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Scattering by a dipolar system: Divergence of cross sections at the critical moment for a point
dipole rotor

W. R. Garrett

(Received 28 October 1980)

It is shown that the quantum-mechanical problem of charged-particle scattering by a point-dipole rotor has

pathological behavior at and above the critical dipole moment wherein all partial-wave components of the solution

become undefined. The total elastic and momentum-transfer cross sections diverge at the critical moment, and, at
energies above thresholds, scattering in inelastic channels behaves similarly. Clarifications are made of some existing
contradictions in the literature on the quantum mechanics of continuum states for dipolar systems.

I. INTRODUCTION

The interactions of electrons with polar mole-
cules form an interesting subset of problems in
chemical physics; particularly from the standpoint
of molecular theory where a number of the features
of the quantum mechanics follows directly from
the long-range nature of the electron-dipole inter-
action potential. Indeed, conclusions that can be
drawn from the behavior of discrete and continu-
um solutions for a charged particle interacting
with a "pure-dipole" potential, or with a simple
dipole rotor, can in certain instances be carried
over to the theoretical treatment of electron inter-
actions with real polar molecules. Moreover, in
the theoretical treatment of specific polar sys-
tems, approximations can often be made such that
a given portion of the problem may be conveniently
approximated by a result from a simple dipolar
system. ' Thus, the discrete and continuum solu-
tions for a charged particle in the field of a sta-
tionary dipole potential and those for a charged
particle interacting with a dipole rotor are of in-
terest in the context of theoretical studies of polar
moleeules in addition to their interest as basic
"textbook" problems in quantum mechanics. With-
out belaboring the points unduly, it is beneficial
to the present discussion to note several features
of scattering solutions for the problems mentioned
above.

Massey' first established some of the properties
of the cross sections for scattering by. a dipolar
potential. He obtained the Born approximation re-
sult for inelastic electron scattering by a symme-
tric top dipole rotor. He noted that the first Born
cross section for elastic scattering by a pure-dip-
ole rotor vanishes and that one should expect in-
elastic cross sections for real polar molecules to
be much larger than the elastic component of the
total scattering cross section. Much later, Taka-
yanagi' extended the Massey result for scattering
by a linear point-dipole rotor. He obtained elosed-
form expressions in the first Born approximation

for inelastic, o( j - j+1) and superelastic,
a( j - j —1) scattering cross sections ( j = rota-
tional quantum number of the dipole rotor).

and
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where k is the initial wave vector of the electron,
k' and k" are the final wave vectors after inelastic
or superelastic scattering, respectively, and D is
the dipole moment of the linear point-dipole rotor.

Altshuler4 considered t'he problem of electron
scattering by a fixed, point dipole. He also worked
within the Born approximation and obtained closed-
form solutions for the differential cross sections
doB, and the diffusion or momentum-transfer
cross section a~, (averaged over possible orienta-
tions of the fixed-dipole scatter). His analysis
gave
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Although Altshuler did not discuss the total Born
scattering cross section, note that his result in
Eq. (3) yields a logarithmic divergence for oL',~
when integrated over scattering angle 8.

In a later study, Mittleman and Von Holdt' (MVH)
obtained exact solutions for the scattering of an
electron by a point dipole of fixed orientation. The
exact result was compared with the earlier Born
approximatiog result' for the same problem. The
exact result for the total cross section again div-
erged and the momentum-transfer cross section
was larger than the corresponding Born approxi-
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mation result. Also, a new feature was discovered
for the stationary point-dipole problem; the mo-
mentum-transfer cross section also diverged at a
critical dipole moment of 0.639ea, and remained
undefined at larger values of D. The point dipole
potential

V(r) = -(eD/r')cos8

was thus shown to lead to the same "fall to the
center" behavior as that for the spherically sym-
metric y ' potential, ' when the strength of the in-
teraction exceeded a critical value. However, it
was later shown by the present author' that in the
exact treatment of the scattering problem, the
divergence of the total cross section was produced
by the long range of the fixed-dipole potential, in-
dependent of the magnitude of D + 0 or the form of
the interaction near x=0, but that the momentum-
transfer cross section is well defined for all D in
the absence of the fall to the center feature of the
point dipole.

Subsequent to the paper by MVH, ' several auth-
ors' "demonstrated that the critical moment D,
for the fixed-dipole potential divided the eigen-
value spectrum of the electron-dipole quantum-
mechanical problem into two classes (zero bound
states for D &D,and an infinite number for D &D,),
and Levy-Leblond and Provost" (LLP) argued that
the scattering cross sections for real polar mole-
cules would show singular behavior at the critical
moment, independent of the short-range form of the
potential or of rotational degrees of freedom of
the molecular target system. Their argument was
shown to be incorrect for a finite fixed'- or non-
stationary" "-dipole scatterer.

In the following section we show that the point-
dipole rotor problem can be transformed to coin-
cide with the stationary point-dipole problem as
y -0, and the divergences which occur due to
pathological behavior of the solutions at the origin
of the point-dipole potential reoccur for the point-
dipole rotor.

II. EXACT TREATMENT OF SCATTERING
BY A POINT-DIPOLE ROTOR

demonstrated. ""Thus if one writes

y(r) =r 'R(r)8(p)e,™ (6)

(6)

The condition that P be single valued and finite re-
quires that m be an integer and that L„be re-
stricted to certain allowed values, obtainable from
Eq. (7).

The solution of Eq. (8) which is finite at the ori-
gin is the spherical Bessel function rj~ m(kr) In.

Ctf

fact, the equation is identical in form to the radial
equation for the scattering problem involving a
spherically symmetric r ~ potential. This equation
is well known' to admit solutions only if L„(L„+1)
& —-', (independent of the value of k'). This results
in an upper limit on D such that D &0.639ea, for
the existence of permissible solutions. For larger
D the lowest L„component of the solutions fall to
the center, i.e., they oscillate an infinite number
of times as x-0, and the boundary condition at
the origin cannot be specified. "'" This behavior
causes the momentum-transfer cross section to
become undefined for super critical point-dipole
scattering. We make use of the properties of the
above solutions in the following discourse.

To make the connection between the fixed-dipole
and the dipole rotor problems, solutions are
needed to the above problem in the form of the
coupled equations that result from an expansion
of the wave function in angular-momentum eigen-
functions. That is, if we choose alternatively to
replace the expression in Eq. (6) by

0(f')= Qr'F (r)I' (8, 0), (9)

the Schrodinger equation then leads to the set of
coupled radial equations

then Eq. (5) yields the separated equations

i
—(1 —&')——

~ +&~+~. (L. +1)8:(&)=0 (7)
!d, d m'
id', dp, 1 —p.

'

and

The problem of electron scattering by a point
dipole of fixed orientation provides the necessary
basis for demonstrating new features of the prob-
lem of interest here. Thus, we note that the fixed-
dipole scattering problem is described by'

(V'+k'+ 8 r/r')q(r) =.0, (6)

where 5=2eM, DIA' and k'=2M, E/h'. We make
use of the fact that this problem is separable in

' spherical polar coordinates r, p, , p (p=cos8)
with solutions whose analytic properties have been

g (l'mi cos8i Im)F, , (r). (10)
l'a fyl

The angular equation is in this case the equation
for the spherical harmonics. It is similar to Eq.
(7) but with the o.p, term missing and with
I.„(I„+1) replaced by I(l+ 1).

The inhomogenous coupled Eqs. (10) that result
from the use of a spherical harmonic representa-
tion of the scattering function (9) are more com-
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where HR is the rotational Hamiltonian for the ro-
tor

Hs Y ~t(D) =j(j+1)II'/2IY) l(D) . (12)

Here I is the moment of inertia of the rotor which
has energy j(j + l)h '/2I in rotational state j. By
forming the coupled spherical harmonics

Y~(r, D)= gg(jm, .fm II')Y '(IJ) '(r) (1 )

which are eigenfunctions of the total angular mo-
mentum J= j+ l and z component M=m&+m „one
can expand the total wave function for the electron-
rotor system in the form

and reduce Eq. (11) to the following set of reduced
radial equations:

d' I(l+ 1),)l ~ )

In this set of coupled equation k», = (2M, /5')
x [E.—j '(j '+ 1)k'/2IJ where E& is the initial energy
of the system (we consider scattering from a rotor
initially in the ground state) and 8„e is the angle
between f and D.

We can now use two facts relating to the set (15)
which will establish that these equations exhibit
pathological behavior at D = 0.639eg, identical to
that of Eqs. (8) and (10) which describe the simple
point-dipole problem. First, in the region near
the origin the energy terms k' can be neglected as
compared to the divergent x ' contributions in both
sets of equations. Second, we make use of a prop-
erty demonstrated in Ref. 7; namely, that in the
instance where differences between k' and k'&, can
be ignored for all jj' the set (15) of coupled equa-
tions can be transformed identically to the set (10)
for the fixed dipole. In Ref. 7 this transformation

plicated than the Bessel equation (8) which results
from the use of representation (6). Thus although
the analytic properties of the set (10) are not so
easily established, we know from the equivalence
of the problem in the two representations that the
coupled Eqs. (10) also fall to the center at D =D,.
In fact the functions F, (r) are easily expressed
as sums over the functions R„(r) and vice versa.

Now we consider the equation for a point-dipole
rotor expressible in the form

S2
He — V —

~ l4'(f, D) = E4'(P, D),

was achieved in the J-~ limit where the energies
become degenerate. Here we can carry the exact
same analysis through for the point-dipole rotor
in the y -0 limit because the r singularity obvi-
ates any differences in the equations due to the ro-
tational spacings (i.e., the kinetic energy terms
can be ignored). Thus, the analysis is similar to
that of Ref. 7 as is shown in the Appendix. In this
limit, the two sets of solutions are connected
through the relation

lim F, (r) — [(2j+ 1)/4']'~(j0lm lj Um)U~(r)l= 0,gl )
(16)

where (j0lm
l
jEIM) is a Clebsch-Gordan coefficient.

Thus the solutions to Eq. (15) behave identically
to those of Eq. (10) at r=0. We know that the so-
lutions to Eq. (10) fall to the center. at D = 0.639ea,
because they are equivalent to the formulation in
Eqs. (5)-(8) where this property can be shown an-
alytically. Moreover, the pathological behavior
occurs for al&. values of J, thus all partial waves
become undefined at D =D,."

The above proof follows readily from the known
behavior of the simple dipolar quantum problem.
In the regime where D & D, one can also solve the
set (15) directly by numerical integration. How-
ever, a fairly serious complication arises in this
instance since the boundary condition at the or igin
is troublesome for the point-dipole potential. If
one follows the usual practice of writing U(r)-ar'
for the solutions to the coupled equation as y-0,
it is necessary, in order to specify s, to solve an
infinite matrix equation or a continued series of
higher order differential equations. If, for exam-
ple, the matrix is truncated to two terms one gets
as permissible solutions,

e = —,'+ (-', + [1—(1+D'/3v 3 )~']j~'

The two term formula yields a fall to the center at
D = 0.85ea, (instead of the proper value 0.639ea,).
By expanding the number of coupled equations (and
thus the order of the matrix) one could, in princi-
ple, obtain D, directly from the matrix solution to
any desired level of accuracy. One finds again
that the boundary condition at the origin cannot be
met for D & D„with the result that the coupled
equations cannot be solved. However, the above
proof obviates any need of dealing with the problem
of determining D through this method.

III. CROSS SECTIONS

The implications of the present results for scat-
tering cross sections of a point-dipole rotor are
fairly obvious. The pathological oscillatory be-
havior of the wave function at the origin for D & D,
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means that the boundary condition at r = 0 cannot
be specified when D ~ D,. This condition prevails
for all scattering energies and for all values of
the total angular momentum J. Indeed, at energies
below the first inelastic threshold each of the
partial wave components, o~(0, 0) of the elastic
scattering cross section will attain its maximum
permissible value (4w/k')(28+ 1) as D -D, from be-
low. Thus, both the total cross section and the
momentum-transfer cross section diverge at D,.
Since one of the necessary boundary conditions
for specifying the scattering matrix cannot be met,
the inelastic and superelastic scattering cross
sections also become undefined for supercritical
moments. Moreover, since dipole supported res-
onances are sure to occur at values of D which
are somewhat less than that required to sustain
a true bound state, " we know that cross sections
for a given energy, when determined as a function
of dipole moment, will show "resonant" behavior
for some values of D&D„and that such oscilla-
tions in the calculated cross sections will occur
at different values of D for various J andI. " It is
tutor ially interesting to plot the partial-wave cross
sections for fixed energy as a function D, anala-
gous to the plot of o'„(p) given by Mittleman and
Von Holdt' for the stationary~point dipole. We
show samples of such results in Figs. 1, 2, and 3,
where the partial cross sections o~(j,j') areshown
for 0.03-eV electrons scattered from a point-
dipole possessing moment of inertia I= 1x 10'M, g,'.
We note that the J= 0 component of the elastic
cross section rises monotonically toward its maxi-
mum (4w/k') at D= D, and the inelastic 8-wave com-
ponent is a smooth function of D. However, as can
be seen in. Figs. 2 and 3 the J= 1 components of
e(0, 0) and o(0, 1) increase smoothly with D until
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FIG. 2. The J=1 component of 0(0, 0). Energy and
target system as in Fig. 1. For dipole moments greater
than 0.52ea0 the oscillations become too closely spaced
to be shown on the figure. The dotted lines are drawn to
show the approximate range within which the J=1 com-
ponent of the cross section varies as D -D .
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resonances set in as the dipole moment approaches
D, (in the present instance above —0.45eao). This
behavior is not unexpected in view of the recent
proof by the present author" that the critical dip-
ole moments for the excited states of the system
under consideration all collapse back to the value
of 0.639ea,." Thus, the point-dipole rotor has,
as D-D„an infinite number of states, for each
value of J, which can have associated with them
scattering resonances in all open channels. We
know from earlier results" that in J&0 channels
resonances will appear at values of D less than
those necessary to sustain a real bound state. In
the present instance the oscillations in the cross
sections are associated with the acquisition of
additional nodes in the radial functions as D-D, .
In the results of Figs. 2 and 3 the separations be-
tween the cross sectional maxima and minima as
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a function of D get progressively smaQer as D ap-
-proaches D„becoming too closely spaced to be
shown on the figures, and too costly to calculate
on a grid sufficiently small to follow the behavior
as D-D, . We show several data points for values
of D lying between 0.52 and 0.639ea, which are in-
tended to indicate the magnitudes of the oscillations
in o~(j,j ') as D-D,. Sample calculations demon-
strated that, as expected, '9 such oscillatory be-
havior is also present for J&1. In the higher
partial-wave contributions the individual oscilla-
tions are shifted further toward D, with increasing
values of J.""

Here a few useful comments can be made con-
cerning some points made in previous papers on
the subject of critical scattering of electrons by
polar molecules. In the study of Levy-Leblond and
Provost" it was argued that the cross sections
would be finite but possess an infinite slope at D
= D„ independent of the behavior of the potential
at y = 0, and that the behavior would not be modi-
fied by the rotational structure of the molecule.
This argument has already been shown to be wrong
for scattering by a polar molecule or a finite polar
rotor.""For the special case of a point-dipole
rotor the conclusion that the cross section behaves
badly at the critical moment is partially correct,
but not exactly for the reason stated by LLP. The
fall to the center does not occur Only for the lowest
partial wave as stated in Bef. 14. In fact, it is
quite interesting that the dipole coupling between
rotational and orbital angular momenta is such
that each and every partial wave (which necessari-
ly contains an E = 0 term in the coupled radial equa-
tions), allows the electron to fall to the center,
with a transfer of the angular momentum to the
nuclei (i.e. , the collapse could be characterized
as occurring through the component of the coupled
equations with /= 0, j =J)." —Thus, the behavior of
the cross sections for the point dipole is "worse"
than that described in Ref. 14, but as mentioned
before, for a finite rotor the behavior at D, is
quite normal. On the other hand, Bottcher"
argued that the cross sections would be "well be-
haved" for scattering by a supercritical field, even
if the lowest-n partial waves were to collapse into
the origin. Here it was not recognized that none
of the partial waves misbehaves for a finite dipole
rotor but all of them behave badly for a point-di-
pole rotor. Thus, the analysis of Ref. 23 is not
appropriate for scattering by either type of dipole
scatterer. For completeness we again note that
a calculation by Takayanagi and Itikawa'4 of a fin-
ite cross section for electron scattering by afixed-
dipolar target system was incorrect in that a div-
ergent series was truncated to yield a finite re-
sult. '

IV. CONCLUDING REMARKS

From the above discussion it is, apparent that the
problem of charged-particle scattering by a dipo-
lar target system has interesting subtleties and
a confusing history. The set of results represent-
ed by scattering from finite and point-dipole fields,
from fixed and freely rotating target systems, and

by Born approximation and exact treatments of
each of these problems happens to cover all possi-
ble combinations of convergent and nonconvergent
results for momeritum-transfer and total scatter-
ing cross sections. To wit:

A. Fixed-dipole scatterer

a. Born aPPxoximation. The results for mo-
mentum-transfer cross sections (averaged over
orientations) is well defined (finite) for all values
of D, for either finite or point-dipole scatterers.
The total cross section in the Born approximation
is infinite for all D.

b. Exact. Results for the fixed point dipole yield
a finite momentum-transfer cross section o for
D&D„but an infinite value for D& D,.' For a
finite dipole a is defined for all D, but the total
cross section is again infinite' independent of the
magnitude of D or of the dipole length.

B. Dipole rotor scatterer

a. Bom aPPxoximation. The momentum-transfer
and the total cross sections are well behaved for
all D."' In the Born approximation this statement
holds for finite and point dipoles. In this approxi-
mation the elastic scattering cross section is zero
for a pure-dipole scatterer. ' The rotational excita-
tion and deexcitation cross sections become infinite
in the limit as I-~.

5. Exact. For a finite rotor the momentum-
transfer, the total elastic, and inelastic cross
sections are all-well behaved for a11. values of D.
Rotational excitation and deexcitation cross sec-
tions are generally much larger than the elastic
scattering cross section. In the limit as I-~ the
cross sections for rotational transitions diverge
in the exact treatment' as they do in the Born ap-
proximation. For the point, -dipole rotor, as shown
above, the momentum-transfer and total scatter-
ing cross sections are well defined for D &0.639ea„
with resonant structures in various partial-wave
channels, but both become undefined for D
& 0.639eao.

Finally we add, perhaps unnecessarily, that the
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unphysical behavior of the solutions to the quantum
scattering problems involving simple fixed and
freely rotating-point dipole scatterers, does not
obviate their usefulness in certain applications to
charged-particle scattering by polar molecules.
Again there are interesting subtleties in the con-
venience and accuracy of such applications. It
was noted earlier, for example, that in estimating
electron momentum-transfer cross sections for
polar gases through the use of a simple point-dip-
ole scatterer, the Born approximation gave better
agreement with experiment than did the exact re-
sult for the same problem. ' This point was dis-
cussed later by Crawford et 'p/. " To this we may
now add a similar comment regarding the calcula-
tion of rotational excitation and deexcitation cross
sections. That is, higher angular-momentum
(large J) contributious to cr(j, j') can be conven-
iently and accurately represented through the Born
approximation. Further, the Born results for a
point-dipole rotor are analytic and converge with
increasing J to agreement with exact results for
a real molecular target of the same dipole moment
and moment of inertia (see the recent review by
Collins and Norcross"). The interesting twist
added herein, is that the exact treatment of scat-
tering by a point-dipole rotor yields a result that
is again pooher than the Born approximation in
describing a real scattering problem. Unlike the
Born result, the present study reveals that higher
angular-momentum components of the exact solu-
tion for the point-dipole rotor do not converge to
the identical partial-wave components of the cross
sections for scattering by a real molecular target

of the same D and I.
The real utility of the solutions for the simple

dipole potential occurs in frame transformation
treatments of electron scattering by polar mole-
cules,""where the problem is divided, on the
basis of physical arguments, into different regions
of configuration space. In this technique use is
made of a body frame description of the. system at
small and intermediate distances from an origin
within the molecule where the fixed point-dipole
results find application (for higher "partial waves"
of the unorthodox functions of Eels. (7) and (8)where
no collapse occurs, and/or in a region which
is away from the origin but inside the nonadiabatic
asympototic regime"). At large distances, where
nonadiabatic effects start to play an important role
in the description of the problem, a transforma-
tion is made to a laboratory frame where analytic
Born results for the dipole rotor can be utilized.
(Since the Born results are better, the exact so-
lutions for the point-dipole motor will not find use-
ful application in treating scattering by either sub-
critical or supercritical scatters. ) A recent ap-
plication has been made by Clark and Siegel2' of
the analytic properties of the simple point-dipole
problem in their frame transformation treatment
of electron scattering by Lir.
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APPENDIX

The equivalence at y-0 of the point dipole and the point-dipole rotor problems can be shown as follows.
First, the expansion (14) can be written more explicitly as

(A1)

The angular functions Y", &(r) can be expressed in a coordinate system (p, O', P') which rotates with the
dipole rotor (having z' axis along D). To this end we use the Wigner matrix element D~„'~ (spy) where tippy

are the Euler angles between the rotating coordinate system and the space fixed frame. Thus,

(A2)

~ith the transformation (A2) we have (A1) in the form"

(A3)

The transformation of 4'~" to the rotating coordinate system is completed by expressing YPs(D) in the form
of a D,'" function and by coupling the two D matrices as follows:0 mg.
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Y" (D)D'"(~py) = 2J+ 1) D'» (u. y)D"& (~py)/ gm& 4v Om. Q lÃg

~ ~ ~

~

) X/2

Z(j0fi IjfI~i )(jm/fm& IjKm/+m&)DA'~ (aPy}.

From the properties of the vector coupling coefficient we can carry out the sum over m/ and m, in (A3)
(where m, +m &=M) and write finally

/I (j0f~ Ij»~)D'„&.(~tly) Y;(8, y )II;,(r)/r.(2 + 1) )&/2

il g-
(A4)

In the coordinates (r, 8', Q) we note that the potential term eD ~ f'/r' of Eq. (11) is simply eD cos8'/r'. Al-
so the functions D„'~& are eigenfunctions of II„ in Eq. (11)with eigenvalues J(J+1)h'/2I. Finally, we can
define a new radial function E&,(r) through the relation

(A 5)

such that

g~= gD„' &„(aPy)Y&(e', /1&')F& „(r)/r (A 6)

and note that near r = 0 the terms J(J+ 1)5'/2I may be neglected in comparison to the r ' terms in the radi-
al equations. With (A6) the Schrodinger equation for the rotating dipole in (r, 8, $ ) coordinate takes the
simple form near the origin

,IF„„(r)-=,2Z &Y",(8, y ) lcos8 Y», (8, y )) F& „(r),

where we have omitted the energy terms k», which are negligible near the origin. This is exactly the
form of the Eqs. (10) for the fixed point dipole (near r=0 where k' can be again omitted). Thus in the limit
as z-0 we may identify the solutions E, „as the radial functions E, for the point dipole field. Indeed,

&&„(r)=g 4
(j0fv ljfJu)II/, (r)

(2j+ ])
l fm~o

(A 7)

Note also that, as shown in Ref. 7, the equations for the dipole rotor become identical to those of the fixed
dipole (at all values of r) in the limit as I-~, where &t,

' and k2//, are degenerate. '
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