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Effects of hyperfine structure on coherent excitation
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%'e point out how the presence of hyperfine structure can improve the coherent excitation and ionization ofJ—+J —1 and J—+J transitions. In the limit of Rabi frequency dominating hyperfine splitting one recovers previously
noted rules.

When one deals with coherent excitation, as
described by a Schrodinger equation, ' one often
encounters bottlenecks which are not present in
incoherent excitation, as described by rate equa-
tions. 2 One example of a bottleneck occurs in the
excitation of degenerate levels, ' as occurs when
levels have angular-momentum quantum numbersJ-J' J"-.~ It is not difficult to show' that,
for integer J, the sequence J-J+ 1-J+ 2- ~

allows all of the ground sublevels to be excited,
(and subsequently ionized) whereas in the sequenceJ- J-J- one sublevel does not participate in
excitation and in the sequence J-J —1-J -2-. ~ ~

each step diminishes the number of excited sub-
levels by two. (These observations apply either
to linear polarization or to a succession of circu-
lar polarizations of the same sense. For half-
integer J and linear polarization the sequence8-7-J — allows complete excitation. ) These
observations have nothing to do with details of the
excitation process, such as excitation pulse shapes
or the time dependence of excitation probabilities.
The rules follow immediately from consideration
of the excitation linkage patterns, and are based
upon elementary selection rules.

The presence of hyperfine structure alters these
selection rules and can allow, in some instances,
complete excitation and ionization of sublevels
which, in the absence of hyperfine structure,
would remain in the ground state. Once again one
can determine the number of inaccessible sublevels
by considering the relevant linkage diagrams, as
shown in Fig. 1 and 2. Here we have sketched, on
the top row, linkage diagrams in the absence of
nuclear spin. The diagram shows each of the mag-
netic sublevels and their interconnection by dipole
transitions for linear polarization (LO4~=0) and
for circular polarization (~~=1). These con-
nections we shall call "allowed" linkages (i.e. ,
allowed by dipole selection rules between unper-
turbed basis states); all other linkages are "for-
bidden". When we allow nuclear spin I to be non-
zero, but do not allow any hyperfine interaction,
then M~ remains a good quantum number, but each
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FIG. 1. Linkage pattern for J'=1 1 transitions,
showing dipole allowed connections between ground and
excited sublevels. Left-hand patterns are for linearly
polarized light (& M = 0), right-hand patterns are for
circularly polarized light (& M =1). Upper row shows
cases without hyperfine structure (I= 0); sublevels are
identified by 3' values. Midd1e row shows effect of
nuclear orientation degeneracy with I= 1: each sublevel
Afz now has 2I+ 1 = 3 sub-sublevels, identified by Mz.
%e here neglect hyperfine interaction, so sublevels are
degenerate and atomic-dipole selection rule is ~I =0.
Bottom row shows effect of hyperfine interaction: ener-
gies are shifted and states are mixed. Strong lines
show linkages allowed in the limit of zero hyperfine in-
teraction; weak lines show linkages al, lowed by first-
order perturbation theory.

MJ sublevel now has 2I+ j. sub-sublevels, which
one can label by quantum number M,. These are
unchanged in transitions of the atomic-dipole
moment. The central rom of Figs. 1 and 2 illus-
trate this situation. The hyperfine interaction
mixes states of different M~ and MI, but it does
not affect the sum M~= M~+ 1Vl~. Thus we can
readily sketch a linkage diagram for weak hyper-
fine interaction by assuming that each unperturbed
transition to a given sublevel M~M~ is apportioned
amongst other transitions to the same value of M~.
The lowest row of graphs in Figs. I and 2 show
the resulting linkages. It is now a simple matter
to count the number of lower level sublevels which

1608



EFFECTS OF H YPKRFINK STRUCTURE ON COHERENT. . . 1609

Linear Circular
0

—1 0

Hyperfine

-2 2-10 -101 0 1

FIG. 2. As in Fig. 1 but for J=1 Q transition.

TABLE I. Number of unconnected lower-level sub-
levels.

No hyperfine
lin cir

Hyperfine
lin cir

J-1
J J
J J+1

1 (0)

~ (Q) for J=half odd integer.

have no connection to excited sublevels; these
numbers appear circled in Figs. 1 and 2. By in-
verting Fig. 2 we see that in transitions J-J+ 1
all lower sublevels ionize. Table I summarizes
these results.

As one can see, the presence of hyperfine in-
teraction can significantly diminish the fraction of
inaccessible sublevels, e.g., from 2/(24+ 1) to
2/(2Z+ 1)(2I+ 1) in the case of J-8—1 and linear
polarization. However, although linkage diagrams
allow one to determine the eventual fate of ioniz-
able sublevels, they do not directly reveal the rate
at which ionization occurs. To indicate the expect-
ed time dependence we have drawn the strongest
transitions with heavy lines in Figs. 1 and 2. The
light lines vanish in the limit of vanishing hyper-
fine interaction. Thus we expect, and quantitative
analyses confirm, that as the hyperfine interaction
diminishes one requires an increasingly long time
to observe effects of the weak linkages. In the
limit of vanishing hyperfine interaction one obtains
the dynamics appropriate to a spinless nucleus.

The details of excitation and ionization dynamics
depends upon the relative importance of the several
interactions comprising the rotating wave approxi-
mation (RWA) Hamiltonian: the basic spinless
free-atom Hamiltonian H" (including ionization
loss}, the dipole-atom interaction H~, and the
nuclear hyperfine interaction II". When the effects

of H~ are absent one deals with the Hamiltonian
LP = H" + H~ whose eigenstates are the dressed-
atom states. Although H~ mixes states of different
J and excitation, eigenvalues of B can be label. ed
with the M~ value appropriate to the lowest state
of a linked sequence: Eigenvalues of H for the
two-level sequences of Figs. 1 and 2 are +(ff/2)
x Q(~z), where G(Mz)'is the Habi frequency.

The presence of the hyperfine interaction H" al-
ters the dressed-atom states: The operator H"
mixes basis states of different M~ while preserv-
ing F and M~ as good quantum numbers (F= 1+ J).
When H" is a small perturbation upon B it in-
troduces a dependence upon M~ and M~ in the
dressed-atom eigenvalues, having the form a
(MIM~)+ b(MIM~)'. The perturbation is small if
this hyperfine splitting is much smaller than the
dressed-atom energy, i.e., smaller than the
Rabi frequency. The mixing of states induced by
II", as predicted by first-order perturbation
theory, - is proportional to a matrix element of H"
divided by the difference between two dressed-atom
energies. Because the dependence of Q(Mz} upon
magnetic quantum number M~ (expressing relative
orientation of dipole moment and laser electric
field) occurs through a Clebsch-Gordan coefficient
of order unity, ' differences between various
dressed state eigenvalues are roughly approxi-
mated by a root-mean-square (rms) Rabi fre-
quency A0. Thus the admixture of allowed linkage
into an otherwise forbidden linkage grows roughly
as the ratio of hyperfine splitting to Rabi frequency.

The effect of H" upon the dynamics is as follows.
For hyperfine splitting much less than the Rabi
frequency, the atom behaves, over many Rabi cycles,
as though it had zero nuclear spin. Only after a
long time, i.e., many cycles, does the small ad-
mixture of states alter the dynamics by exciting
and ionizing the forbidden linkages. Eventually,
however, ionization will approach a completeness
determined by the hyperfine connection diagrams
of Figs. 1 and 2.

When the hyperf inc splitting becomes comparable
to the Rabi frequency (in some mean sense; there
are 2E+ 1 hyperfine splittings and 2J+ 1 Rabi
frequencies) the mixing of sublevels becomes suf-
ficiently great that one cannot distinguish "allowed"
from "forbidden" linkages, and the excitation and
ionization of a11 connected hyperfine sublevels
proceeds within a few Rabi cycles. When the
hyperfine splitting greatly exceeds the Rabi fre-
quency one deals with II as a perturbation upon
H' =II"+ H". The hyperfine splitting here produces
a detuning which impedes excitation. Here again
many Rabi cycles must occur before the detuned
transitions can produce appreciable ionization.

This reasoning shows that for given hyperfine
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structure there is an optimum choice of excitation
intensity: When the intensity is too weak the
hyperfine detuning slows the excitation, whereas
when the intensity is very strong the excitation of
forbidden linkages requires many Rabi cycles.

%e have described the interplay of II", H~, and
SP in a basis characterized by quantum numbers

M~ and MI, as is appropriate to FP = H" + H as
the unperturbed Hamiltonian. One will, of course,
obtain the same results in any other basis, e.g. , a
basis characterized by F and M~ appropriate to
II' = II"+ 8"as the unperturbed Hamiltonian. That
is, the excitation probability from initial level n
to level n' after time t is expressible as

p(n n'I t) = —g I&n'M'zIdi 'I U'(f)
I nlulzlulr&l

'

(lb)

where 9= (2J+ 1)(2I+ 1) is the statistical weight of
the initial level. Here U(t) is the time-evolution
operator and the sums go over M~M, M~M,' in the
first instance and over FM~F'M~ in the second
instance.

Formula (1) tells us to carry out a succession of
g independent calculations, beginning in each case
at time t=0 in a different basis state. We then
sum the squares of transition amplitudes to each
possible final state. The equality of Eqs. (1a) and
(lb) is a consequence of the existence of a unitary
transformation between bases.

Although observable results do not depend upon
our choice of basis states, the linkage patterns
appear differently in the two coupling schemes.
For example, Fig. 3 shows the linkages for the
8=1-1 transitions, with I=1, which appear in
Fig. 2. Although it might appear that all of the
sublevels would become excited, even in the ab-
sence of hyperfine splitting, such is not the case.
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FIG. 3. Linkage patterns for 4=1-1-transitions with
I= 1 using I I& labels instead of Mzhfz labels of Fig. 1.
Each pattern at the right corresponds to a different Jlf~
value; the pattern at the left shows linkages sum. med
over ~~ values. Labels 0, 1, and 2 on each pattern
identify E values.

One must keep in mind the fact that coherent ex-
citation preserves phase relationships. Thus one
must associate a phase with each of the linkages
of Figs. 1-3, thereby allowing destructive inter-
ference. In the absence of hyperfine splitting,
the transitions of Fig. 3 can be transformed (via
angular-momentum recoupling) into the transitions
in the center of Fig. 2; destructive interference
prevents complete ionization of all the linked sub-
levels of Fig. 3. Hyperfine splitting breaks the de-
generacy of the sublevels and thereby overcomes the
destructive interference. Mathematically speaking,
some of the matrices of H' = H"+ H, in the degenerate .

+M+ scheme have null eigenvalues even when H" in-
cludes loss; hence there are components which never
ionize. The presence of H introduces finite loss
rates on all eigenvalues.
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