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The WKB approximation in parabolic coordinates is used to calculate electric-field-ionization rates from L =0
states with quantum defects. The range of applied electric field and principal quantum number have been given for
which the rate formula is valid. Previous studies of field ionization of shallow impurity levels with quantum defects
in solid-state systems have shown this formula to be in agreement with experiments.

Recently, there has been considerable activity,!?

both experimental and theoretical in the study of
field-ionization processes in atoms. In their
paper, Yamabe et al.® have developed the theory
of field ionization of hydrogenic atoms and sum-
marized work in that field. More recently Harrell
and Simon* have given an algorithmic solution of
the hydrogen-atom Stark problem. However, these
results are only for the case of a purely Coulombic
potential in which the principal quantum number is
an integer, i.e., the quantum defect is zero. It is
therefore interesting to consider the case of more
complex atoms in which the wave function of the
outermost electron may be approximated, at large
distances from the core, by a hydrogenic wave
function with a nonintegral quantum number »n*,
and to obtain corresponding expressions for field-
ionization rates applicable to such cases. Our ap-
proach is to consider fields which are of insuffi-
cient strength to cause classical field ionization
and to obtain approximate expressions for the rate
of field ionization via quantum-mechanical tunnel-
ing. While “classical” considerations lead one to
expect an »n** dependence of the field for ap-
preciable ionization, quantum-mechanical-tun-
neling ionization rates are characterized by a
more complicated field dependence. For sim-
plicity, we consider only states in which the angu-
lar momentum L is zero. Generally, quantum
defects are most significant for L =0 states, which
are most sensitive to short-distance effects

and therefore show the strongest splitting from
the degeneracy exhibited by excited states for
Coulombic potentials. The splitting is due to core
effects and, in the case of impurity atoms in
solids, to intervalley mixing as well. These are
both short-distance effects. )

One area of interest to the authors is that of
localized wave functions for charge carriers which
are weakly bound to impurities in semiconductors.
It is well known® that the weakly bound levels of

impurity atoms can be fairly well described by
considering the Kohn-Luttinger envelope wave
functions to be hydrogenic with a quantum defect.
We have recently reported the observation of
ground-state field ionization of shallow impurity
levels in semiconductors in conjunction with a
charge-storage effect® in Si p-i-n diodes at cryo-
genic temperatures. The storage of charge and
its subsequent release were attributed, respec-
tively, to the deionization of localized impurity
levels by electron capture and subsequent field
ionization of these levels. We are currently
developing direct and precise experimental im-
purity atom field-ionization-rate measurement
techniques. Because of weak binding, experi-
mentally convenient rates of field ionization for
ground states can be achieved with fields of the
order of 10* V/ecm. For comparison, we estimate
that the fields required for ground-state field ion-
ization of isclated alkali atoms are of the order of
10" V/em. Thus, solid-state systems offer a con-
venient laboratory to study effects such as ground-
state field ionization in electric fields which are
easily accessible experimentally.

We begin with the hydrogenic wave functions’
for L =0 and integral principal quantum number #:

b, =[2/VE7(na)* 2le~"/n F,(1 = n; 2; 27 /na),
(1)

where a =4nei’/m e is the Bohr radius and ,F, is
the confluent hypergeometric function. Reex-
pressing the wave function in terms of the ,F, hy-
pergeometric function® yields
Uy = [2(—1)"/»/—‘17(na)3/2r(n +1)] (2r/na)"*
xe "M Fo(1 —n, -n; —na/2v) . (2)

We note that when extended to nonintegral » this
expression provides a solution
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Yok = [Cn*) VT | (2r/n*a)y™ -
Xe-r/n*a 2Fo(1 —n*, —n*; —n*a/Zr) (3)

to the Schrodinger equation which is regular at
infinity and irregular at the origin. The formal
hypergeometric series for ,F, has zero radius of
convergence but provides an asymptotic series for
r>n*a/2. Replacement of » by nonintegral n* in
Eq. (1) would yield an unnormalizable wave func-
tion which is irregular at infinity. In spite of the
irregular behavior at the origin, the wave function
in Eq. (3) is normalizable. The normalization con-
stant C(n*) is determined by the condition that

4nfwdr1'2|zl),,*lz=1, (4)
(o]

and is found to be given by
| C*)| =[2/(n*a)¥/2][1/T(* +1)]|S@*)|,  (5)
with

|SG*)| = [n/] sinGe*n)|]
-1/2

x(égl/(n* -m —l)z(n*—m)2> . (8)

The derivation of C(n*) is sketched in the Appen-
dix. |S(n*)| is found to be exactly equal to one for
positive integer n* and very close to one for all
nonintegral »n* >3, which is the range of »* in
which we are interested.

In principle, the true wave function could be
determined by matching its asymptotic form g, 4
with a wave function that is regular at the origin
and determined by the effective potential at short
distances. However, it is the asymptotic part of
the wave function thatis sampled in the process
of field ionization and the primary effect of short-
distance deviation from Coulombic behavior is to
make n* nonintegral and change the normalization.
Because the radial integration in the wave function
normalization integral has an »? weight, the true
normalization constant is not very sensitive to the
wave function at small distances. Thus one is
justified in using C(n*) given by Eq. (5) as the
normalization constant. The small-distance ef-
fects of non-Coulombic potentials essentially ap-
pear in our final-rate expression purely through
n*.

We choose to work in parabolic coordinates,
n=7 -z and £ =y +2, which are the natural coor-
dinates to use for a superposition of a Coulomb
and a homogeneous electric field in the +z direc-
tion. Following Landau and Lifshitz,® we note the
existence of a potential barrier in the 5 coordinate
associated with the removal of an electron from
the atom in the direction z—~ —« corresponding to
tunneling through a region of large n and small &.

From Eq. (3), we find that the asymptotic form of
the wave function for arbitrary principal quantum
number n* and angular-momentum quantum num-
ber L =0 in the absence of an electric field, is
given by

Ppx = (%)e'g/z" *“e'"/2""‘«<_L)"*-1

m 2n*a
2
X(l_n* (n;“l—l)a+_“), -
n>n*e| n* ~1la. (8)

The Schridinger equation for an electron in an
attractive Coulomb field along with a homogeneous
electric field F is given by

Fry (06060 ) 40,0 0,1

+27i"n"’—('B*4ne?§in)"eF(Ez_n))"’"fo’ ®
where B, the binding energy is given By
&2 1
B =(m) el (10)
Writing
zpn*="%é_‘f—)xj_(nl7’, ~ o

this equation can be separated in ¢ and 5 coordi-
nates as

D¢ 1 F m B
d§21 +[;1—§7 _(e4ﬁ-——? )E —%%5 +%‘]X1=0, (12a)

ax, [1 (eFm mB B, _
ar “[41,2‘r 4t )1 T ) Xe=0r (120

where B, and B, are separation constants which
satisfy

Bi+B.=1/a. (13)

It is important to note that the exact wave func-
tion for nonintegral »* does not separate in para-
bolic coordinates. However, separation can be
accomplished for the asymptotic form of the wave
function. The basic philosophy is that we choose
a value of 5 within the barrier (5,) such that the
wave function at this point is the asymptotic wave
function in the absence of the external field. This
is valid for weak fields such that terms linear in
F in Eqgs. (12a) and (12b) can be neglected at this
point within the barrier. Substituting the asymp-
totic form (7) into Eqs. (12a) and (12b) we find that

1

B1=m (14a)

and



23 RATE OF FIELD IONIZATION FROM § STATES WITH A... 1659

_(@n*-1)

2" 2n*a (14b)

which are consistent with Eq. (13).

In the presence of an applied electric field F,
the dependence of y,x on £ may be considered to
be the same as in Eq. (7). This is due to the fact
that ¢ is small in the range which contributes
most to the tunneling current. The n dependent
equation can be written as

a*x :
o TP X, =0, (15)
where
_( mB Fem B, 1\?
p(n)—<——72h_ +_—4h’2 n+ . +4——n2) . (16)

To obtain the tunneling rate, we apply the WKB
approximation to the n barrier in which p(y) is
imaginary. We remind the reader that 7, is some
value of » within the barrier such that,

n¥é|n* —1lla<no<n,, amn

where 7, is the outermost classical turning point.
Following Ref. 9, we use the asymptotic form of
the wave function given by Eq. (7) at n=7,. Out-
side the barrier, the exponent in the WKB wave
function contributes a pure phase factor and the
amplitude decreases as 1/Yp with increasing 7
and we have for n>7,:

| x|?= (M)e-( £+ n(,)/n*a(l_.b_ol)

27 P
o 2n*-1 LI
X <2n*a) exp (‘ 2 _l,‘o | Bl dﬂ) , (18)
where
lb"*:X/w[ﬁ:Xle/\/Z-ﬁ, (19)

| p| is the effective wave vector in the barrier and
| pol is the value of | p| at n=7n,. After performing
the integral in Eq. (18), we find that the asymp-
totic 7, dependence disappears from Eq. (18). As-
suming the validity of the inequality (17) the ion-
ization rate R is found by integrating the probabil-
ity current |y,x|?v, over a plane perpendicular to
the z axis. We find

R(F)=w(a/F)*"*'exp(~a/F), (20)
where
a=2i/3men*a)®, (21)

w=[meq/ﬁs(‘lﬂe)2](%)62"*-%*613'C("*)Iz. (22)

We believe that this result can provide a rea-
sonably good estimate of field ionization from
atomic levels which are well described in the
asymptotic region by quantum-defect hydrogenic

wave functions. In the limit n*~ 1, Eq. (20) re-
duces to the standard-rate formula®:® for the
ground state of hydrogen. Direct comparisons
with purely Coulombic results (no quantum defect)
for integer n>1 are not possible because we treat
field ionization of nondegenerate L =0 states.
Quantum defects are associated with the lifting of
the degeneracy of states with various L values.

In addition to the n*~ 1 limit we are able to ex-
amine another limit and compare it with published
results. This is the 1limit!® in which the binding
energy is held fixed while n*-0. From Eq. (10)
we see that in this limit the charge e, and hence
the Coulombic part of the potential, must vanish
with the binding energy maintained at a fixed value
by the short-range potential which is responsible
for the quantum defect. We see that in this limit
our rate formula reduces exactly to the “5-func-
tion” rate formula of Demkov and Drukarev."
This relies essentially on our normalization fac-
tor |S(*)| which is one for integer n*>1 and v 2
for n*=0. To determine the explicit condition of
validity of the WKB approximation, we solve the
equation |p(n)| =0 to obtain

n,=2B/eF - 21’8,/ Bm (23)
for small F, i.e., with the requirement that
eF |n* - Y« 2B@2m B)Y*/x. (24a)

Inequality (17) therefore yields the constraints on
F and n* for the rate formula (20) to be valid as

eF[n*|n* = 1] +2(2n* - 1)< 2B(2m B)*/*/K.
(24b)

This inequality becomes trivial for values of n*
for which the quantity [n*|n* - 1| +2(2n* - 1)] is
small. In that case the inequality (24a) gives
stronger restriction of F. Defining the classical
critical field! as F, = B/8 ean** inequalities (24)
can be rewritten as

[1-2/n*| < 16F,/F
and

|n* —1| +4 = 2/n* < 16F,/F . (25b)

_ (25a)

The WKB approach is therefore valid at fields
sufficiently below the classical critical field, so
that electrons must tunnel through an appreciable
barrier width. The largest n* for which the ap-
proximation is valid for a given field F can be de-
termined by the stronger of the conditions ob-
tained from (25) as

n*3|n* ~ | < [m2e®/n*(4ne)*]/F (262)

and
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n¥n* = 1] + 20*¥°(2n* = 1) < [m2e®/n*(4ne)*)/F.
(26b)

A quick comparison of ionization rates for dif-
ferent values of m, n*, and the dielectric constant
K, may be obtained by noting that the ionization
rate is a rapidly varying function of (D/F), where
D=m?/K**. A given rate which occurs at a
field F, in a system withm,, n¥, K, will occur
at a field value approximately given by

F Folm /mo)? (Ko /K)* (e /n*)®, 27)

in a system withm , K, and n*. This provides a
convenient comparison between field ionization of
isolated atoms and field ionization of shallow im-
purity levels in semiconductors using the Kohn-
Luttinger approach in which the solid is charac-
terized by the dielectric constant and the charge
carriers by an effective mass m *. The Kohn-
Luttinger approach involves approximations of
varying reliability depending on the nature of the
impurity® and the degree of intervalley mixing,!3:14

Our treatment above does not incorporate ef-
fects of unequal longitudinal and transverse effec-
tive masses. When this anisotropy is important,
it is simplest to make the further approximation
of using a single effective mass as introduced by
Kohn and Luttinger'? in their studies of approxi-
mate hydrogenic wave functions. Precise mea-
surements of field-ionization rates may reveal
the need for improving this method of handling the
effects of anisotropy.

The results derived here have already been ap-
plied to studies of the dynamics of field ionization
from localized impurity levels in a semiconductor
at low temperatures in an externally applied elec-
]

I= f’o'rzdrlC(n*)lz(Z:’a

0 n

tric field.'® Results of these theoretical studies
have been found to be in agreement with experi-
ments using silicon-pin diodes.® More precise
measurements are currently underway. Studies!®
have also been made of quantum-mechanical limi-
tations on the charge release time associated with
field ionization of localized ground-state impurity
levels in semiconductors. That work was moti-
vated by possible applications to charge-storage
devices and memory elements.
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APPENDIX
In this appendix, we present a sketch of our

derivation of the normalization constant C(n*) of
the wave function

px= [Cln¥) VaT (27 /m*a)™
Xe T/m*a F (1 —n*, —n*; —n*a/2v). (Al)
We first write C(z*) as
C(n*)=[2/(n*a)*?T'(n* + 1)] S(n*) (A2)

such that the quantity in brackets is the normal-
ization constant of the radial part of the wave func-
tion for integer n*. The normalization condition

is given by

1=4nf r2dr | P«?=1. (A3)
[

Substituting (A1) into (A3) gives

z;:*-z B %
) e 2 /"7a | F (1 = n*, —n*, —n*a/2r)|?

= |C(n*) Iz(n*az/2)3f‘m dxe"‘xz”*leo(l —n*, —n*, =1/x)|?

1 . -
= 186 * sagry )| dre ™ L Eo(1 = n¥, n¥; -1/ ‘ (a4)
The hypergeometric function , F, may be written in terms of the integral representation®
q pw
2 FolP, q;-l/x)=~——r’fq)fo e ™t Y1+1)"?dt, Re(q)>0. (A5)
Substituting (A5) into (A4) gives
1 ° - °° * - k- *e *o
= *x) |2 x x(s+t) n¥-1 n¥-1 n¥=-1
I=|S(n*)| 2I‘2(n*+1)1"2(-—n*)j0- dxe j; dsj; dte (st) A+)"""Y1+s) . (A6)

This equation is valid for negative »* only. We
shall continue to work with n*<0 and subsequently
obtain the desired result for S(z*) by analytically

continuing the function defined by the integrals in
Eq. (A6) back to #»*>0. By making the substitu-
tions, u=1+1/s and v=1+1/¢, integral I reduces
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to

2 sin®(mn*
1= |y | 2 E)

v fm du f” ()™ 2= 1) = 1)/(1 = 1/u).

1

Now expanding (1 - 1/uv)”! in a power series in
1/uv, the integral reduces to a sum of integrals.
. Carrying out these integrals yields

= |S(n *)‘225111 ("”*)(Z(n* - - 11)2(n*—m)2)

Note that the function defined by the sum can now

be analytically continued to #*>0. From the nor-
malization condition /=1 we obtain

e 1 -1/2
| S(n*) |= lsm(n*ﬂ)l (E”;)(n*_m_l)Z(n*_m)z) .

The quantity |S(z*)| is easily seen to be exactly
equal to one for positive integer #* by examining
the poles of 1/sin(n*n) and the double poles ap-
pearing in the sum. Since |S(#*)| is obviously un-
bounded at negative integral »*, it is clear that
[S(n*)| cannot be identically equal to one. Numeri-
cal evaluation of [S(n*)| shows that it is very close
to one even for nonintegral n*> 3.
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