
PH YSICAL REVIEW A VOLUME 23, NUMBER 4 APRIL 1981

Contraction theorem for the algebraic reduction of (anti)commutators involving operator strings
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A proof by induction is given of the so-called contraction theorem for the evaluation of (antijcommutators of
strings of Fermion creation and annihilation operators. This theorem bears some formal similarity to Wick's
theorem but is essentially simpler and its applications do not lead to any disconnected diagrams. Examples of
.applications to configuration-interaction and coupled-cluster methods are presented.

I. INTRODUCTION

Since the inception of perturbation theory in a
second-quantized form, the use of diagrams has
greatly alleviated the problem gf identifying and
formulating the plethora of terms that need con-
sideration. This has been particularly true for
high orders of perturbation theory. Central to
such diagrammatic enumeration is, of course,
the linked-cluster theorem, which states, in ef-
fect, that all relevant energy and wave-function
terms can be represented by linked diagrams only.
Using a list of rules then allows one to "translate"
such diagrams into algebraic expressions. This
approach has also been adopted by the formulators
and users of the coupled-cluster method. "This
method is intimately connected to many-body per-
turbation theory. Indeed, iteration of the non). in-
ear equations yields infinite series of perturbation
terms all representable by linked diagrams.

The obvious advantage of the use of diagrams
is the pictorialization of generally messy algebraic
expressions. A disadvantage is some obfuscation
of underlying mathematical structure and proper-
ties such as analyzed by Zivkovic and Monkhorst'
in connection with the coupled-cluster method.
Other drawbacks are the possibility of overlooking
certain diagrams, particularly in high orders of
perturbation theory, and the existence of many
rules.

In our study and exposition of the configuration-
interaction, perturbatian, and coupled-cluster
methods' we found it useful to make extensive use
of commutator algebra. This enabled us both to
present a systematic way of obtaining equations
for these methods and to expose and preserve
their underlying structures. The key tool is the
so-called contraction theorem, which we wish here
to present and rigorously prove by induction. This
theorem is formally somewhat similar to the time-
independent form of Wick's theorem, ' but is es-

II. OPERATOR STRINGS, (ANTI)COMMUTATORS,
AND CONTRACTIONS

In the following, we will denote by a„a Fermion
annihilation operator and by a" its Hermitian con-
jugate a„, also called a creation operator. These
operators satisfy the usual anticommutation re-
lations

(1)

(2)

Definition l. A string of annihilation and/or
creation operators is a product of such operators

B=b,b b„,
where each b,. may be any a' or a„. Throughout
this paper, the Latin subscripts i,j, . . . , will al-
ways indicate positions in strings. These strings
can contain the same operator more than once. In
that case a reduction can be effected by individual-
operator anticommutation to adjacency followed by
using the identities

a„a„=a"a"=0

a,a~a, =a„,
a"a a" =a~.

(4)

W'e will now consider the commutation or anti-
commutation of operator strings.

sentially simpler to apply in practice. Its applica-
tions do not require using any diagrams and do not
lead to any combinatorial and topological prob-
lems. Moreover, this theorem produces expres-
sions which, if interpreted diagrammatically,
correspond to connected graphs only.

After a few definitions we proceed to a statement
and proof of the contraction theorem. This will
be followed by a number of examples from the
configuration-interation and coupled- cluster meth-
ods.
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Definition 2. The (anti)commutator [B,C], of
strings B=b,b, ~ ~ ~ b„and C =c,c ~ ~ «c is defined
by

[B,C],=BC —(-1)" CB. (5)

Since Eqs. (4) do not change the parity of n and m
the above definition is independent of the particu-
lar representation of the string. It is easy to
check that

[BC,D],= B[C,D], + (-1) '[B,D],C,

[B,CD], = [B,C],D+(—1)" C[B,D], ,
(6)

where D dj d2 dy An op eration clos ely conne c-
ted with (anti) commutation is the contraction of
operators from a string.

Definition 3. The contraction of the string B
= b,b, ~ ~ ~ b„with respect to b, and b,. is defined as
the removal of these two operators from the
string and the multiplication of the remaining
string by (-1)' '[b„b,].. Note that (-1)' ' is
equal to -1 (or 1) if there is an even (or odd) num-
ber of operators between b,. and b, We will indicate
the contraction by a line connecting the contracted
operators from below. Here are some examples:

B"= [B,d'„], . (10)

Analogously, the left (anti)commutator of C with
d„will be denoted by

C„=[d„,C], .

By multiple use of Eqs. (6} it is easy to show that

B"= (-1)" '[b, , d~],b, . b, ,b,.„. b„,
=1

(12)

r s A. G s A. (x X aaaaaaaaa = 6 aaaaaa =-6 |I aaaaB~ ~v~p rvi gjn i ~p rv sp g~+

a
5

bhaga (9)

Note that the phase of the second contraction is
determined after removal of g" and g„ from the
original string. It may easily be shown that multi-
ple contractions can be carried out in any order
with the same result.

To prove the contraction theorem, it is conven-
ient to consider the set {d„}consisting of all crea-
tion and annihilation operators. We may assume,
e.g. , that a, d2„y and a"=d» for p, =1,2, . . . , M,
where M is the number of one-particle states.
The right (anti)commutator of an arbitrary string
B with dt will be denoted by

r
11 a a

y&
— 6 a~

7aaaa =Q.
Q, i

C~ 1 ' did y c) ++~ ~ ~ ~ c~ ]c~+ j ~ ~ ~ c~ ~ (13)

The multiple contractions are defined as a super-
position of single contractions. For example,

Multiplying Eq. (12}by Eq. (13) and summing over
all d„we find that

g B C„=—g"(—11"'' '[b ].b, .c. .b,. P,,„,. . .b„c.. . , , c,.,, cc„;
f-1 -1

(14)

where we have made use of the obvious identity

b) d d )c) = b ~ c~ (15)

It is easy to see that

(-1)""'[b, , c,],b, . . .b, ,b, „. . . . b„c, . . .cq,cq„. . .c

(16)

is just the result of a single contraction of the i th and (n+j)th elements from the string BC. Thus the
right-hand side of Eq. (14) is the negative of all nm possible single contractions of operators, one from
the string B and the other from the string C. Introducing the notation

n m ...b ...b c ...c... .c

we may rewrite Eq. (14) as

Analogously, the sum of all double contractions can be written as

(18)
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where B""and C,„are double (anti)commutators B""= (B")",C„„=(C„)„and the symbol BC is defined pre-
cisel.y as

n I
Bc = Q g b ...b ...b , . ..b c&...c....c , c1 ~i ~i n ~j ~j (19)

To prove Eq. (18), we use the fact that

BPv- B
(20)

and expand the double (anti)commutators using Eqs. (12), (13), and (15)

B"vC„„=~ B~ "C„„

-1 "+
b]y C bg ~ ~ ~ b] ~bt ~ ~ ~ ~ b„C~ . ~ .C) ~C '+l '

j=l j= V
f

( 1)i (21)
& ~ ~ ~ &uj

is equal to the sum of all possible k-tuple contrac-
tions of B and C. .Symbolically this may be written
as

—
( 1)k B & ""aC

Ll 0] ~ e e PP
k g~( ~ ~ ~ ( p, y

~t

(22)

where the left-hand side is defined precisely as
the natural generalization of Eqs. (16) and (19).

III. THE CONTRACTION THEOREM

We are now readyto introduce and prove the cen-
tral theorem of this paper, namely the contrac-
tion theorem. Generally speaking, this theorem
enables us to express an (anti)commutator of two
strings in terms of all possible single, double,
triple, etc. contractions of pairs of operators,
one from the string B, the other from the string
C. Symbolically this can be written in the follow-
ing form

fBG] =-BC- 5C-B
+ U (23)

because of Eq. (22), the contraction theorem may
be also written in a different, somewhat more al-
gebraic form:

[B,C], = Q B"C„—Q B""C„„

Applying now Eq. (17), we immediately arrive at
(18). (The factor —,

' disappears since the summation
in (19) is limited to i &i'.) It is not difficult to
generalize the above argument and to show that

algebraic structure, is convenient for a proof by
induction.

Assuming B=b, i.e., B consists of a single op-
erator, and C is a string of arbitrary length, we
can verify the contraction theorem for the special
case where Eq. (24) terminates after just one
term:

[b, C], = [b, b ],[b, C], = Q [b, d„],C„. (25)

[B,C], = [bD, C],=b[D, C],+ (—1)"D[b,C],

+(-I)""[»[b C],].. (26)

Assuming that d, =b, we can write

[b c],=ci (27)

and consequently

[B,C], = b [D, C],+ (—1)"DC,

The last equality holds because the only nonvanish-
ing term comes from d„=b. Since b is a string of
length 1, the right-hand side of Eq. (24) reduces to
the first term. We have therefore verified the
contraction theorem for a string B of length 1.

Next we will show that, if Eq. (24) is satisfied
for strings B of length n (n ~ 1) it will also be sat-
isfied for strings B of length n+1. We write such
a string as B= bD, where D is of length n. Using
Eq. (6) it can easily be verified that

+ (-1)"'[D,c,], . (28)

BP vAC . , ~ (24)
V&V&&

Equation (23) is an easy, mnemonic form of this
theorem, whereas Eq. (24), because of its explicit

When now applying Eq. (24) to above commutators
involving D (which is of length n and hence cur-
rently assumed valid) we get
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[B,C],=b~~g D C„—Q D""C„„+
u&v

(29)
I

+ (-1)"DC,+ (-1)"'
~~Q D"C,„—Q D""C,„„+~ ~ ~ ~.

v&v

We next rewrite Eq. (29) so as to expose the terms with p, =1, and group the terms in a special manner:

[B,Cl, = [bD'+ (-1)"D]C, + Q bD C„—Q [bD'"+ (-1)"D"]C,„-
g»1 v u& v (p, v&1)

bD""C„„

+ ID1vv+ -1 "D"v C „„+
g&v g&v&)t (v, v, &)1)

bD~v "C
vv&

(30)

We see therefore that [B,C], can be written as

[B,c],= g~„ (31)

where the general term A, can be expressed as the sum of two sums,

4 =(-1)'"( g [bD'"s"'"b+(-1)sD"2 "~]C,
( y, & ~ ~ ~ &

bs" " ""C„„., '„).
vb1« g (vb1y ~ ~ s y g )0' 1)

L

(32)

With the help of Eq. (26) we now observe that

B' = [bD, bt]„=bD'+ (-1}"D .
Similarly, for p,„p,„.. . , p. , &1 we have

(33)

I

one, two, etc. , particle-hole pairs. If we designate
unoccupied states by r, s, ... and occupied states by
~, P, ... then such operators can be expressed as

Cg = Q Csb a abb b

B~"s"'"r =bD ~2'"st+ (-1)"D"2"'"t,
bD"&"2"'b")=(bD)"1"s ""b=B"~"&'""&.

(34)

(35)
1

Cm= y j C gQ Q QgQ
&~ ef}f 6

(88)

Using Eqs. (33}-(35)in Eq. (82) we finally obtain
etc. We have occasion to evaluate the commutator
of Ho and C„. For example,

A, =(-1)'" Q B"&'""~c„,...„,.
p1 &e e ~ (p~

1

This completes the proof.

(36)

IV. EXAMPLES

We will consider applications of increasing
complexity. We start with a selection relevant for
our exposition of the configuration-interaction
method. ~ Let IIO be the zeroth-order Hamiltonian
given by

[0 c,]=-[C„II,]
r r~ac (aaaa + aaaa)
o, p

No multiple contractions occur since g cannot
be simultaneously an r and &. The result is

[II~ C,]=g c"(-e a"a„-e„a a"}

(89)

IIO = cq e"g„ (3V)

and let C» C» etc. , stand for operators that create

(40)c„" e„-e„a"a~.
pe

Generalization to higher particle-hole excitation
operators gives

)( I( g Csbj" (es+ 6s + ' ' e~ -ee —~ ~ ~ )a as. ..aeass, .~, a 8...
We next consider the one-electron operator
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U= Xuo a a~

for which the contraction with C, is

[U, Q ]= -[C,U]= Q c &X~u~a&(a a a a + a a a a + a a a a&) .r r A. r A. r A.

ra
A,a

Since U contains off-diagonal terms, with strings of two operators, only up to double contractions are
found. Performing the indicated contractions, we get

(43}

[U, C,]=—g c"„(n)u&&o) a" a —g c"„(A,[u(r) a a + g c"(a[u[r) .
pe 0 yak f Ot.

(44)

It is now instructive to apply Eq. (44} to the reference state with respect to which particle-hole excitations
are defined. If that state is denoted by 4, and is given by

4= a (0), (45}

with (0) the vacuum state, then excited states can be conveniently expressed as

e"„'; = a" a'. ..a,a„@. (46}

As a result, upon changing summation indices, we can write

&rr c,]@=Q (- +&pl~&~& c", + +&rim&a& c'„'&e'„+ g @&~la&r&e.
8 S ) ga

(47}

The commutator of C2 and U is slightly more involved:

[U C ]= -[Q2, U] = —' g c 8&X~u~&»((a a a6a a a + a a a6a a a 1
rseg

Xa
rs A, rs A.+ (a a a&a a a + a a aea a a )Ba ia & 8 ci ~orsX

rsvp.

rsArs+(aaaaaa +aaaaaa +aaasaaa +aaaaaa)). (46}g~(x )a ( g~(x )0 &
'8 (x' to & '. ~ ~' l~

Considerable simplifications occur if we assume that the c„"'z are antisymmetric under particle or hole
index interchanges:

t's sr rs
Co! g Cf}f g C gag ~ (49)

This can be done without loss of generality in configuration-interaction-type calculations. With this pro-
perty all terms in Eq. (48} grouped within a pair of curly brackets are identical. Now applying also this
equation to 4, one obtains, after some algebra,

[U, C2]4 = —, g —g(y [u[e) c&'&&+ g(r ]u[p) P's @'„'&+ g (n]N~~) c„"'zc~s.
rs, f}f 8 y rSe+ 8

(50)

It is straightforward to derive contractions with
a two-electron operator. Eight distinct terms
appear. When applied to 4 three such terms give
rise to two terms each. Therefore the applica-
tion to 4 contains eleven distinct terms. ' For
an explicit expression we refer to our paper des-
cribing the use of the contraction theorem in
connection with finite-order perturbation theory. '

We wiQ now consider multiple-string contrac-
tions. Such contractions arise naturally in the
coupled-cluster (CC) method, and the use of the
.contraction theorem makes it easy to obtain the
working equations. In order to motivate the next
examples it is useful to summarize the essential

I

features of the CC method. The correlated wave
function is expressed as"

0 =e~C

T T$ + T + (52)

7, = t" a"a
ra
1

T, = — t."',a"a'a, a. ,4-...a g

(53}

(54}

e«. 4' is an eigenfunction of H0, and 4 is sought
to satisfy the Schrodinger equation with Hamil-

(51)

where the so-called cluster operator T is given by



CONTRACTION THEOREM FOR THK ALGEBRAIC REDUCTION. .. 1637

tonian H given by

II = II, + U+ V. (55)

U is the one-particle operator of Eq. (42), and V
is the two-particle operator responsible for the
correlation problem,

v =-,' Q (pvlelxo}a" a"a,a), . (56)

T, can be interpreted as an operator that "re-
laxes" the one-particle states in 4 under the in-
fluence of the perturbation (U+ V). T„T„etc.,
are two-, three-, etc. particle cluster operators
that describe the correction in+ due to the single
and multiple clustering of two, three, etc. parti-
cles without explicit correlation between such
clusters. For a discussion of the numerous at-
tributes of the CC method as an attractive many-
body approach we refer elsewhere. 4 Here we wish
to sketch the key steps that are taken to arrive at
the equations for the t"'8" amplitudes of the clus-
ter operators.

The Schr'odinger equation can be written

He~4 = Ee~4 . (5V)

Noting that the inverse of exp(T) is simply exp( T}-
we can equivalently write

e ~He~4=E4. (58}

Since exp(T} is not unitary, the operator on the
left-hand side is a non-Hermitian, similarity-
transformed Hamiltonian. Because T only creates
particle-hole pairs, and because B contains only
one- and two-particle operators, this operator
is expressible as aconite commutator series:

e reer = If + [II, T] + -',[[lf, T), T)

+
8t [f[V T) T], T]

+
4, [l[[v T] T], T] T]. (59)

Termination after a quadruple commutator arises
because V contains strings of no more than four
operators. An equation for the energy E is ob-
tained by projecting Eq. (58) against 4. Equations
for. t"„'~'." are obtained by projecting this equation,
against 4"'8 .' In practice one always truncates
Eq. (52), usually after the second term, and only
projections against those configurations consistent
with the t"'8" kepi are included. The marvel of
the CC method is that a severe truncation seems
to work very well in widely different systems such
as the electron gas, nuclei, atoms, and molecules
(see, for example, Kiimmel et al. ' on nuclear
calculations, and Bartlett et aL' on molecular cor-
relation energy work).

With the contraction theorem, the commutators
in Eq. (59) can now be evaluated. Let us con-
sider for example f[U, T,],T,]:

[[U, T,], T,)= [T,[T„U))
t (-Z t &nlula&a a a a

8 )a
sg rua

t &xlulr&a a8a a )
rex , g.e,

(we only show the nonzero terms). Executing the
contractions indicated we obtain

[[U, T,],T,'J= Q t„' t;(o. luis} a,a"
rs, n 8

t" t'g(P lnl~& e'e. .
rs,~ 6

(61)

But we recognize that the two sums are identical.
Consequently we can express the effect of the
double commutator on 4 as

—,'[[U, T,],T,]= g t'„t",(P luis}4"..
rs, Cf 8

(62)

Triple and quadruple contractions involving U

vanish, because it contains strings with two
operators only. For examples involving V we
again refer to the subsequent paper, ' in which
the contraction theorem is applied to order-by-
order perturbation theory.

V. RELATION TO WICK'S THEOREM
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ments of the University of Utah and the University
of Florida.

We wish to point out that the (anti)commutator
[B,C], can be cast in a form that exploits Wick's
theorem. Starting from Eq. (5) this theorem
can be directly applied to strings BC and CB
separately. ' But then the resulting sum of normal
(n) products with modified contractions as de-
fined in Ref. 5 involves quite complicated contrac-
tion patterns. In forming [B,C], according to Eq.
(5} the n products without contractions cancel.
However, if B and C are not both normal ordered,
combinations of contractions between B and C
elements and of elements within the B and C
strings occur. Therefore a direct application of
Wick's theorem is operationally more involved.
Of course, the contraction theorem does not yield
operator strings in n-product form. If such forms
are desired Wick's theorem can be invoked after
one or more applications of the contraction theo-
rem.
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