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The present calculation is the first application of a Green's-function approach to resonance states based upon the

direct use of Siegert boundary conditions. Consequently, the emphasis is on methodological aspects rather than the
description of a great number of resonances. Of particular interest is the treatment of inner-shell vacancies and their

satellites as resonance states. We have evaluated the energies and widths of one electron scattering resonance and

three Auger-type resonances all of 'S symmetry.

I. INTRODUCTION

The recent interest in energies and lifetimes of
inner-shell vacancies is partly stimulated by quite
a number of heavy-particle collision experiments.
Accompanying theoretical calculations, which can
account for the positions and intensities of the re-
sulting Auger lines, are expected to provide infor-
mation about the initial collision process which
created the inner-shell vacancies in the first
place. Contrary to the situation encountered in
the calculation of the energies of ground states and
low-lying excited states of atoms and molecules,
the methods applied to the energies and lifetimes
of inner-shell processes are less developed. It
is quite clear that any method based solely on an
independent particle model like, e.g. , Hartree-
Fock (HF) is not adequate for treating a, process
as complicated as the decay of an inner-shell
vacancy although sometimes HF energies are
surprisingly good. ' As pointed out by Kelly
this xnay be due to a partial cancellation between
relativistic and correlation energy contributions
and thus somewhat deceptive. This inadequacy of
the HF. approach manifests itself more clearly
in the results for the Auger intensities which are
usually quite poor. Kelly was able, however, to
obtain much better agreement with experiment
by the inclusion of correlation effects through a
lowest-order many-body perturbation theory which,
in the particular way it was carried out, included
also some higher-order contributions. The source
of remaining discrepancies with experimental
findings could not, however, be cleared up. It
seems quite appropriate therefore to develop
many-body methods which go beyond the approxi-
mations employed in previous theoretical work.

The present paper is a first application of the
method proposed in our companion paper to an
inner-shell vacancy of the beryllium atom. Hence-
forth we will refer to this paper as I, and refer-
ences made to the equations of the first paper will
be denoted by quoting the corresponding equation
number preceded by I. The present approach,
which to our knowledge is quite novel, consists of
an extension of the standard one-particle Green's-
function technique (previously successfully applied
to the calculation of ionization potentials by Ceder-
baum and Domcke' and electron affinities by Kurtz
and Ohrn, for instance) to the treatment of meta-
stable states, namely, Auger type resonances and
electron scattering resonances. The necessary
analytical continuation of the Dyson equation onto
the complex plane is here achieved by very much
the same means we chose for the Schrodinger
equation in our fi:rst paper analyzing the Siegert
approach' and differs substantially from an altern-
ative method presented by Kinkier.

The purpose of the present publication is to
demonstrate that we obtain indeed the complex
eigenvalues corresyonding to both inner-shell
vacancies and electron scattering resonances
predicted in I. Further, we investigated the de-
pendence of the results on the size of the basis
set which consists of Slater-type orbitals (STO)
plus one Siegert orbital, the particular form of
which is explained in I [see (I-20a) for electron
scattering resonances and (I-30) for Auger reson-
ancesJ. The self-energy operator employed is
evaluated in second-order perturbation theory.
The effect of the summations to infinite order of
certain types of diagrams ixnplicitly brought about
by the solution of Dyson's equation has been eluci-
dated by Doll and Reinhardt and seen to be essen-

1795 1981 The American Physical Society



1796 PALMQUIST, ALTICK, RICHTER, CLINKLER, AND YARIS

tially a renormalization of the usual second-order
perturbation corrections.

The key quantities evaluated here are energy
differences between excited states of an (N+ 1)-
electron system and the ground state of the cor-
responding N-electron system. The excited states
for which our method has been designed all lie
above the continuum thresholds of the correspond-.
ing systems and have therefore a complex energy,
the imaginary part of which determines half of the
width of the resonance while the real part com-
pares directly to the experimental energy value.
It is true, however, that straightforward applic-
ation of our method in energy regions below the
continuum thresholds yields proper ionization
potentials and electron affinities as real solutions
of Dyson' s equation. The same results can, of
course, be obtained by intrinsically simpler
methods. Nevertheless, this property was a
welcome means to check the computations.

II. BASIS SETS

The basis sets used in the present investigation
are obtained by augmenting the basis set of
Sabelli and Hinze, which has been used also in
the work of Doll and Reinhardt. Thus it was pos-
sible to check our computer codes (in particular
the self-energy part) by simple recalculation of
their results for the ionization potentials of Be
and He. The exponent of each STO added to the
original basis orbitals was determined by the —ad-
mittedly rather arbitrary —requirement that
the overlap of the new orbital with all the rest
of the basis should not exceed 90%." Of the two
choices, namely, either to increase or to decrease
the magnitude of the exponent starting from a value
already present in the basis, we picked the latter.
This way we obtained basis sets which tend to ac-
cumulate virtual Hartree-Fock-Roothaan (HFR)
orbital energies in the low-energy region. Owing
to the lack of a minimal energy priciple for the
type of excited states we are calculating here, this
feature provides some p priori justification for
our selection priciple.

The data on the basis parameters are collected
in Table I. In the course of this work we frequently
refer to a particular basis by a combination of
three numbers, e.g. , l-rn-n, referring by this to
a basis consisting of the first ) s-orbitals, the first
m p-orbitals and the first g d-orbitals of those given
in Table I. The radial functions of the STO' s are
given by

(2~)2wi 1/2
R(r) =

( ) l
r" 'e '".

As described in I, for the calculation of reson-
ances, the STO basis has to be augmented by one

TABLE I. The parameters of the Slater-type orbitals
used in the present work.

0
0
0
0
0
0
0
1
1
1
1
1
1
2
2

1
1
2
2

1
1
2
2

2
3
3

5.4297
2.9954
1.1977
0.8923
3.5810
0.3340
0.1670
5.6998
2.7850
1.4387
0.9819
4.1500
0.4800
1.2662
7.8314

complex Siegert orbital P~, the radial part of
which is given by

( ) [I ( p ~)J
p['(u —vf/ J (2)

with Imk &0 for resonances of both kinds. The
parameter nz will be discussed below. This form
corresponds to the approximation employed pre-
viously by Miller and co-workers. The reader
is referred to I for further details. For reson-
ances of the negative ion the relation between the
complex wave number 0 and the energy parameter
e of the Green's function is given by

while for positive-ion resonances we have

(4)

with T, being the (experimental) two-electron con-
tinuum threshold of the neutral system.

III. THE CALCULATION

The calculation proceeds in four major steps:
(i) Solution of the HFR equations to obtain a set
of occupied and unoccupied HFR orbitals with
corresponding energies. (ii) These results are
then utilized to set up the self-energy matrix
given in (I-25). In this step it has proven to be
advantageous to store the necessary two-electron
matrix elements in the HFR representation in
order to evaluate the self-energy matrix elements
for various values of the energy parameter effi-
ciently. Except that the energy parameter is com-
plex, everything so far is the standard Green' s-
function technique for the calculation of ionization
potentials. (iii) The third step consists of the cal-
culation of the borderline matrix elements of the
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complex matrix given in (I-28). These matrix
elements involve the Siegert state explicitly. This
step will be commented on below. (iv) Finally,
we search for self-consistent eigenvalues of the
complex matrix set up in the previous step by
repeated diagonalization for various energy values.
In this step we utilize a second-order polynomial
fit to predict the position of the self-consistent
root in the complex energy plane. Usually only
a few iterations (often only a single iteration) were
sufficient to locate it with reasonable accuracy.
But, of course, we had an excellent idea where to
initiate the search for Auger resonances. In the
last two steps we made use of the HFR orbitals
obtained in the beginning in quite another sense,
namely, as a basis set (together with the Siegert
-orbital} for the diagonalization of the Layzer op-
erator given in (1-4}.

In the present exploratory investigation we have
taken advantage of the convenience of a cut-off
function of the simple form

j(r) = 1 - exp( -Pr), (5)

which leads to closed form expressions for all
integrals. The linear rise of the Siegert orbital
at the origin introduced by the choice m =1 is
expected to cause a certain amount of strain on
the STO basis in the variational calculation re-
sulting in a noticeable P dependence of the results
(at least in connection with the small basis sets
used so far) which should be much reduce'd, how-
ever, if a higher power of r in the exponent is
used. Since the P dependence is not critical, as
will be demonstrated in the next section, we ac-
cept some P dependence in order that all two-
particle matrix elements containing the Siegert
orbital can be evaluated analytically rather than
numerically. Owing to the complex nature of the
Siegert orbital the corresponding Slater integral
&' ' is complex also. The explicit formula is
given in the Appendix.

IV. RESULTS

The results of the present investigation are pre-
sented in Table II. The dependence of the (self-

consistent) resonance eigenvalue on the value of
the cut-off parameter P has been investigated in
some detail for the case of the first Auger-type
resonance at about -125.5 eV. Employing the
smallest basis set (5-5-2) for which the depen-
dency is expected to be more pronounced than for
larger basis sets, we observe that there exists
a relatively broad interval (10 & P ~ 20) in which
the calculated width does not change appreciably.
Our findings are presented in Fig. 1. It should
be mentioned also that for an (admittedly exag-
gerated) value of P = 100.0 the calculated width
has shrunk to 0.788 x10 ' eV. While this behavior
finds a simple explanation in the fact that the
rapid rise of the Siegert orbital at the origin can-
not easily be counter balanced by the rest of the
limited basis, one should realize this parameter
dependency and make sure that reported results
are always taken from a region of stability with
respect to changes in P.

It is expected that basis set dependence becomes
weaker and weaker for larger basis sets. Although
our present computational facilities prohibit an
exhaustive investigation of this point we are able
to demonstrate moderate stability of results for
Auger-type resonances even with the two small
basis sets employed in the present work. The
energy of the first Auger resonance obtained
from the 5-5-2 basis is -125.4764+ i0.0112 eV,
while the value obtained from the larger 7-6-2
basis is -125.4734+ i0.010 24 eV. The cut-off
parameter is P =10 in both, cases. A similar
stability is not expected for electron scattering
resonances, since the Sabelli-Hinze basis (i.e. ,
our 5-5-2 basis) being set up for ground-state-
energy calculations does not contain orbital expo-
nents appropriate to describe excited orbitals
(e.g. , 2p, 3s, 3d} of the negative ion. The small-
est exponent is $ =0.8923 in the 5-5-2 basis.
Mainly for this obvious deficiency of the 5-5-2
basis we do not report any electron scattering
resonances obtained from the smaller basis.

F 2( t0 a.u.)

TABLE II. Resonance energies of the positive and
negative beryllium ion obtained from the 7-6-2 basis
set. l.O-

Re~ (eV) Im. &eV)

lO 20 P
-125.47
-&37.45
-139.98

11.72

0.0102
0.000 13
0.003 3

-0,0142

FIG. 1. The dependence of the width of the first Auger-
type resonance on the cut-off parameter P. This calcula-
tion employed the 5-5-2 basis of Sabelli and Hinze
(Ref. 10).



1798 PALMQUIST, ALTICK, RICHTER, WIWKLER, A%0 YARIS

V. DISCUSSION

Since the method employed in the present work
is quite different from previous calculations of
energies and lifetimes of inner-shell vacancies
the comparison to existing results is not straight-
forward and requires some commentary. To our
knowledge there are so far no data on electron
scattering resonances of atomic beryllium to com-
pare with. We therefore present our result (the
resonance at 11.72 —&0.0142 eV) merely as one
example showing that the formalism is capable
of producing resonance solutions corresponding
to that particular time ordering of the Green' s
function. A more detailed study of both the effi-
ciency of different approximations of the self-
energy operator and the dependence of basis sets
is currently being carried out for systems with more
experimental and theoretical data to compare with.

There are, however, some recent Ineasurements
of the energies of S Auger resonances of beryl-
lium" "as well as some energy calculations. ""
Combining the later measurements ' with the ten-
tative spectroscopic assignments given in the
earlier publication their findings are 123.63 eV
(ls 2s '), 135.10 eV (ls 2p ), 138.1 eV [(ls 2s S)3s],
and 140.5 eV II(1s 2s'S)3s], . The approximation
for the self-energy operator employed in the pre-
sent work does not allow for orbital relaxation.
We attribute most (if not all) of the 1. 5%%uo deviation
in the (ls 2s ) energy of our calculation to this
deficiency, since otherwise the result is relatively
stable, e.g. , with respect to an increase of the
number of basis orbitals, as pointed out in the
previous section. Furthermore, there is no way
to obtain the first satellite (ls 2p') in the present
second-order approximation of the self-energy
which allows only for two holes in the intermediate
state. It should be mentioned, however, that there
are alternative ways, namely, to calculate Auger-
type resonances as electron scattering resonances
from the doubly ionized system Be+'. This ap-
proach does allow for the calculation of this part-
icular type of metastable state even with a second-
order self-energy. This, however, has not been
attempted here. The energies of the other two
satellites, 137.45 and 139.98 eV, compare quite
favorably to the measured values. The stability
of these two results with respect to saturation of
the basis has not yet been investigated, since con-
trary to the case of the (ls 2s ) resonance it was
not possible to obtain these resonances employing
the 5-5-2 basis set due to the above mentioned lack
of exponents for a reasonable representation of the
3s orbital.

The comparison of the obtained widths to the only
two experimental numbers known to us of the low-

est Auger resonance, namely, the fluorescence
yield measurements of Dick and Lucas' and
Feser' is not really possible since the measure-
ments were done on solid beryllium. Even rela-
tively small admixtures of angular momentum /= 1
in the valence electron wave functions can cause
an order of magnitude increase in the flourescence
yield ~. ' Indeed, the observed, values of ~ =3.04
x10 ~20%%ua (Dick and Lucas) and &v=3. 6x10 +30%%uo

(Feser) are larger than the values obtained by both
Kelly (2.24 x10 ') and the present authors (1.01
x10 ) using the radiative decay rates given by
Kelly.

It seems therefore more reasonable to compare
the theoretical results directly. Kelly' s Auger
decay rate for the ls(2s)' S state (0.34x10 2 a.u. )
is approximately five times larger than the value
for the width I' of the Auger resonance obtained
here (0.753 x10 ' a.

,
u. ) using the 7-6-2 basis.

Since our results and those of Kelly are not in
agreement, a brief discussion of Kelly' s calcul-
ational method is in order. Kelly calculated the
decay rate by using a "Golden Rule" expression
employing a two configuration (ls2s"S and ls 2P'
S) multiconfigurational self-consistent field

(MCSCF) wave function as the initial state (which
is to account for the 2s-2p near degeneracy) and
a 1s ks HF final state. Fermi's Golden Rule
gives the lowest-order term in a perturbational
expansion of the decay rate ' about an uncorrelated
model discrete state embedded in a. continuum (in
an expansion of a complex pole of the resolvent
e —fI'/2 about 1 =0). However, recent calcul-
ations ' on autoionizing states of He have shown
the simple Golden Rule results to be grossly in
error. Furthermore, they found that in general
the golden rule predicts too large a rate for elec-
tron scattering resonances. This is attributed by
these authors to the general rule that second-order
perturbation theory usually "overshoots" the cor;
relation contribution since the various correlating
motions are uncoupled (remember that it is only
the correlation that couples the discrete state with
the embedding continuum). Kelly's investigations
of K Auger rates for Ne, for which atom detailed
experimental data exist, seem to indicate that
these conclusions hold for Auger resonances as
well as for the He resonances. After inclusion of
higher-order corrections, however, Kelly was
able to obtain good agreement with experiment.
While the present Siegert Green' s-function method
is intrinsically a more accurate method than
Fermi's Golden Rule, it remains to be seen if
a better approximation of the self-energy will
substantively change our present results.

There is a striking difference in the calculated
widths of the two satellites. The second-order
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approximation of g allows for a qualitative inter-
pretation if we rely upon the spectroscopic assign-
ments given in Ref. 13: While for the higher reso-
nance the 'S intermediate core state has vanishing
exchange contributions, a strong cancellation of
direct and exchange diagrams occurs for the lower
resonance'. It is to be expected that this difference
is much reduced if the present approximation of the
self-energy is abandoned in favor of a more so-
phisticated form for &.

In conclusion it is clear from these calculations
on.Be, the simplest system exhibiting an Auger
resonance, that the Siegert Green' s-function
method of I can be used to calculate the energies
and widths of both electron scattering and Auger
resonances. In future calculations we shall ex-
amine the effects of various improved approxim-

ations to the self-energy on these results. We

shall also employ this method to do calculations
on larger atomic and molecular systems where
experimental results are available to further
assess the method.
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APPENDIX

The following formula for the Slater integral involving Siegert orbitals is applicable provided that
Re(q+ g, ) & 0 with q=— ik:-

/

E &z& I (2f 2) . (2fn) ( 4)
~ ~3 s- &n+0 &x -~ n2+n4+E-& -

02vt4 &u

(2n2) - (2n3) - (2n4)- 40 &0
OO &n X

dz~ e 3 dy y e 4
-g -Lq+g+f )x y g2+g4+K-1 -&fP+g &y

4 0 4O

00 &n X X

+ T sf2+ff4-K - & )n +f4 &X ~ ff +K-1 - & q+fn3 )y l ~ ff3+K- i - & q+Q+p )ydxx e 2
~ dyy 3 e dyy e 3

0 40 0

((2K ) "2+'(2&,) '"3"(2f,)'"4'&' ' "' '( (ns-K)l(n + n +K+ v-2)! .

(2n2)!(2n3)!(2n4)! J „&(q+&3)"3 "' (q+ &2+ &3+ g&)"2 "4 " (v —1)!

(n, -K)!(n, +n, +K+ v —2)!
(q+&+C )"* ' ""( +&tq+C+t+C. )"**",'*"," '(v- &)!)

n2+g4-K'+ i

( 2 I(n&+n& —. K)!(n, +K+v —2)!
I (g +g )n2+n4-K-v+&( +g +~ +~ )ns+K+u-&( 1)!

(nq+n& -K) l (n3+K+v —2)!
( l+2l)"424'"'(q+v+i, +~, +~,)" '3"'(. 1)». —
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