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Recursive scheme for order-by-order many-body perturbation theory
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The coupled-cluster method is used to recursively organize the calculations for nondegenerate order-by-order

many-body' perturbation theory. Application to correlation energy with Hartree-Pock zeroth-order state is

presented. Commutator algebra is efficiently handled with the contraction theorem. %hen compared to standard

diagrammatic methods, considerable simplifications are found beyond third order.

I. INTRODUCTION

With the establishment of the linked-cluster
theorem of many-body perturbation theory, it has
become customary to express perturbation cor-
rections at various orders with the help of linked
diagrams. Involving a number of rules one pro-
ceeds from such diagrams to algebraic expres-
sions. For example, energy expressions are con-
nected in the sense that their sums cannot be writ-
ten as products of sums with decoupled summation
indices. 'This organization of correction terms
guarantees the explicit avoidance of terms that
can scale improperly with the size of the system
considered.

However, there are at least two disadvantages
to this approach. First, the number of diagrams,
even with antisymmetrized interaction lines, in-
creases horrendously with increasing order of
perturbation. For example, in the third order
only three diagrams appear, whereas in the fourth
order, ,there are already thirty-nine distinct dia-
grams even when a Hartree-Fock zeroth-order
state is used. ' Apart from sheer labor of enumer-
ation or clever design of a computer program, this
seems unsatisfactory from an operational stand-
point. Second, if one wishes to compute a high-
order perturbative correction at all, it will be
typically preceded by calculations of all lower
orders since one is interested in its relative mag-
nitude. However, the linked-cluster theorem
prescribes, in essence, the writing of all diagrams
in each order without exploiting any work done at
the lower orders. Therefore, it would be highly
desirable, on the one hand, to arrange for a lesser
proliferation of terms at higher orders, . and, on
the other hand, to organize the work in such a
manner that quantities calculated as building
blocks at lower orders can be used again at higher
orders.

We wish to present a formulation of order-by-
order perturbation theory that goes a long way

II. DEFINITIONS AND NOTATIONS

The perturbed many-body Hamiltonian is

H=HO+H' .
H, is the zeroth-order Hamiltonian given by

H, = &„a"a„, (2)

where the sum is over both occupied and unoccu-
pied states. We adopt the convention that such
summations have indices p, , v, ~, or 0. Occu-
pied states are indicated by +,P,y, 5, . . . , and
unoccupied states by r, s,p, q, . . . . In Eq. (2) a"
stands for the Hermitian conjugate of the Fermion
annihilation operator a~, and e„ is the orbital en-
ergy associated with the p, th state. The reference
state 4 (with respect to which the designations
"occupied" and "unoccupied" are made) is an ei-
genfunction of H, :

H04 =E04 .
In creation and annihilation language we can write

towards achieving the two desiderata raised above.
'The starting point is the coupled-cluster method.
Its intimate connection with many-body perturba-
tion theory can be exploited to calculate the cluster
operators and energies order-by-order, with ex-
pressions that involve cluster operators already
obtained at lower orders. Using a Hartree-Fock
zeroth-order state, we give explicit expressions
for correlation energy corrections through fourth
order. A comparison with conventional many-
body perturbation theory is made. Central to the
derivation is the implementation of the contraction
theorem for the reduction of commutators of op-
erator strings. 'This powerful algebraic tool was
presented and proven in the preceding paper'
(hereafter referred to by I). Finally, relations to
other approaches are discussed.
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4= a ~0), (4) obtained by projecting Eq. (16) against 4 and par-
ticle-hole (ph} excitations thereform, defined by

with ~0) the vacuum state. The zeroth-order ener-
gy E, is given by

4 =aaC,
@rs arasa a 4Ng p a

(17)

(18)

'Turning next to the perturbation part of the
Hamiltonian, H' can be expressed as

(5) etc. In practice a truncated set of T is retained
in Eq. (12) and only projections associated with
the nonzero components are included. Thus equa-
tions of the following form are found:

a~=U+ V. (6)

If H, is assumed to be the Hartree-Fock Hamil-
tonian, and if H' exclusively describes correlation
effects, then U is the one-particle operator

U = — v~ra"a
ar . ay

Xar

where the matrix elements are given by

u„","= (pv(r, ', (xg) —(p, ~r, '~o'x).

V is the two-electron operator,

(7)

(8)

V = —' v ~va~ava a4 }la a
Qvr }ta

(9)

V Xa V)ta —Vah
vp — Pv (10)

III. THE COUPLED%LUSTER METHOD

In the coupled-cluster method, the many-body
wave function is expressed as

4= e~4

We observe that the matrix elements of Eq. (8) are
antisymmetric under index interchanges:

E = (4 iHe'i 4), (19)

(4'
~

e rHer
~

4) = 0, (2o)

(C":,
(
e-'He'[ 4)= 0, (21)

etc. We dropped exp(-T) in Eq. (19), since this
factor does not affect the result of projections
against 4. Considerable simplifications to the
equations arise because of the special form adopted
for T. 'The major, and most significant simplifi-
cation is the reduction of the operator exp(-T)
H exp(T) to a finite commutator series, regardless
of the number of particles or truncations in Eq.
(12). This feature makes the coupled-cluster
method manifestly connected in the sense that E
and the projections such as Eqs. (19) and (20) do
not contain any sums expressible as a product of
sums. Not surprisingly, this connectedness is the
basis for a close relationship with the linked-clus-
ter expansion in many-body perturbation theory.
For details and appropriate references, we refer
to I, in particular its Refs. 1-4.

IV. ORDER-BORDER PERTURBATION THEORY

where the cluster operator is given as

'The components T are defined as

(12)

We can go one step further and use the coupled-
cluster method to formulate finite-order pertur-
bation calculations. 'To set the stage let us use
Eq. (19}to express the perturbation energy AE
in the form

T, tea a (13) E-E, =(4 iH (-1+ r, +r, + ,'r, r, ) @). -(22)

T, = —,
' t"~a"a'a~ac,

rs, ng

etc. 'The wave function 4 is sought to satisfy the
Schrodinger equation

(14)

H4 =Et. (15)

(e~Her)4 = E4 . (16}

'The operator in parentheses, which has the form
of an effective operator, is non-Hermitian because
exp(T) is not unitary. Equations for E and T are

With 4' of the form of Eq. (11) and a multiplication
of Eq. (15) from the left with exp(-T) we obtain the
equivalent form

Because of the two-particle character of H' only
T, and T, appear in the expression for &E. In
order to now compute &E to successive orders in
H',

gE gE(l. )+ ~(2)+ gE(3)+ (23)

we see from Eq. (22) that T needs to be computed
to successive orders in H',

0. ) (s) (3)
T= T+ T+ T+ ~ ~ ~ (24)

Equations for T~~ must be obtained by manipulating
the Schrodinger equation. (In the text, order index
to T will be a superscript. ) Starting from Eq. (16},
we write
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(H+ [H, TJ+ ,'[[H-, T],T]+ ~ ~ ~ E-)C = 0. (25)

As indicated in I, there is series termination after
the quadruple commutator involving V only. Vfith
Eq. (1) and the result of I that multiple commuta-
tors involving Hp vanish, we can also express Eq.
(25) as

diagonal and thus does not affect the connected-
ness. Therefore all T("' are connected.

Second, because of the connectedness of T'"'
the energy 48 is also expressible as an expansion
of connected terms. Specifically, the contribution
of ~(") to nth order in H' can be written as

(Eo+ [HO, T] -E+H'+ [H', T]+ ~ ~ ~ )4= 0. (26)

[HO, T)4 = (Ho-E )T4, (27)

and therefore Eq. (26) can be rearranged to give

(EO-H, )T4 = (Eo-E)4+ (H'+ [H', T]+ ~ ~ ~ )4.
(28)

To now obtain an explicit expression for T, we
introduce the reduced resolvent of Ho (Ref. 3):

RO=P(EO-H, P) ',
where

P= 1 —Ic}(4I

(29)

(30}

is the projection operator onto the orthogonal
complement of 4. When both sides of Eq. (28) are
multiplied by R„we get the result

T4 =Ra(H'+ [H', T]+ ~[[H', T],T]+ ~ ~ ~ )4 . (31)

At this point, the need for the assumption of a
nondegenerate ground state arises. Otherwise Rp
could be singular. By projecting Eq. (31) against
different ph excitations, we get equations for the
cluster components:

t.'=(4."ITIe}, (32)

(33)

etc.
Thus far, we have only reshuffled terms. How-

ever, the Schrodinger equation in this form af-
fords a calculation of T to a given order of H'.
Since T'"' is the (H')" term in T, with T"'= 0, Eq.
(31) immediately gives

(1)
T =RQ'4, (34)

and for n ~ 2 we have

(35)
Two observations about this equation are in order.
First, T(")4 is expressed as a multiple commuta-
tor series involving T " through T("".We saw
in I that such commutators are expressible as
contractions, which lead to the connectedness of
sums as discussed above. Therefore, if T"'
through T' "are connected, then T'"' is con-
nected. T"' is obviously connected since Rp is

This is a powerful result. Using Eq. (35}we can
compute T'"' (n~ 2) from T"' to T'"" With Eq.
(36), we have a very compact expression of 4E["'
in Arms of T"' through T'" ". Manifestly con-
nected expressions appear at all orders, thanks to
the commutators. We also achieve major reduc-
tions in computational effort, in particular at
higher than third order, because of the appearance
of multiple commutators in the expressions for
T'"'. As explained in Ref. 4 of I, this reduction
is connected with the summation of individual dia-
grams within some order of perturbation theory
via the so-called factorization theorem. This
theorem states that diagrams with the same con-
nection patterns (leading to the same numerators)
but with different orderings of their interaction
lines (leading to different energy denominators)
can be summed to a product in which individual
factors are evaluated as separate diagrams. 'This
summability can occur at fourth order and up, and
it becomes increasingly beneficial at higher or-
ders. For an exposition of this and other points,
including the formal equivalence to the linked-
cluster theorem, we refer to Ref. 4 of I. It should
be pointed out that the present recursive scheme
given by Eqs. (34), (35), and (36) is implicit in
Coester's 1958 paper, ~ but to our knowledge the
details have never been published.

V. EXAMPLE: CORRELATION ENERGY
THROUGH FOURTH ORDER

We will now illustrate above approach by cal-
culating ~"' through &E"' with H' as defined by
Eqs. (6}-(10),the so-called M[[(lier-plesset par-
titioning of the Hamiltonian.

From Eq. (36}we immediately have

"'=&
I

'I )
which reduces to

(37)

~@(1) 1 &~B (38)

(E,+ 6E"') is the Hartree-Fock energy
Next, to obtain ~o', we need to invoke Eq. (34).

'The action of H' on 4 produces
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H'@=Us+vs= ——' P v ~c —T v s'+(g v""4'+ —' p v"s"2 at/ Oig Ot QT Cg 4 aB aB
a8 YBlO 1' ~ l+ rs&+S

showing the cancellation of the single ph excitation from U4 and p4. We thus find

(z) Vrs
TC'=RQ'4= —' Q 4~asB.

rs OS C~+ CS -fr -Cs

We will next introduce the notations

(39)

(40)

CNSoo = CN+ E'S+ ~ ~ ~
~ ~ ~

and p~ for the m -particle cluster operator of order n in Z', with coefficients f~"~OB" defined by

(e) ( j 2 (&)

t 'lSo ~ o @rSo~ ~

NSo ~ ~ NSo ~ ~

rso ~ ~ B+So ~ ~

(42)

with the summation over all m-tuple ph excitations. It is convenient to choose, without loss of generality,
all t coefficients to be antisymmetric under interchange of any pair of hole or particle indices:

(s) (e) (y)
t r~ o ~ Sooo t So ~ ~ ro ~ o t r ~ ~ ~ So ~ o

+ ~ ~ oSo ~ ~ + ~ ~ ~ So ~ ~ So ~ ~ I ~ ~ ~

Looking now at Eq. (40), we notice that
(1) (1)
T= T2

and its coefficients are given by
(j.)

rs rs j' rs

'Thus we get the familiar result
(x)~S" =-' V' Vr't"'

4 ~ VaS NS
rsBN S

1

For the calculation of 4E ' and AE 4, we also need g& &:

(2) 0.) (a)
T 4 =As([U, T,]+ [V, T,])4' .

(43)

(45)

(45)

(47)

With the help of the contraction theorem, proven and illustrated in I, we will evaluate the commutators.
We get

[., l[U, T,]4 = - T U 4

(48)

For the second term in Eg. (47), we use

(l) (&) (&)
[p T ]@- (T v+ yg+ T v+ T~v)e.

(49)

Evaluation of successive contractions gives

1 0, )

T V$- 4 t6VS&@IS& + 4 ~oiSV+&@oiS& + 2 I +Bvp — t &ZVBZ 4~& &
(50)

T VC =
& t~SV&,'+8 t„"AVIS — t~'„V& 4~S+ tNSV~4~, (51)

(x) (a) (x)
T V&5 x % & M Ps sB V ~s Br

2 B ~ ~
~ ~aB~Bs ~ ~By+as I@a s

ro ( psBS
rIyy

s
-

(x)
TV@ =~ t "'voSC
l2 4 +S rs

rs, aS (53)
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Going back to Eq. (47), and substituting Eqs. (48)-(53), we notice the cancellation of the terms in Eq. (48)
against some in Eqs. (50} and (51). We are left with

(2) (2) (2) (2)
T = Tl+ T2+ T3 ~ (54)

indicating that T~) consists of one-, two-, and three-particle cluster operators. The one-particle coef-
ficients are found to be

(2) (2) y y (1) (1)

Similarly we have for the two-particle coefficients

(2) (2)
f"', =&4,";i T 4).

If we now introduce the definition

(2) y p (1) (1) (1)
rs &

& 1 m pa rs rd Ps ry
T&g &&I 8 2 tat&Da +8 f&SV~t-

~~B & ~a

(55)

(56)

then Eq. (56) can be most easily represented as
(2) (2)

@~B @~ tBt 7 ~tBt ~

1ts t0f tB ~
(58)

In this equation only four nonzero terms can arise,
as (r's') and (o."P') pairs can only differ by a per
mutation from (rs) and (+P), respectively. This
causes t"'"8 to be antisymmetric in (rs) and (ap).

Finally, using the same procedure
(2) (2)
g

FBD —&post
i

T
i
@')

(2)
&@rat ( @t''a'0 ~

4 re s t (59)
NB7 )

at'8'r'~ ~~'8'~' ~

1t s tP t (g tB at

with

(1)
mrs dp

NBv 4 1+ I ~ ' oB~ay t ~dVBc (60)

(2)
E(3)=-' ~ ~ ' trrs +8'

1st +8
(62}

A simplification is possible for this equation. If
expansion (58) is introduced, the antisymmetry
property of e„B causes the same result to be ob-
tained 2'= 4 times. Therefore &E"' can also be
written as

(2)
~E(3) &+8 .Trsrs 0f8

rsof
(63)

Turning now to 4E"', we start with Eq. (36).
Since T,"'=0, we have

Ne are now ready to present the expression for
&E"'. From Eq. (36), and observing Eq. (44), we
get

(2 ) (2) (2)
~Z&»= &eiUT, + VT, + VT,

i
C». (61)

The first two terms cancel, and the last term gives

(3)~Z"'= &e[H T J4» (64)

'This equation shows that we need only to compute
the pair cluster component of T' '. Equation (35)
gives

(3) (2) (1) (1)
-T4=R ([H', T ]+ [[H', T,],T-]}4 . (67)

'The pair cluster component can be written as
(3) (3)

(68).

This quantity can be extracted from Eq. (67) by
considering only those contractions that can yield
two particle-hole excitations. The nonzero result is
(3)
t afB

(2) (2) (2) (&) (j-)
~R ( T V + T V + T V +~~2 T T V+ T2 T2V} le&.

I

(69}
The factor (1/2) in the last multiple contraction
is absent because the two asymmetrical contrac-
tions of that type are identical. Analogous to Eg.
(58) we can write

(3) (3)
f — &4 i@, ,) r

rts o tBt

For clarity in presentation, we write

(70)

which reduces to
(3) (3) (3)~z"'= &eiUT, + vT, + vT,

i
4». (65)

However, as in Eq. (61), the first and second terms
cancel, and we are left with

(3)
~E(4) =-'~~ v" t"'rs +8'

rstM 8
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(3)
„, (S,+S,+S,+S,+S,'),
ag

(Vl)

(2)
8, = ],t"„v„','- g t„'v".',),8 r

(72)

(2) (2) (2)
v + — E rsvr6 — g ps v rr

8 ag At I ro eg pg p

Ar ro

(73)
(2) (2)

rsp re~fr VA 4 ~ t ~rg Vpp
Are& r6 p

(74)

where S, to S4 are the sums arising from the five
contractions in Eq. (69). Straightforward algebra
gives the result

higher orders, because the fraction of diagrams
involving less-than-maximum excitations in-
creases rapidly. The effect is more dramatic the
larger the number of hole and/or particles states
included.

Finally, it is worth pointing out that in the T= T,
approximation (called the coupled-pair many-
electron theory by Cizek'), the terms S„S„and
S4 are included. S, and S, are leading corrections
to this approximation. The S, term is taken into
account if the coupled-pair theory is extended to
include T, operator. ' 'The S, term represents
then the leading (fourth-order) correction to the
result obtained using such an extended coupled-
pair theory.

er&

(1) (j ) (j ) (y)S'=-, (fe „» f« f~»e4 At 6B r6 V~ tz~y .

hetero

(76)

As in the case of &E' ', we can simplify ~E"' to

(3)
~@(4) &el &re

r8 eg
r&S

(77)

Equations (71) through (76), together with Eqs.
(5V) through (60), represent a much more compact
formulation of the fourth-order correlation calcu-
lation than, for example, that given in Ref. 1. Al-
though no computational savings arise in the eval-
uation of terms that involve quadruply excited
states with respect to the Hartree-Fock reference
4 (i.e. , our terms S, and S,'), a significant re-
duction in the number of multiplications and addi-
tions results in the evaluation of terms involving

singly, doubly, and triply, excited intermediate
states (our terms S, through S,). This is the con-
sequence of the present recursive scheme. In
fourth order, this reduction is relatively minor,
but it will become increasingly substantial at

VI. RELATION TO OTHER W'ORK

Most practical, finite-order perturbation cal-
culations of correlation energy have used portions
of the general scheme outlined above. For exam-
ple, Bartlett and Silver, ' and Bartlett and Shavitt'
have summed all double excitation diagrams to
finite and infinite order (the latter with Pade ap-
proximants). Their recursive scheme is equiva-
lent to a repeated use of our Eq. (5V). This ap-
proach was also used by Kvasnicka and Laurinc. '
Exploiting the (2n+ 1) rule of perturbation theory'
Bartlett et al. "could further reduce the compu-
tational effort for the calculation of double-excita-
tion diagrammatic contributions to the correlation
energy in some order. In fact, the very recent
work by Kvasnicka et al. '0 clearly shows that a
systematic application of the (2n+ 1) rule, when

explicitly formulated within the coupled-cluster
framework, is probably preferable in practice,
because it leads to fewer arithmetic operations in

any given order beyond the third one. However,
until now a formal algebraic treatment is missing
which would streamline the generation of the dif-
ferent terms as in our approach.

Permanent address: Quantum Chemistry Laboratory,
University of Warsaw, Pasteura 1, 02-093 Warsaw,
Poland.

~R. J.Bartlett and G. D. Purvis, Int. J. Quantum Chem.
14, 561 {1978);See also S. Woson and D. M. Silver,
ibid. 15, 683 {1979),
F. E. Harris, B.Jeziorski, and H. J.Monkhorst, Paper
I Phys. Rev. A 23, 1632 (1981).

3P. O. Lowdin, J. Chem. Phys. 43, S175 {1965).
4F. Coester, Nucl. Phys. 7, 421 {1958).
J. Cizek, Adv. Chem. Phys. 14, 35 {1969).

R. J. Bartlett and D. M. Silver, in Quantum Science,
edited by J. L. Calais, O. Goscinski, J. Linderberg,
and Y. Ohrn {Plenum, New York, 1976), p. 393.

~B.J. Bartlett and I:. Shavitt, Chem. Phys. Lett. 50, 190
{1977).

V. Kvasnicka and V. Laurinc, Theor. Chim. Acta 45,
197 {1977).

SJ. O. Hirschfelder, %. Byers-Brown, and S. Epstein,
Adv. Quantum Chem. 1, 255 {1964).
V. Kvasnicka, V. Laurinc, and S. Biskupic, Chem.
Phys. Lett. 67, 81 {1979);Mol. Phys. 39, 143 {1980).


