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Canonical scattering transformation in classical mechanics
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The quasiclassical phase shift is identified as the generator of the classical canonical S transformation. This
illuminates the connection between resonances and looping trajectories and the classical meaning of the time delay

and Levinson's theorem. Finally the Coulomb phase shift is derived using for the time delay a free motion with a
modified time dependence.

I. INTRODUCTION

It was first recognized by Hunziker' that the no-
tions of scattering theory play an important role in
classical mechanics. It turned out' thai it leads to
nontrivial information for the global properties of
the solutions of the classical trajectories. For in-
stance, it shows that in the three-body problem
there are large regions in phase space with 2n —1
= 17 constants of motion and all trajectories in
this region are homotopic to straight lines.
Furthermore Wigner's' time delay has a simple
geometrical meaning' for the trajectories. Re-
cently Bolle and Osborn' succeeded in deriving
even a classical analog to Levinson's theorem.
In this paper we shall elaborate on the remark'
that classically the phase shift corresponds to the
generator of the $ transformation. For this pur-
pose we define in the next section canonical coor-
dinates for a one-, two-, and three-dimensional
configuration space such that this statement as-
sumes a simple form. This sheds some light on
how trajectories with large time delays or loopings
generate resonances of the quasiclassical phase
shift. In the following section we give an alterna-
tive proof of the classical form of Levinson's
theorem and illustrate its subtle feature by some
examples. Finally we give a simple derivation of
how a Dollard's' change in the free motion leads
to the Coulomb phase shift as generator of the
classical S transformation for a 1/r potential.

We shall employ the following notations:

1 for x&0
e(x) =- (s tep function),

0 for x(0
fog(x)=f(g(x)) (composition of maps),

sup f(x) = least upper bound of f,
a x b= vector product.

II. THE S TRANSFORMATION

Scattering theory investigates the asymptotic
behavior of the trajectories in phase space. Al-

though time evolution 4, : [x(0),p(0)]- [x(t),p(t)]
will not tend to a limit for t-+~ it may approach
another time evolution 4', such that 4, o 4', tends
to a limit

Since 4 and 4' are canonical transformations, the
Moiler iransformatlons D, will in general be a

local canonical transformation mapping the do-
mains D, into ranges S,. Closed orbits will be ex-
cluded from S, but in reasonable' cases their
union with @, or S will fill almost all of phase
space. 'The scattering transformation

transforms D into D, . If 4', is the free time evo-
lution having straight lines as trajectories, S has
a simple geometrical meaning. For negative t
4, 0 4', means that you follow the straight trajec-
tory back for a time -i t

~

and then continue with
the actual time evolution for the same length of
time. If the forces have a finite range and 4 and
4' coincide outside a certain region then 4, o 4,
will become independent of t as soon as t leads you
outside this region (Fig. 1). Then the limit is at-
tained, 0 maps the straight line onto this trajec-
tory of 4, which is asymptotically tangent to it.
Similar arguments for 0, show that S maps (Fig.
1) the straight lines tangent for t- -~ onto the
ones tangent for t-+ ~. It follows from its defini-
tion that it commutes with the free time evolution:
So O', = 4', o$. As a canonical transformation one
should be able to exhibit its generator which ac-
tually is possible. We first study the special
cases. 'The following are some examples.

A. OneMimensional motion

Let (x, p) be the canonical variables and consider
the motions due to H'=p'/2, 8 =p'/2+ V(x) where
V(x) has finite range or falls off sufficiently fast.
The corresponding flows are
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FIG. 1. Motion in configuration space.

eo, : (x,p)-(x+pt, p), (2)
e,(x,p) -[x(t),Q '+ 2[V( ) —V(x(t))]p"].
If p'&sup2V(x), so that there is no reflection, x(t)

X.

I

is determined by

t
r(tl dA

J, Q'+ 2[V(x) —V(a)]}'/'

In this case the S transformation can be easily constructed. If we call

then

@-t/2 @t @-t/2

acts as
04 t/2 4g( X~

(x,p) — (x pf/2, p) -l —x pf/2+ Jf —dn, [ p'+2v(x ) -'2v(x. )]'",l
0

=
l
x --

l p+[p'+2v(x ) -2v(x.)]'" l+ da, [p'+2V(x ) -2V(x.)]"l,
where

X~ dcl

J. $p'. +2[V(x ) - V(o.)]p/2'

For t-~we have x ——~, x -+~, and V(x ), V(x,)-0, Then

~ f " ( 1 I
l,[p. 2V( )]./. -(p.)./. ,I, p]l=-( -pr, p),

i.e., S changes x by p times the time delay r. The latter is the difference of the times the actual and the
free time evolutions need for the trajectory from (x,p ) to (x„p,) in the limit x ——~, x,-+~ (Fig. 2).
8 is the canonical transformation (x,P)- (x —2&6(P)/BP, P) where

p OQ

g(p) j d~([p2 2 V{~)]l/2 (p2)1/2)

If there is an x, such that p'&2V(x, ) then a trajectory with x&x, , p&0 will be reflected to the left. In this
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FIG. 2. One-dimensional motion in phase space.

case the action (3) of S is changed to [V =—V(x ), etc.]
o.p O OO

(x p) -"-'(x-pt/2, p) '(x —(p'+2v -2V)") «-'- x +-(p'+2V -2v)'" (p'+2V -2V)»~l
]

Here
Xp dc' Xp dQ

[p'+2V -2V(o.)]' ' [p'+2V -2 V( o) ']~''

where the reflection point x, is the smallest x with 2V(x) =p'+2V . If x, &0 we may write

Xp Xp X

x = -x„— dQ — dQ — dQ
X~ Xp Xp

and thus for t -~ we obtain

(x, p) 5
l

lim l -x+pt/2 — d a — dn — do.'+—(p'+2V -2V,)' ', —(p'+2V —2vg)' '
)I

(g «+ Xp Xp

o I
-I&-x+ p «[ 2 2V(~)]1I2 (p2)1/2)-

Xp

da, -p!.]

Thus the time delay is in comparison with a free
motion going up to the origin. If V is twice dif-
ferentiable it becomes infinite when p' approaches
2 sup, V(x}=2V(x'0) because '

dQ

[Vst(x ~)2]172
™'

Then there is an orbit which approaches xp for
t- and for this value of p 8 does not exist. It
separates the region in phase space where 8 is of
the form (3}and the present case (Fig. 3}where

(xp) '-~-x+2 ~, -p),
I' s5 p

2p

X (P)

~(p) =
~t

" d~([p'-2V(x)]'"

transmissi &n region

re flection

region

lection

ion

I!
R((p'+ 2!V!)~' —(p')~') for V & 0

~(P) = & R((P'-2V)~'-P') if P'&2V

-pR if p'& 2U for V& 0.

@or example, the square-well potential V(x}
= Ve(R —!xi) gives

FIG. 3. Trajectories in phase space for a repulsive
potential.
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B. Two-dimensional motion

Consider again Ho=p'/2, H=p'/2+ V(x). It is
convenient to use the variables p= ~p ~, a=p %/p,
I.= ~xxp~, and X=arccosp„/p, i.e. (Fig. 4),

I
p„=p cosy, x= a cosy ——sing,

I,
p =p sing, y=asiny+ —cosy.

Since L generates a rotation and (p .x) the dilation

(x,p) - (xe,pe e) one sees readily that the new

variables are canonical, i.e. , (a, pj =(X,L) =1,

the other Poisson brackets vanishing. The free
time evolution is simply (a, X;p, I-)-(a+pt, X,p, L)
but in general Q, will be complicated. S maps
free trajectories into free trajectories and will be
of the form

(a, X;P, L) -' (a -p&, X',p, L'),

y' and I' independent of a. If V is a central po-
tential V(~x ~) or more generally of the form
V(~x~, L) so that I is constant, then 4, can be re-
duced to a one-dimensional problem and 8 con-
structed explicitly. The chain (3) of maps becomes
in that notation

~0

(a X'P L) =(a-p«2, X,P, L)='(~-P«2+ da, X', [P'+2(V —V.)] ', LI

~0
]A+I]'+2Ã --&-)i"'+ ~ +&~, x', ]P'+2(& -v]] 'r). ,

dg

(5)

Again for t-~ we have ~a, (, ~a (-, V„and
V -0. The time t for the actual motion 4, is
readily expressed as integral over r=
= (a'+ L2/p')'t' with E=p2/2+ V,

Ch'

[2E L /r 2V(r)]

+ dh'

[2E —I.'/r' —2V(r)]"'

where v =0 for r=r, Since .a=(r' —L'/p')''
=r+O(1/r) and da=pdr/(p' —L'/r')'t' we have for

~ 00~

(,x;P, L)-'i;-2''(,P, ",x-2'5(P, L),P, L),
(5)

5(PAL)= lim
~

dg [p -L2/r 2V(r)]~
g &&0

B
dr(P2 L2/r e)~t2

~

Here we have used the well-known expression for
the scattering angle y —y'. Let us consider the
two-dimensional 8 transformation for typical po-
tentials.

pdr
up](p —L /r )

+
I ~ » ~~2 ~

Thus in the limit t- we arrive at

+( p)

I. I/r potential

If V(r) = c/r ' then S exists only for c & —L'/2.
In the attractive case trajectories with the impact
parameter, and therefore I too small, spiral
into the origin. For the others the x integral is
easily calculated, for instance, by complex inte-
gration. Evaluating the residue at the origin we
find

5(p, I.) =- [(I,'+2c)"'- I.].
Since 5 is independent of p the time delay is zero.
This is related to the dilation properties of the
Hamiltonian [compare Ref. 2(a), Sec. 3.4.15.3].
The scattering angle e[L/(L'+ 2c)'/' —1] tends to

for c& 0 for those i. where spiral orbits set in.

FIG. 4. The canonical coordinates in two dimensions.

2. Square-well potentiul

If V(r) =ce(A —r) we find
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6(p, L) =
~
[(p' —2c)R'- IP]"'+I. arc sin»„~e(p'R'- L')8((p' —2c)R'- L')

—
~

(p'R' —L )"'+ I, arc sin —~e(p'R' —L') .

In the attractive case 6 is discontinuous for p'
=2c+I.'/R' because there ro jumps from
L/(p' —2c)"' to L/p (see Fig. 5}.

Thus 6 is given in the two regions p'S2c+L'/R'
by different expressions whereas on the separating
hypersurface S does not exist. For a rounded-off
potential there are the trajectories which asymp-
totically reach the maximum of the potential but
never get over it. For a twice differentiable po-
tential the time delay would become ~ whereas
for the square well

7 = = , [(—p—'R' ——L'—2cR')" ' —(p'R' —L')" ']
P8P P'

remains finite. In any case this is the closest
similarity to a quantum mechanical resonance
since the special value 5/5= v/2 has classically
no significance.

C. Three-dimensional motion

There are many canonical coordinate systems
such that the free motion just shifts one coordi-
nate. We shall choose one where ~p~, L, and L,
occur such that for central potentials the S trans-
formation is simple. A convenient choice are the
coordinates used in [Ref. 2(a), Sec. 5.3.4] with x
and p exchanged (see Fig. 6)

V (r)
efie

r
0

FIG. 5. The effective square-well potential.

p=(p'„+p'„+p', )'", I.= ixxpi, I.,=[exp]„
X ~ p L„P,—L„p„a=, y =are cos
p p(L2+ L2)1/2 &

L„
P = arc cos

(

X is the angle of momentum in the plane of motion
and P is the angle of the projection of L in the
(x, y} plane. For the proof of the canonicity of
these coordinates, see (2}. The free motion is
(a, )t, p; p, L, L,) —(a+pt, )t, p; p, L, L,}. For a cen-
tral potential the trajectory remains in a plane and
the S transformation can be found as in b

(a, y, P;P, IL, I
—(a —2., ', x —2

85(p, L) 96(p, L)

A~P~LiL.
& ~

6(p, I, ) = lim
~ dr[p —L'/r —2V(r)]" '

0
R

)
dr(p'- L2/V)'& 21.

1. Remurks

(I) We see that the generator of S is the so-
called' quasiclassical approximation for the quan-
tum-mechanical phase shift 5/K A close relation
is to be expected since the quantum-mechanical
S matrix S=e ' " generates the above transforma-
tion. However, the expression (6) is classically
not an uncontrollable approximation but the exact
result.

(2) The limit R -~ exists if V decreases for
z-~ as x ' ', & &0. In this case one sees easily
that also the limit f, —~ in the definition of S exists.

(3) In the two- and three-dimensional case the
time delay is measured by comparing the time of
the trajectory with the following free motions:
Follow the one tangent for t -- ~ up to x0', i.e.,
the point of closest approach to the origin, then
switch over to the free trajectory tangent for
t-+~ at the same x0'.

(4) Since pa = (xp) generates dilations its change
under S is given by a generalization of the. virial
theorem to infinite trajectories. One finds for the
time delay

) dt[2V(x(t))+x(t) vV(x(t)}].
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L
X

LJ

FIG. 6. The canonical coordinates in three dimensions.

(5) Since 6(P, L) goes to zero for I —~ we may
write

6(p. L) = 't dL'[x-'(P L, x) - x].
I

5 has the dimension of an action. Choosing I as a
unit of angular momentum,

dL'

becomes dimensionless. If the deflection angle
exceeds m over an interval 5 and otherwise keeps
the same sign the 6/)I goes beyond 90 . Thus we
see the following connection between resonances
and looping trajectories. A looping for all angular
momenta in the interval (L', I.'+I) and L')L im-
plies a "resonance" in the sense that the quasi-
classical 6(p, L,) is larger than 90'. Generally
resonances occur for those L for which the sum
of the defle'ction angles for larger L's reaches
180'. An analogous statement can be made with
respect to the time delay since

6(p L) = P'dp'v(p', L)

(6) If H=H +&V we see

dt V(x(t)) .8$,
QX

This is the classical version of an analog to the
Hellmann-Feynman formula in scattering theory. "
Thus also classically V~O implies 5~0. If we
were to confine the system in a ball with radius 8
the right-hand side above is -8/p ~ (time average

of V). This is a classical analog of Schwinger's
relation between phase shift and energy shift of the
system in ball. This furthermore shows that
Kato's monotonicity" is classically obvious.

{7) Although we don't have a general explicit
expression for 0, outside the range of the potential
for a &OQ is 1 and 0 therefore equals S. Simi-
larly for a &o0 =II and Q, =S '.

(8) Everybody conversant with modern classi-
cal mechanics has more powerful methods avail-
able. than the pedestrian ones employed so far.
They would generalize our results as follows.
Since the time evolution changes the canonical 1
form by the exterior derivative of the action [see
Refs. 1 and 2(a), Sec. 3.2.9] we have with the pre-
vious notation

p dq =p dq+dko', (q„p )= C'«, (q, p),

0 2

dt e', ,
~

—~~,
"-va '&2j '

p. dq.=p dq+d~, {q.,p.}=+,{q,p),
2

co = dt' 4o. = —V{x )
~

p~'dq~=p» 'dq +c&D, (q~, p~) = 4 )(3(q„p,),
. (p,

geo, = — dt' 4,.
~

—'
-~pa

Adding these equations up gives

p dq, =p dq+d(cv+ao'+cv', )

and thus for t- ~ the general form of the genera-
tor of S: (q, p)-(q„p,). For the evaluation of the
path integrals one may use
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' P +2Vq —2Vq' ' —Et,

and rederive the previous expressions. Jajima"
has shown that the difference between the action
and the free action is the classical limit of the
quantum phase shift. To make it useful as genera-
tor of a classical canonical transformation is a
matter of finding the appropriate canonical vari-
ables.

so that this can be done with impunity. For the
discussion of the right-hand side we distinguish
between different dimensions.

A. v= 1

Assume that V(x) is uniformly bounded c, - V(x)
- c,. Then

lim dxdp 6 R'- x'
R~~

III. THE CLASSICAL LEVINSON THEOREM

Levinson's theorem relates the change of the
phase between E= 0 and E = ~ to the number of
bound states. This seemingly wave-mechanical
statement corresponds to a classical geometrical
fact relating the volume in phase space of the
bound orbits to the integral over the time delay.
We shall now give a simple derivation of this rela-
tion using the fact that 0 and S as canonical trans-
formation preserve the volume in phase space.

Let the phase space be decomposed by the char-
acteristic functions X, and g, into the regions of
bound orbits and scattering trajectories. X~ is 1
in the former and 0 in the latter region and X, vice
versa. Furthermore we first confine the integra-
tion to compact regions in phase space by the char-
acteristic function

1 if H(x, p) & E
e,(x,p) =

0 otherwise

( )
1 ifx &ReR x t ~ ~~~

I

~

2

~

2

~0 otherwise.

Now

rd"xd"P6 6~= d"xd"P 6~6~ X~+ y,

lim [8„«,—8(xp)8„—9(-xp)8„oS '] = 0.
Q~ oo

(12}

The effect of S ' on x is known to be the shift p7(p).
The last term contributes only for xp &0 and then
only if an ~x~ &R is-shifted by S tobe &R or vice
versa. Thus the x integral picks up p7 from one
end or the other.

p'
»m dxdpe E —(e„-e, on. )g~ oo 2

dp p &p6E-—

dx2 2 E —V x ''-42E, for E&c,. 10

This integral exists if V is integrable (which is
necessary for the existence of scattering theory)
and tends to zero for E-~ as (2/)('2E) J dx V(x).
For discussing the last term we assume first that
the potential has finite support such that V(x) = 0
for ~x

~
&R,. Then according to remark (7) in Sec.

II,

q, o n, = 8(xp)e, + 8(-xp}e,o S-'.

If the potential does not have finite support but
decreases faster than 1/ ~x ~'" then (11) can be re-
placed by

d"xd"P 6~e~y, =-2 dq7' g 6 E —q

d"xd"p6 o Q 6zo Q

since X, o 0, is one. Furthermore 6 o 0,
= 8(E —p'/2) such that

Thus finally in the limit E-~ we arrive at

dxdp Xa= — dp p

d"xd"p 6Ee~x~= d"xd"p e~ 6~-6 E -p2 2

+ d"xd"p6E-p' 2 6 -e„on, .

We now have to consider the limits R-~, E-~
and assume that the potential is reasonable enough

Examples

(1} If V(x) &0 then

rav~px. = fd*d(e(2(v( ))-(')v
dx2 2 Vx

Qn the other hand
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dp P T p

j 1 1
«J l&iddljd. dV(x)j„. -(d)„.)

=2 dx2 Vx

(2) Bepulsive square weil g2=0. According to
Sec. H we have

1 1

T =2A ( 2 2 1/')1/2 ( 2)l/2

1
for p2&2V

p

and in fact

dPPT P = dP —2B
0 0

1 1
p

(p2 2 1/}1/2 (p2)l/2 jl

=0.

lim R'"[e„o0,—9 0 S '6(-xp) —e„e(xp)]=0.
g~dlo

(12')

This condition is met by potentials decreasing
faster than 1/r'"

Fixing p the integration over x runs over half
of the sphere after replacing 0 by S-'. The time
delay depends on p and L and Q (which we can
forget after fixing p). Since we already assumed
that V vanishes sufficiently at infinity it follows
that

lim L"r(P I. ()j))=0

so that T is integrable in I. Now we turn to the
coordinates introduced in Sec. II for v=2. Since
lxl =a+0(1/a) the action of S for large lxl

mes S(lxl)=S(lxl p ) Thus for R-, e,
-9„&s ' becomes e(R Ixl) 6(R

l xl p&). Since
the coordinates are canonical the volume element in
phase space is dpdadLd(p andtheintegralcanbe
treated as for v= 1. We find

i/ p2
lim d'x d p( 6 —9„o8 ')6(-xp)elE ——

For E)c, the first term in (9) becomes simple
and E independent

dxdpeE P VX eE P

f p2)j
dPd 0 E-—dI PT P, I,

or in the case of a spherical symmetric potential,

=-2n dye E —q dI T q, I

dxVx .
I

For calculating the last integral (11) remains valid
for potentials with compact support. The state-
ment (12) becomes too weak for two dimensions,
because the x integration runs over a sphere and
there it has to be replaced by the condition

It should be noted that for E&c2 the first and sec-
ond expressions in (9) become E independent, thus
it follows that for E'& c2 we must have

dId T PL, —= 0.
For spherical symmetric potentials this can be
shown explicitly

t'

l, y[, 1,(,)] L./ .
$

~ 9& — .(L p»-(„L./ .).. ( -L/p)&j

where V(r, }+L2/2r,2=q. Thus after changing the order of integration the two contributions cancel upon I-
integration:

l'j2[d-V(d')3)
drr I

(2[/ 'y(r)]r 2 L2] 1/2 (2qr 2 L2)l/2 )
Thus in two dimensions Levinson's theorem reads

%e note a correction term which has already been found in Ref. 5.

C. v=3

The first term on the rhs of (9) now becomes (again for E) c,)

r 2
d'xd'd 8 2 ———)x(x) -9 2 ——

i
=—2''f xj(8 —)xd(x)] —(2)2 2 ) 3
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which in leading order in E

= - 4m d3X 2E '~2V X .

The evaluation of the last term is completely analogous as for two dimensions. The condition on the po-
tential has to be strengthened to V(h) decreases as 1/r" T. hus

lim RE"[8o 0, —8+o 8 '8(-xp) —8+8(xp)]=0
R~~

suffices for replacing 0 by S. The integration over the surface of the half-ball can be replaced in the limit
R -~ by that over the half-phase such that we obtain

2 2

d'xd'p 0„—e„oS ' e -xp e E-—= — dpd dye E-—dL dr, p& p, L,I„
R~~

Generally the result for &=3 is

f (2 g) 1/2

4'dd'xx, = lim
)

—(2E)''4x d'x Y(x) — dd dddddL, dLpx)b
0

Since the left-hand side of (9) becomes independent of E for sufficiently large E we obtain the relation

dd ddL Ldl x'= 4x fd (2[E —x(x'(x)]' ' —(2E))' ', lxE&xxp 'V(x) .

For a spherical potential this relation can be checked explicitely since

1 1
dpdydL, dL &(p, L) =47)' dL'2 dkl (2[E—V( )]—L'/ ')2" (2E —L'/ ')" (

0

y d/ 2E t/"y

It should be noted that in more than 1 dimension a negative potential does not necessarily generate a neg-
ative time delay. Though the particle becomes faster it may have to cover a longer trajectory.

IV. THE COULOMB POTENTIAL

For V=(e'/r) lim, „Ci,o4'2 does not exist: 4'2 maps x into x-pt but for the Kepler motion this quantity
goes for t ~ as 10nt. Following Dollard' one considers another 4, which has also straight trajectories but
covered with a nonuniform speed. In the notation of Sec. II in two and three dimensions the free motion
4 tis

g2a- a —pt ——ln(t+ 1)—p'

the other variables remaining constant. Then the chain of maps (5) changes a (for t-~) into

gpa-pt-, ln—+ dc(,
p2

-( 82 2 J2 84 "1tt2

2+2 L 2 1/2 p ~ p2 p2 p4

g2 R —e'/p' „R e' e' lnR &', e4 '() e' *
+ —.arcosh 1.2 2 u2 = — 3+ 3 -- 31n L'+ 2]i+ 31

2 p4'
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and a, =R+O(1/R). Thus for R-~ we find

2e' e' e' )
S(a) =a+, +—,ln L'+

P P P &

Using the well-known expression for the Coulomb
scattering angle we have in three dimension,

( L )
sii(p, L) 95(p, L)

t y 0 y g

Q; p, L,Lail

&(P, L) =—. I
L+' InlL+'

l
lnlL ——

l

ie'l & ie'&

p& & p&.

Remarks

(1) Co is for fixed f a canonical transformation
but 4' is not a one parameter group. Its choice is
to a large extent arbitrary, one has only to see
that the lnR term cancels. This liberty affects
the time delay but not the scattering angle.

(2) It is remarkable that for the smooth poten-
tials V= 1/r or I/r' the classical and quantum ii's

are so similar: Essentially one has to replace L

by ~ + (L'+ —', )~~ to obtain the quantum phase shift.
In the Coulomb case we have chosen 40 such that
there is no additional term depending only on p.
Such a contribution only enters into the time delay
and depends on the choice of 4'. 4 determines 5

up to a function of p only. Also quantum mechani-
cally the Coulomb phase shift can be deduced up
to a function of p by studying the asymptotic prop-
erties of @ u

(3) The change in 4s does not repair Levinson's
theorem for the Coulomb potential. AI.so the an-
alog of Hellmann-Feynman's theorem and there-
fore the sign rule are not vaI. id in this case. Note
that now for e'& 0 (repulsive case) we have v ( 0
whereas for V=8'y-", v& 1, we get according to
Eq. (6) of Sec. II that

e2 00

7=—(2 —v) i der(i)-".
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