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Homomoryhism between SO(4,2) and SU(2,2)
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By stereographically projecting the four coordinates which transform the hydrogen atom into a four-dimensional

harmonic oscillator into a six-dimensional space, the homomorphism between SO(4,2) and SU(2,2) is explicitly
demonstrated.

Recently, it has been shown that -the hydrogen
atom can be transformed into a harmonic oscilla-
tor in four-dimensional space. ' ' This was done
in Ref. 3 by first multiplying the Schrodinger
equation [-(5'/2m)V' —Ze'/r-E]4= 0 from the
left by 4x/a, 4 where a, has the dimension of
length, and then using the coordinates' s,
= s cosu cosP, s, = s cosu sinP, s, = s sinu cosy,
s4 —s sinu siny in the resulting equation. In so
doing, we obtain'

f -(S'/2mao)V~+ emu'aos —2nff &u ]4' = 0,
where we have set 4E/ao= z—maP and 4''/ao
= 2~5~, with V~4 as the four-dimensional Laplacian
and s'= s', + s', + s', + s,'. The solutions of Eq. (1)
are the products of Hermite polynomials and are
the basis functions in a four-dimensional Hilbert
space for a realization of the ladder representa-
tion of the Lie algebra u(2, 2) of the group U(2, 2).'
This realization can be obtained by. defining the
boson annihilation and creation operators as fol-
lows:
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where y, =(m&eaa/h')~~ S, , i =1,2, 3,4. The boson
operators satisfy the commutation relations
[a', , a,'. ]=[5,, b,

' ]=6, , with all ot. her commutators
vanishing. The generators of U(2, 2) can be real-
ized in terms of these boson operators according-
ly. For the purpose of demonstrating the homo-
morphism, we set

%e now make a stereographic projection such
that the points y„y, and y„y, on the equatorial
planes correspond, respectively, to the points
x„x„x,and x„x„x,on two orthogonal unit hyper-
boloids in a six-dimensional space. The formulas
for making the projection are

x, = (1+y,'+ y', )/[1 —(y', + y,')],
x, = (1+y'. + y.')/[1 —(y'. + yl)],

xs= 2y, /[1 —(yl+ yl)j

x.= 2y./[1 —(yl+ yl) j,
x, = 2yg[1 —(y', + y,')],
x.= 2y./[1 —(y,'+ y!)].

(4)

To prove the homomorphism between SO(4, 2),
which leaves invariant the quadratic form x', + x,'
—x', —x,' —x,' —x, and SU(2, 2), we first construct
the antisymmetric matrices of the form

r
0 ug u2

-u, 0 u3 -u2

-u3 0 u1
)

-u3 u2 -ug

wher e u, =x, + ix„u,=x, + ix„and u, = x, + ix, .
We then form Kronecker products of the Pauli spin
matrices v„o„o,and the unit matrix o4 —I, and
obtain sixteen basic matrices of the form U, ,
=cr,- $0&. These 4X4 complex matrices are uni-
tary and unimodular and they transform the set of
complex matrices A above according to A'= UAU

such that A' remains antisymmetrical. It can be
shown that Tr (gA" gA') = Tr (gA'gA) = 4(x', + x', —x',

—x,' —x,' —x', ), where

1 . 1zi= (yi+ iy2) z2= (y3+ iy4)
n V+S

t'a iaq 1 ia ia'l 1

~y. & An ' i3y, ~y, iRn

(3)
1 0 0 0

0 1 0 0

0 0 -1 0

Equation (1) then takes the form z,z*, + z,z,*—z,z,*
—z4z,*=1, which is invariant under SU(2, 2) trans-
formations. '

0 0 0 —1

The matrices U also leave invariant the quadratic
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form zyzy+ z2z2 —Z3z, —z4z4 ——z'gz where z' and
z are row and column matrices. Since U'gU=+g,
we have z"gz'= z'U'gUZ =+z'gz. " Thus the
homomorphism between SO(4, 2} and SU(2, 2} is
explicitly demonstrated

As has been pointed out, the coordinates in Eq.
(4} stereogr'aphically project a four-dimensional
Euclidean space onto unit hyperboloids in six di-
mensions. They are analogous to the Pock coor-

dinates" which project stereographically the mo-
mentum space onto a unit sphere, unit paraboloid,
or unit hyperboloid in four dimensions for the
cases Z &0, E =0, or E)0, respectively. If
Pock s projection can be viewed" as an exercise
in geometrizing the Coulomb field, " then our re-
sult gives a new way of geometrizing the Coulomb
field.
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