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Quantization of motion in a velocity-dependent field: The v' case
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The case of the quantum unidimensional motion of a point particle subject to a viscous force proportional to the
square of the speed of the particle is treated. Once a suitable Lagrangian has been chosen, the canonical quantization
procedure is applied leading to a Schrodinger equation for quadratic friction and an arbitrary potential. The cases of
an exponentially decreasing potential plus a linearly increasing term is explicitly solved.

I. INTRODUCTION

Friction is the form in which the interaction of
an object with a medium, whose basic components
are far less than it in size and energy, is macros-
copically manifested. Vfe also know that this in-
teraction is vehiculated by a braking force whose
intensity, for sufficiently low velocities (Reynolds
numbers), is first proportional to the sp'eed of the
object, then to its square.

Although the idea of friction is essentially clas-
sical and macroscopic, there are some cases in
which it can be called into play also for the micro-
scopic world: an example is the radiation damping;
other examples can be found in the interaction of a
single quantum object with a many-body system
whose excitation energies are much lower than
that of the incoming particle. The latter case
needs to be treated semiclassically anyway, in
that the bullet must be considered as distinct from
the target during the course of the interaction, or,
at least, one must be able to identify something
that is being "braked".

These practical reasons and also a general theo-
retical interest for possible microscopic contin-
uous interactions gives sense to the problem of
quantizing the motion in a viscous field. When
considering a point massive particle the classical
equations of motion in a linear or quadratic fric-
tion field are, in order,

d'r dr
m —+my —= Fd]2

d r A' dr
m —,+my — ——=F,

dt dt dt dt

where ~ and P are the particle mass and position, y
is the friction coefficient, and 0 is any external force.
Both Eqs. (1) cannot be derived from a Lagran-
gian' in their present form, but it is possible,
under suitable conditions, ' to find a Lagrangian
leading to a form equivalent to (1). This has al-
ready been done for the linear case' 4 and will
be shown also for the quadratic case in the present

paper ~

Once a Lagrangian has been found, the way is
open for canonical quantization. This procedure
has been applied to the linear case, ~' leading to
some problems with the interpretation of the un-
certainty principle. Alternative methods for quan-
tization have been proposed, introducing nonlin-
earities into the Schrodinger equation. ' ' An ex-
tensive list of references on the subject of quan-
tizing linear friction may be found in Ref. 8.

Anyway, once we agree to consider the quanti-
sation of friction as a meaningful problem, there
is no reason that we can't further pursue the an-
alogy with the classical picture studying the quad-
ratic regime too. This is precisely the content of
the present work. The special case of the motion
in the absence of any external force has already
been solved~; what is treated now is the general
problem of the unidimensional motion in any ex-
ternal potential V (r) in the presence of a viscous
force proportional to the squared speed of the par-
tic1e. The classical equation of motion reads

d'r dr i'
m —,+my —

~

+ vV= 0.
dt dt &

The quantization procedure we follow is the can-
onical one.

II. CLASSICAL CANONICAL TREATMENT

Fol1owing Ref. 1 we look for a Lagrangian for
the equation of motion:

f(r, dr/dt, t) m dt, +my
dt + — =0d r dr dV

in which f is any solution of

dr'i' V'" 8lnf dr Blnf dr slnf
dt ) m adr/dt y dt sr dt et

where primes denote differentiation with respect
to x.

It is readily verified that

f = exp(2yr)

satisfies Eq. (4) and consequently a Lagrangian
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for (3) is

I = —— exp(2yr} — dr V' exp(2yr) .
2

CtV

=ed/dt
=

2

H = exp(- 2yr) +
&

Cr V' exp(2 yr) .
2m

(8)

p does not manifestly coincide with the kinetic rno-
mentum (m dr/dt) of the particle and H, which is
conserved, when V is independent of time, does
not correspond to the total energy of the particle.

With the position (5), Eq. (3) is indeed equivalent
to (2}, as we see thai f has neither poles nor zeros
on the real axis.

From (6) we obtain the canonical momentum p
and Hamiltonian H of the system:

III. CANONICAL QUANTIZATION

The quantization of the system we are studying
can be performed via the usual correspondence
rule

8
P= -g%-

Bf
that substitutes operators for canonical variables.

In the case of the Hamiltonian the problem ari-
ses of the ordering of the operators in the first
term of (8), so we are naturally led to introduce
a symmetrized Hamiltonian operator. One must,
however, be careful in the symmetrization pro-
cedure if the desired Hamiltonian is to formally
reproduce Hamilton's equations of motion. The
correct result is obtained when substituting for
the classical expression p'exp(-2yr) an opera-
tional expression like, for instance [P exp(- yr)]
[P exp(- yr)]. The symmetrized Hamiltonian is
then

H, =
4 [P exp( yr)P e-xp( yr)+ -exp( yr)P e-xp(-yr)P]+ „dr V' exp(2yr)

&s' s
exp(-2yr)~ ~

—2y —+y' ~+ dr V'exp(2yr)
2m (a,f 8%

and, using Heisenberg's equation of motion for operators, it correctly reproduces an equation like (2) and

satisfies Ehrenfest' s theorem.
Now we can write down the Schrodinger equation for the wave function g(r, t} of the particle:

A

Hg=i% —.S

%whenever V is independent of time, II, admits eigenvalues which we shall call A. . The time dependence of
the wave function can then be factorized into a function e(t), whose expression is obviously

e (t) = exp (-i- t
~

.
j

The spatial part X(r) of the wave function must satisfy the equation

8 X 8$ g 2m 2m

Bg 5—,—2y —+ y'- —,exp(2yr) dr V'exp(2yr) + —,A-exp(2yr) Iy.
= 0 ~S2

Equation (10}can be transformed by the substitution X = exp(fu dr), obtaining

2 2m 2mu'+ u~ —2yu+ y' —
~ exp(2yr) dr V'exp(2yr) + —~A exp(2yr) = 0.

(10)

Let us look for solutions of (11) of the type

u = g(r) exp(2 yr) + w(r) .
Substituting into (11) and rearranging we get

m 'exp(- 2 yr }+g' + np exp(- 2 yr) + g' exp(2 yr) + 2gw —2 yw exp(- 2yr) + y exp(- 2yr)

2m 2m
dr V' exp(2yr) + ~A = 0, (12)

I

with the obvious remark that both A and V' are real.
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IV. . SOME EXAMPLES

The solution of (10}[or (11}or (12)] obviously de-
pends on the explicit form of the potential. Anal-
ytical solutions can be found in some cases; we
just quote a couple of examples. The constant po-
tential case has been solved in Ref. 9; An ex-
actly soluble class of potentials is

V = Vo+ a exp( —4yr)+br, (13)

where a and b are nonnegative. constants.
The wave function of the system is, in this case,

of the type

(
g-exp~ nr + p exp(2yr) -i- t I] (14)

with

u = y+ v'4ma/b',

p = ~ &mb/4a'y',

p = + a'v'by/m+ 2&ab/y . (15)

V. CONCLUSIONS

The present treatment of the quadratic friction
does not avoid the troubles already encountered
when canonically quantizing the linear case.
Heisenberg uncertainty is indeed satisfied, as
[r",P] = N, but the commutator between r" and the
particle kinetic momentum is spatially vanishing.
In fact, if we choose to represent the kinetic mo-
mentum by the symmetrized operator

A simple special case of (13) is that for a = 0, i.e.,
the linear potential. "Pseudopolynomial" poten-
tial's of the same kind as (13}with odd powers of
w can also be exactly solved.

—,
'

[P exp(- 2 yr) + exp(- 2 yr)g
a= —ih exp(-2yr) —+ i by exp(- 2yr), (16)
Bt

then we obtain

[r, P,] = ib exp(- 2yr) .
One way to get around this disturbing feature is to
assume that the treated particle has a varying

ass~ zo namely

m = moexp(2yr} .
We must however recognize that the general val-
idity of the interaction of a particle with a friction
field is questionable: As the particle moves th-
rough the field and loses energy, the picture itself
fades away.

Another important remark is that in any case
the friction field must be considered limited in
space in order to avoid divergencies of the wave
functions; the typical problem to be dealt with
will be that of the piercing of a viscous potential
barrier.

The problem to be explored now is that of the
limits at the validity of the linear or quadratic
quantum friction picture. In this respect, partic-
ularly illuminating is the comment" by Stevens
that treats quantum friction as an apparent effect
in a finite nondissipative system studied for a
sufficiently short time; this is perfectly consistent
with the procedure by which Ford, Kac, and Ma-
Eur" derived their equation for an infinite har-
monic oscillators medium. Provided all these
remarks and limits are taken into account, the ca-
nonical quantization can be assumed to be valid
and constitutes a logically closed and reasonably
simple tool to investigate the properties of a dis-
sipative system.
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