative to the
center of mass of the H, ' ion. F, is the position
of electron 1 relative to C.

In referring to Fig. 1, V, may be written as

Vf. V&c Ac Bc 2c

E in Eq. (1) is obtained from the energy conser-
vation

E= Ir, /2p, +E~=k~ /2py+Er+E„,

where S„is the initial energy of the molecule,

FIG. 1. Coordinate system for the H'-H2 collision.
The letters represent the three protons, while the num-
bers stand for the electrons.

EI the energy of H, ' and E„the energy of the
formed hydrogen atom. k, and k& are the momenta
in the initial and final state, respectively. If
the projectile proton is highly energetic, we may
neglect the motion of the nuclear protons and
thus we may consider them to be infinitely mas-
sive. In that case the initial reduced mass p,
and final reduced mass p& will be given by

p., =M, @&=M+1,

where M is the proton mass in atomic units.
Solving E(l. (1), the differential cross section

for electron capture, averaged over all orienta-
tions of the internuclear axis p of the hydrogen
molecule is given in the FBA. by

The factor of 2 in the right-hand side of E(l. (4)
occurs because either of the bvo molecular elec-
trons may be involved in the capture process, The
initial .and final. states are given by

qr =e "r "'y„(r„f'„P),
(5)

where (t)„, pr, and U„,„are the wave functions
for H„H, ; and H, respectively. For the mole-
cular wave function we take

(t~(f'r "a &)= +~~U)a(~r)U~(~a)+ Ua(((f'a-P))U((r((f'r+0[)+&fU((r(r, )U)(r()f'a —P[)+U.(ra)U. (lf'. +&~)j) (6)

where U„(r)= (Z„'/rr)' ~ exp( Z„g and -N„ is the
normalization factor given by

f)t„=1/(2[(1+c')(1+da)+4e~„]/~',

6e = (1+Za(p+ a Z))r p ) exp(- Z()r p)

The values of c and Z„depend on the choice of

l
wave function, ' for the Wang' wave function c=0
end g~ =1.166; for the Weinbaum wave function
c =0.256 and Z~ =1.193. The H,

' wave function is
given by

where



CHARGE TRANSFER IN PROTON-HYDROGEN-MOLECULE. . . 1809

U,(r) = (ZSI/v)" ' exp( —Z,.r),

NP (r) =1/[2(1 + ~,)]'",
a, = (1+Z,p+ —,

' Z',p'} exp(—Z, p) .

Z~ is the effective charge of the molecular ion.
The plus sign in the superscript of ÃI refers to
the ger ade state of H, +, while the minus sign
refers to its ungerade state.

Using the wave functions given by Eqs. (6) and

(7) and the interaction V, given by Eq. (2), the
capture amplitude for a particular orientation
of the molecule may be expressed as "

&y& ~V;[y,}=I,+I,+I +I, , (8)

(10)

(12)

R+ ~i 0I ~ P/2 g ~ & at~//2
A

B~s = N NM [(1+ c )6 ~M + (c + 1))(IM(p)], (14)

(15)

L(p) e'"'"f f(('=„F) , d(', d(', ,
1 3

nlrb 1r 3 1 3 r

1"'r3
1

cj„g — Flr F3
I p p ~

QVld13 r
1 3

f(r„1',)= exp[i( —5' 8, + P F,)]U (r,}U„(r,}, (17} M&" =It' II

MJB ~k/I +J $2

(18)

Again, the plus sign in the superscripts of 8„
and R~ refers to the gerade transition, while the
minus sign refers to the ungerade transition.
The first term I, on the right-hand side of Eq.
(8}arises due to the capture of electron 1 by
virtue of the interaction V,c between the electron
1 and the incident proton C. Thus I, may be
called the molecular Brinkman-Kramers (MBK)
amplitude in analogy with the atomic case. The
proton-proton interactions (V~c+ Vsc} give rise to
two terms I, and I,. Though it is not strictly pos-
sible to identify which proton binds electron 1,
roughly we may thiak of I, as arising due to the
interaction between the incident proton and the
proton to which the electron 1 is bound. (I,+I,),
therefore, may be interpreted as the molecular
Jackson-Schiff (MJS) amplitude in anal. ogy with
the atomic JS (Jackson-Schiff) matrix elements.

The third and the forth terms I, and I, together
may be thought of as representing capture of
electron 1 from one of the atoms as a result of
the interaction between the incoming proton and
the other atom. The integrals involved in I, and
I4 are very difficult to compute. Moreover, these
terms do not have any analog in the atomic case.
We have therefore neglected these terms, hoping
of course that their contributions would be insigni-
ficant compared to those of the other terms.

The molecular Brinkman-Kramers differential
cross section do~a/dQ and the molecular Jack-
son-Schiff differential cross section doM~/dQ
can then be obtained from Eq. (4) on replacing
((C)~ IV, Ig, ) by I, and (I, +I,), respectively. Thus

J(()}=e '"""~ fy(e (')g(F F „(}}d(',d(', „, „
((e„~,;p)=- fdr /(((( )+U((,+(}}}

x I.U„(f', + P) + c U„(f",)],
)F, —F2 —F3t

where

I~ ="'"'~(It }'[1+ (~p)]
k

ki
(20)

with R~ denoting gerade transitionand Rc ungerade
transition of the molecular ion.

e-k~-ki,

&, =8(Z,ZM}'"/(Zr+ ZM}'

X~M(p) = 3 [Z~(pv —4ZM)e +8 (Z~Z„)'

8. Evaluation of the integrals I„I~ and I«

For evaluation of these integrals we use a con-
tour integral representation of the Laguerre poly-
nomial and write the hydrogenic wave function as

U, (r) =N„, r'P", ( cso8)e' ~in'
271 f

2

+ Z„(pv +4Z, )e '"] (21)(x- 1)C1

where the contour C, includes the point x =1. The
normalization constant N„, is given by
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with

(y'"'(n —l —1)l 2l+1 (l —m) I) ' '
22'n(n+l)l 4w (1+m)f )

y„=l/n, y. =y„x.

$=ng =0. Taking the Fourier transforms of
exp( —Z~r, ) and exp(- y r, )/r„ f„„may be ex-
pressed as

1
I„M= 16i N„ooz~ (wz~)'

+ Z~)
W ith this representation of U„,„(r), I„,„, and J'„,
given by Eqs. (15) and (16) may be expressed as

2wi i w c, (x-1)" '

X 3) d„d„3'r3

2wa iw I c (x-1) '
1

(x+1 " 1

c, ~x-1 P'+y„'x' ' (24)

The integrand contains three singularities —two
simple poles at x= aiP/y„and a pole of order n
at @=1. We note, however, that the contour C,
encloses only the singularity at x=1. The integral
may therefore be easily evaluated by taking an
infinitely large contour enclosing all the three
singularities and applying the residue theorem.
The result is

x lm( li 3) dF dF (28)
~p p) 1 3

where

P,„(F„F)=3exp(-i ~F, +iP ~ F, -Z„r, —y r, )

16w(Z„'ys)'n sinn8
n00 (~2+ Z2 )2 P

7

where

tan8 = 2Py„/(P' —y'„) .

(25)

(26)

x r,' P, (cos 8, )e' ™~s

In this paper we concentrate on the study of the
zs-state captures only. For this case we have

For the evaluation of J Op we again take the Four-
ier transforms of exp(-Z r, ), exp(-y r, ), and

1/IF, —F, I. Thus

tloo + ~ ep (+ ] ey S2 Q Q + Q Q +
(27)

The three-dimensional integral over 8' may be done analytically by the Lewis" method. But then we will
be left with a contour integral which is difficult to handle numerically. On the other hand if this three-
dimensional integral is reduced to a one-dimensional integral according to the prescriptions of Lewis,
the contour integral can easily be evaiuated. Following the l.atter procedure we get,

8 ~,q, & "
d

(x+1) ' 1
. (y'.Z'„)' ' dy dx

1

(28a)

where

N3

E= Dy(z„y+ 1),
G = &y'((~ P)'+ Z~)+—P' l2z~y+11, -

~2+ g2

(28b)

The integrand contains three singularities —a
pole of order n at x=1 and two simple poles at

little algebra,

where

M 0

A = (Z+ y )" '/(Z —y )~' 8 = (GE —E')'~'

Z=(-Z+iE)/E .

(29)

x= (1/y„E)[—++i (QE —& ) ]
The contour C„however, encloses only the
singularity at x=1. In order to evaluate the in-
tegral over the contour C„we again take an in-
finitely large circle enclosing all the singularities.
Employing the residue theorem, we get after a

HI. ASYMPTOTIC FORM OF THE SCATTERING
AMPLITUDES

In the case of atoms, the cross section for cap-
ture into the gth state is assumed to be propor-
tional to n~. This behavior, however, is evident
only for large quantum number z and very high
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tan8=2y„/P .
Since y„ is very small, 8 = 2y„/P. Equation (25),
therefore, reduces to

—16m(Z„')"' . 2
lim n'~'I„oo=

( 2 Z, ), sin— (30)

For the behavior of J„~, we note that

(Z+ y )n+1
lim A = lim "-„,= e'/z

(Z —y„)" '

We have, therefore,

him m
*J„=—16wMz„e f dy,

7f At OO hf 0

(31)

where, now, 4= exp(2/Z) and B remains the
same as before.

incident energy. Let us, therefore, study the
behavior of the cross sections for excited-state
capture from the molecule. As n tends to infinity,
y„= 1/n tends to zero. Hence Eq. (26) gives

2

Cl

IV. RESULTS AND DISCUSSIONS
I

2—e (radians)

I

4

For calculations of the cross sections, the
effective charge of the molecular ion H, ' has
been taken to be Z,. = 1.4. A different value of Z, ,
for example, Z,. =1.228 did not alter the results
significantly. For the wave function of the hydro-
gen molecule, we have taken Z„=1.193 and c
= 0.256, although we have studied the effect of
other wave functions on the cross sections. For
example, the Wang wave function does not change
the results for gerade transition significantly.
This, however, affects the results in transitions
to ungerade states of the molecular ion as we
shall see in the discussion of integrated cross
sections below.

A. Differenti'al cross sections

Figure 2 shows the plot of n-cubed differential
cross sections (DCS) versus scattering angle 8

(multiplied by M/m) for both the gerade and un-

gerade transitions of H, ' at the impact energy
X=100 keg for n-~. The MBK DCS for both the
gerade and ungerade transitions decrease mono-
toniqally from a peak in the forward direction
with the increase of scattering angle 8, although
the ungerade DCS is at least an order of magni-
tude less than that for the gerade transition
throughout the angular range considered. The
MJS cross sections on the other hand, fall off
very rapidly from the peak value in the forward
direction and becomes zero at M 8/m —0.75.
These MJS curves again rise to a maximum and
then fall off smoothly. The MBK peaks in the

FIG. 2. n-cubed differential cross sections (in units
of ap) for both gerade and ungerade transitions of H2'
for n ~ at the impact energy E=100 keV.

forward direction are always higher than the
corresponding MJS peaks. The zero in the MJS
cross sections occurs because of the cancellation
of the contributions arising from the electron-
proton and proton-proton interactions and as
expected from Eqs. (18) and (19) this occurs at
the same value of the scattering angl. e for both
the gerade and ungerade transitions. The zero
has al.so been noticed in the FBA calculations of
charge transfer from atomic hydrogen by proton
impact. "- It may be noted, however, that the
occurrence of zero in the DCS is a result of the
first-order theory for it is found in the atomic
case that the zero disappears to varying degrees
when approximations of higher order in one in-
teraction or the other are employed. " We must
point out here though, that we have treated the
charge transfer from the molecule analogous to
that from atom and neglected certain matrix ele-
ments as discussed in Sec. II. It is not easy to
see if the DCS would vanish at the same value
of ~ or would vanish at all had we included those
terms.

Figure 3 displays then-cubed DCS for the incident
energy 500 keV. In this case we also find the
same features of the DCS as noted above except
for the fact that the forward peaks have become
sharper and the position of the zero in the DCS
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5 ENERGY 500 KeV

0- 2

Q 0
cg
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I f

2.5 30
fog, oE (keV)

I

3.5

FIG. 3. Same as in Fig. 2 except that the impact en-
ergy E=500 keV.

FIG. 4. n-cubed total cross sections in units. of mao
as functions of impact energy E in keV.

shifts towards the forward direction (M8/m= 0.63).
For still higher energies we note the same fea-
tures, namely, the forward peaks become sharp-
er and the zero shifts towards 8 =0. The major
contribution to the total cross sections comes
from the range 8=0 to the value of ~ where the
DCS becomes zero.

The n-cubed DCS for other excited s states,
i.e., for finite n shows similar behavior. As a
matter of fact, the differential cross sections for
different n differ so little amongst themselves
that they-are almost coincident with the DCS of
Figs. 2 and 3, although the total n-cubed cross
sections are found to differ slightly, particularly
for low n values.

B. Integrated cross sections

Ne denote the total MBK and MJS cross sections
for the gerade transitions of IJ2 by g~~K and g~~s, ,
respectively, while those for the ungerade transi-
tions are denoted by gM „and 0~s-, respectively.
Those cross sections are obtained by integrating
Egs. (18) and (19) over the scattering solid angle.
As it happens in all ion-atom collisions at high
energies and as we have already noted, the major
contribution to the total cross section comes from
very near the forward direction. Thus, in order
to facilitate integration over a very small angular

range by Gaussian quadrature method, we use t
instead of the scattering angle 0, as our integra-
tion variable, where

k,- being the incident momentum. The convergence
of the results has been tested by increasing the
number of Gaussian points.

Vfe have calculated gM~„, gMJs, g~K, and gMJ~ for
capture into a number of excited s states of the
formed hydrogen atom at different energies in the
range 50 keV to 5 MeV. For all finite n values
the cross sections are calculated with the use of
Eqs. (35) and (39), whereas for the asymptotic
cross sections (n- ~), the limiting expressions
as given by Eqs. (30) and (31) have been employed.
Figure 4 shows the behavior of the asymptotic
cross sections (n-~), where we have also dis-
played the cross sections for ground-state capture
from our earlier calculations' for comparison. To
get an idea about the behavior of cross sections
for low and intermediate n, we record the cross
sections for n=2, 8, 16, and ~ in Table I. It is
easy to find from this table that with the increase
of n, the n-cubed cross sections for excited-state
capture tend to a constant in a regular manner at
each incident energy. The n-cubed cross sections
for n = 16, for example, are quite close to the cor-
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TABLE I. The total g-cubed cross sections {in ~ao) for both the gerade and ungerade transitions of 82+. The notation
a(-5} imp)ies a ~10

16

100

200

500

1000

2000

5000

MBK
MJS
MBK
MJS
MBK
MJS
MBK
MJS
MBK
MJs
MBK
M'JS

MBK
MJS

8.79-

1.18
1.33
2.1S(-1)
8.84(-2)
1.e1(-2)
8.21(-4)
2.S8(-4)
1.V6(-5)
6.58(-6)
4.ss(-v)
2.o1(-v)
1.93(-e)
e.ev(-e)

8.87
1.20
1.45
2.28(-1)
e.vo(-2)
2.os(-2)
8.vo(-4)
2.vo{-4}
1.81(-S)
6.V2(-6)
4.61(-V}
2.o3(-v)
1.es(-e}
1.oo(-e)

8.87
1.20
1.46
2.28(-1)
e.v4(-r, )
2.os(-r,)
8.72(-4)
2.71(-4)
1.81(-5)
6.V3{-6)
4.61(-V)
2.03(-7)
1.es(-e)
1.oo(-e)

8.87
1.20
1.46
2.r,8(-1)
e.v5(-23
2.os(-2)
8.72(-4
2.71(-4)
1.81(-S)
6.73(-6)
4.61(-V)
2.o3(-v)
1.95(-e)
1.oo(-e)

5.61(-2)
1.1S(-2)
1.V1(-2)
3.27(-3)
2.49(-3)
5.35(-4)
6.18{-S)
1.84(-5)
1.V3(-6)
6.57(-7)
2.vs(-8)
1.23(-8)
1.4v(-1o)
7.65(-11)

s.o8(-2)
1.O3(-2)
1.vo(-2)
3.1e(-3)
2.S8(-3)
s 44(-4)
6.43(-5}
1.8e(-s)
1.vv(-6)
6.v3{-v)
2.80(-8)
1.25(-8)
1.48(-10)
v.6e(-11}

s.os(-2)
1.O2(-r)
1.69(-2)
3.18(-3)
2.59(-3)
5,44( 4)
6.44(-5}
1.90(-5)
1.V8(-6)
6.73(-v}
2.8O(-8}
1.r,s(-8)
1.48(-1O)
7.69(-11)

s.os(-2)
1.or, (-2)
1.6e(-2)
3.18(-3)
2.59(-3)
5.44(-4)
6.44(-s)
1.90(-5)
1.78(-6)
6.v3{-v)
2.80{-8}
1.25(-8}
1.48(-10)
v.69(-11}

responding asymptotic values (n- ~) at all ener-
gies. Thus the n ' lam for the total-capture cross
sections is satisfied throughout the energy range
considered. Experiments on the excited-state
captures in the high-energy region are, to our
knowledge, very rare; although there have been
some experiments in the low-energy region. For
instance, there are the data of Hughes et al."on
Ss and 4s captures in the energy range 5-120 keV
and that of Bayfield' on 2s capture in the energy
range 2-VO keV. The agreement between the FBA
and experiments can not be expected to be good in
the low-energy region. Thus we note, for example,
that the experimentally determined" n'o:(ls —2s)
at 50 keV is (1.68V6 +0.1V28), whereas our calcu-
lated n'o~~s (ls —2s) is 1.180V.

In order to test whether a hydrogen molecule may
be considered as a pair of independent hydrogen
atoms for purposes of charge transfer, we have
calculated the cross-section ratios

&, = o„sz(ls -ns)/2a~z(ls -ns)

et a/. "performed an experiment on 2s capture in
which they measured the cross-section ratio

Q, = o„(ls—2s)/o„(ls —2s),
where o„(ls -2s) denotes the cross section for
capture into 2s state from atomic hydrogen and

'.l.5

1.4-

13-

R2 = o~s (ls -ns)/2oAJs (ls ns) (82)

where the values of the atomic BK and JS cross
sections o„sz(ls -ns) and o~s (ls -ns) have been
taken from Sil et al.". Figure 5 shows &, and&,
for 2s capture. The variation of R, and B, with
energy is due to interference between the two-
capture amplitudes from the two atomic centers in
the molecule. It is also seen that none of these
ratios &, and A, is unity, as one would expect if
the hydrogen molecule mere to be treated as a
pair of independent hydrogen atoms. Similar be-
havior is noted for other s-state captures. Ryding

10 R

0,9
1,5 2.0

I I

2.5 3.0
log, E (ke V)

I

3.5

FIG. 5. Ratios P~ and P2 (see Eq. (32)] as functions of
ixnpact energy 8 in keV.
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o„(ls—2s) that from molecular hydrogen. Their
measurement, however, was limited to the energy
range 40-120 keV. The agreement between our
calculated values of Q, and those of the experiment
is quite good within the limits of experimental er-
ror. For example, at 50 keV, the experiment gives
Q, = (0.59+0.12), while our theoretical values are
Q"" = 0 534 and Q,""= 0.510. At 100 keV, we
have Q,'"~' = (0.34 + 0,12) Q~s = 0 434 QM&K

=0.429. Thus a hydrogen molecule can not be re-
gared as a pair of independent atoms for purposes
of charge transfer.

In order to assess the importance of ungerade
transitions we look at the ratio Q, = g~s/o ~~e.
Equation (19) gives

[(&,~-X, ) (1- c)1'(1+ a)(a. -a,)
[(& „IX+,„)(1+c)]'(1-&,)(a, +a, )

with

a, = I„~+J„~2dg,

I„~ + J m 2go O'P

because of the occurrence of j,(np) in the inte-
grand, a, tends to zero in the high-energy limit.
Thus the high-energy limit of, the above ratio Q,

is

which is independent of energy E and principal
quantum number n. It is obvious from above that
one obtains the same Mgh-energy limit for the
ratio a~„/o„'e„. Since the major contribution to
the total cross section comes from a very small
angular range, jo(n p) may be assumed to vary
very slowly in the angular domain of interest and
hence it may be taken outside the integral for a, .
Thus the integral a, vanishes approximately at
the zeros of jo(c.p).

'

The ratio Q„ therefore, should
oscillate about the high-energy value Q, (E-~) with
rapidly decreasing amplitude and finally attain the
high-energy limit ratio. Figure 6 shows a plot of
this ratio Q, against energy for ground state and
4s-state captures. Curves b and d are for ground-
state captures calculated with Weinbaum and Wang
wave function, respectively, while curves a (Wein-
baum) and c (Wang) represent 4s-state capture.
The straight lines I and II indicate the high energy-
limit ratio for the Weinbaum and Wang wave func-
tions, respectively. All these curves show the
expected behavior except for the fact that Q,
varies drastically with different types of mole-
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FIG. 6. The percentage ratio of ungerade to gerade total cross sections. Curves b and d denote ground-state-capture
cross-section ratios calculated with Weinbaum and Wang wave function, respectively, while curves a ('Neinbaum) and
c (Wang) represent the ratios for 4s-state capture. The straight lines I and II indicate the high-energy-limit ratio for
the Weinbaum and Wang wave functions, respectively.
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cular wave function. Starting from a low value in
the low-energy region Q, reaches a peak —about
10%%up for the Weinbaum wave function and about 28%
for the Wang wave function —at 900 keV. As the
energy is increased further, Q, decreases and
then rises again, characteristic of oscillation of
j,(c.p) about the high-energy value Q, (E-~)—
about 19'%%uo for the Wang wave function and V% for
the Weinbaum. Physically, these peaks and dips
in this ratio Q, aredue to the constructive and de-
structive interference in the ungerade (and the
corresponding destructive and constructive inter-
ference in the gerade) transitions. We also note
that Q, for ground-state capture does not differ
too much from that for the 4s-state capture in the
case of Weinbaum wave function, although they
differ a little in the case of Wang wave function,
particularly in the low-energy region.

Since it is rather difficult to compute the Born
cross section for excited-state capture, Bates
and Dalgarno" estimated the Born cross section
for excited-state charge transfer from the hydro-
gen atom by assuming that

g~& (ls —ss) g»„(ls -ns)
g~s (ls- ls) gzsK(ls —ls}

Thus from a knowledge of both the ground state
and ns-state atomic BK cross sections and the
ground-state JS cross section, the ns-state atomic
JS cross section c ~s (ls -ns) may be evaluated.
In order to see whether such estimation is possible
in the case of charge transfer from molecule also,
we have calculated the ratios

g„~„(ls-ns)
c'MsK (1s —ls)

gMJ, (ls-ns)
g~, (ls —ls)

for both the gerade and ungerade transitions. We
find that R, becomes approximately equal to R, as
the impact energy increases. This conclusion is
valid for any n. A better estimation of the MJS
cross section c ~s (ls -ns} is possible, however,
even at low impact energies, if one assumes

g~s (ls -ns) o'MgQ (1$ -les)
gMJs (ls-2s) oMa„(ls-2s} '

The energy dependence of the ratio R, = o~s /o„s„
is similar to that found in the case of atoms. " For
a given excited state, B, increases as the energy
increases for both the gerade and ungerade transi-
tions. Also, as the energy increases A' =&", for.
any n. Furthermore A, is found to be approxi-
mately independent of n for any n& 1.

V. CONCLUDING REMARKS

To summarize, therefore, we have based our
work on the molecular Brinkman-Kramers and
molecular Jackson-Schiff amplitudes. Within the
framework of these approximations, we have cal-
culated the charge-transfer cross sections for
proton-hydrogen-molecule collisions in which the
hydrogen atom formed is in various excited 8
states including the asymptotic case (n-~}. In the
case of excited-state formation of hydrogen atom
also, a hydrogen molecule cannot be regarded as
a pair of independent hydrogen atoms at any energy
just as in the case of ground-state formation of
hydrogen atoms. We also note that the charge-
transfer cross sections satisfy inverse n' law for
large n. In the energy range considered (50 keV-
5 MeV), the charge transfer involving the gerade

'

transitions of the molecular ion. is the most impor-
tant process, although depending on the choice of
molecular wave function there is a 10-28%%u~ chance
of the charge-transfer process involving the un-
gerade transition. As we have already pointed
out in Sec. I, the Born matrix elements are evalu-
ated using initial and final wave functions which
are not orthogonal to each other. A proper calcu-
lation should take into account the effect of non-
orthogonality of wave functions. Work along this
line is in progress and will be reported later.
From the work of Band, ' however, i.t appears that
the main conclusions of this paper will remain
valid even when the effect of nonorthogonality is
taken into account, at least in the high-energy
region.
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