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A many-electron theory for electric-quadrupole transitions is proposed. Correlated length and velocity results are
evaluated for the transitions Li r 2s~3d, 2p~3p; Cs r 6s—+5d, Ti i&i 3d' 'F—+3d' 'P, 3d4s 'D; Cu ir 3d"
S—+3d'4s 'D; C in 2s' 'S—+2p' 'D, 2s3d 'D, and Zn i 4s'~s4d 'D, and found to be in good agreement. For Cs i,

relativistic effects were also large.

I. INTRODUCTION

Formerly, experimental and observational inter-
est in electric-quadrupole transition probabilities
has been mainly confined to those involving lines
within 2p', 3p', and 3d' configurations. Theoreti-
cal emphasis has been on these configurations and
the alkalis. Almost all' "theoretical treatments
have been based on an independent-particle mod-
el, and the bulk have used experimental structure
information to introduce relativistic (e.g. , inter-
mediate coupling) and many-body effects. Excep-
tions to these comments are the work of Nicolaid~ s
et al. ,

"who did correlated nonrelativistic all-
electron calculations for 2p' species and that of
McCavert and Trefftz" who did frozen-core plus
two electron multiconfigurational Hartree-Fock
calculations for Bal 6s"8-5d6s'D. Reviews of
these calculations have been made by Garstang, "
Layzer and Garstang, "and Fuhr, Miller, and
Martin. " Recently, there has been a considerable
increase in the frequency of laboratory observa-
tipn ~ and measurementv' " 2 pf E2 transitipns.
Measurement, although formidable due to the
small absorption cross sections, has become much
more accurate (-30%%up), as our table of Cs? results
will indicate. Furthermore, these transitions are
integral parts of modern laser and plasma tech-
nology.

So we are led to expect that in the future we will
have to be able to treat E2 transitions between an
arbitrary pair of states; and we may ask whether
'the current theoretical state of the art is adequate
to do this. Several major questions arise: (l)
What is the general role of many-electron effects—
which we may decompose, for the Hartree-Fock
(HF) results only, into nonorthonormality (NON)
and correlation (treated by configuration interac-
tion (CI) methods here)? Do these rema. in small
(or at least not violate an independent-particle
formalism) as they seem to be for most of the
transitions studied earlier? If not, what are the
principal configurations affecting E2? (2) Which
operator form —length or velocity —is preferred,
i.e. , gives the most accurate and dependable an-

swers? (3) What, if any, qualitative changes oc-
cur in progressing from atoms with simple struc-
ture (e.g. , He-Ar) to those with more complex
structures (e.g. , transition metals)? (4) What
role do relativistic effects play?

In the remaining parts of this paper, we will
discuss in detail questions (l) (3). Relativistic ef-
fects will only be included in ad hoe ways. To
date, there remains no satisfactory way to deal
with both relativity and correlation. Specific re-
sults are given fpr CIII 2s''S-2p', 2s3d'D;
ZnI 4q $'-4g4d'D; CuII 3d' -3d'4s'D, TiIII
3d"y'-3d"p, CsI 6s-5d; TiIII 3d''+-3&4,q'g);
LiI 2s-3d, 2p-3p. For the C, Zn transitions,
many electron effects are large, for those
in Cu', Ti+ ' I - 'P, moderate, and in Ti"
'I -'D and Li, small. Certain rules are proposed
to allow a priori estimation of when many electron
effects can be large. Concerning operator choice,
we find that the velocity operator is best avoided
in dealing with no electron jumps due to the con-
siderable cancellations which may appear in the
radial velocity integral.

In Sec. II, we present the many-electron E2
formalism in terms of arbitrary CI wave func-
tions; in Sec. III, we deal with the wave function
construction, developing an approach (FoTos/E2)
which successfully predicts the configurations (al-
ways a small number) that need to be retained to
produce good quadrupole transition matrix ele-
ments. In Sec. IV, the results are given, and Sec.
V discusses our findings.

II. MANY-ELECTRON E2 TRANSITION
PROBABILITY FORMULAS

The transition probability for spontaneous emis-
sion, Ak, , from state k(akSLkJk) to state i(n,.SL,J,.)
is given by"

1.679 x 10"
+ki (2g i)~5 Ss2(k 2) ~

where A~, is in sec, A. is in p, and S», the line
strength, is in atomic units (a.u. ). The N-electron
E, transition operator, T"', is a sum of one-elec-
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tron tensor operators of rank 2, Z(»)(i), whose
five components are denoted with a subscript Q or
q, i.e. , Tc(', t(»)(i). The line strength is then giv-
en b

As we shall be using states for the levels (J„J»)
constructed from LS coupled functions, it is pos-
sible to relate all (J„J;.) combinations to a single
LSM~M~ matrix element using the Wigner-Eckart
theorem. " Specifically, we have

J~ Lq S ~

S~,(&»SL»J»- a,SL(J)=(2J, + 1)(2J»+ 1)
(L 2 L, 'i

E-L» L»-L,. L()

&& tj&a»SM»=SL~", =L»~r('), (,SM,'=SLM( =L,}~'.

The last term is the "line strength" N-electron
integral in the LM~SM~ scheme, with M~=L, M~
= S which is the "natural" coupling of the many-
electron wave function (see Sec. III). The ( ) is a
Gj and the ( ) a Sj sy'mbol, "in which are embedded
the familiar" N-electron selection rules, e.g. , the
triads (J„J»,2), (L„L,», 2) must satisfy the trian-
gle inequality. We have already anticipated the
spinlessness of T"' by requiring S,=S,=S. Since
this operator is also an even one, both states will
also have the same parity; also Z(M~ = 0, +1, +2.

A. Length form of the operator

The conventional form of the operator employed
is the length one. Fre(zuently (e.g. , Garstang"}
this has been expressed as a dyadic: Here we use
an equivalent form

I» l ) I 5) 2, I» I ((

also used by others (e.g. , Hoyle and Murray' ).
The F» ~ (0) is a spherical harmonic normalized

j
according to the convention of Condon and Short-
ly 31

In addition to the operator itself, we shall need
its one-electron matrix elements. Using spin or-
bitals as one-electron functions, viz slam,
= R„,(r) I', (Q)IZ„we have

l s

= W» .(l'm', )I)f »„,R„., »'d», (6»)
0

where

l

w, (z'm', zm) = ( -', )' '[(2z+ 1)(2z'+ 1)] '~ '(-1) '

Zz 2 z&(z' 2 z)
& 0 0 0)j E -~ ' L -L' IIIj '

(5b)

B. Velocity form of the transition operator

The subject of alternative operator forms di-
vides itself into three parts: (1) generating a form
for the electron-photon interaction consistent with
formal theory""; (2) creating formally e(luiva-
lent transition operator forms through use of hy-
pervirial theorems, ' ~ '~ " i.e. , X= [H, X]lZ»E,
where LE is the N-electron energy difference, X,
X the two operator forms, and H the Hamiltonian
used to generate the N-electron wave functions.
This prescription presumes of course that we deal
with exact wave functions of H. Finally, (2} judg-
ing which of the alternative operator forms is
most accurate in computational practice.

From our viewpoint, results from different op-
erator forms will only disagree because we have
not obtained sufficiently accurate wave functions.
As has been noted many times (e.g. , Nicolaides
and Beck"}, agreement does not imply correct-
ness; one can not even be certain the correct val-
ue lies anywhere near the common result. Errors
in any of the above three stages can be responsible
for this situation. Given the considerable latitude
for error, we can anticipate that a priori judge-
ments of the accuracy of a given result will re-
main an insoluble problem.

Our approach here is to use the length form of
the Z)Z-electron operator given above [E(I. (4)] as
the one generated. from interaction theory and ap-
ply the hypervirial theorem with the nonrelativis-
tic Hamiltonian as did Hoyle and Murray' and
McCavert and Trefftz" to generate an N-electron
velocity equivalent. The one-electron matrix
element of this operator is given below:
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(n'l'm', m, ~tz" ~. ~nlm, m, )= Wz z(l' m', Im) — r'dhR„. ; +8,. , dr P„,P„,
~0

(6a)

with b=b U, (10b)

-3/2, l'= l

l'= l+ 2 (6b)

-(I+ 1), I'= I —2

where b,E is the N-electron nonrelativisti. c energy
difference given in a.u. As pari of our approxima-
tion, we shall obtain LE from experiment, approx-
imately removing relativistic effects from it, when

they are large. This implies that the "exact" non-
relativistic Hamiltonian and wave functions are
used for this part, whereas for the transition ma-
trix element (P»(k)

~

T"' ~g»(i)) we argue that ap-
proximate solutions (see Sec. III} to the nonrela-
tivistic Hamiltonian are satisfactory. This ap-
proach will allow us to restrict the calculation of

g» to just a few configurations. Ad hoc ways of
introducing relativistic effects are discussed in
the Sec. IVA.dealing with the Cs I transition.

D,.f = b*,.afd7. ,

where b,. is the ith spin orbital in h„etc. Solve
the eigenvalue problems below, using standard
Hermitian diagonalizers:

(DiD)V= VA, (8a)

(8b)(DDi)U= UA,

where D~ is the adjoint of D.
If we let d, -=A'„~', d, , ~ d» & 0(i&j), then for an

N-electron operator which is a sum of arbitrary
one-electron operators, viz; Q=g", , tu(i) we have

N N

(&, ~fl ~A, &=(det U)(«t V')g &&, ~~~~,)... , d„, (9)
j=l fPf

where b and a are linear transformations of the
original spin orbitals, viz. ,

a=a V, (10a)

C. Nonorthonormality (NON)

We choose to use state specific one-electron
functions to reduce the size of the CI expansions.
This means that NON effects arise when dealing
with off-diagonal properties. These reduce to the
treatment of NON between two Slater determinants
(A), which we evaluate using the methods of King
et al.

Let D be the overlap matrix whose elements are

These formulas, while correct, are fairly expen-
sive to evaluate. Certain simplifications were
made to them for the electric-dipole case" and
for the electric-quadrupole case."

However, even the above simplifications left the
treatment of NON an expensive computational bot-
tleneck. Here we outline a procedure which has
effected the complete removal of NON as a bottle-
neck. This has been applied to El (Nicolaides and
Beck") and E2 transitions (this work). The
streamlining is accomplished in several steps:
(1) a priori recognition and subsequent discarding
of configurational and determinantal matrix ele-
ments which are identically zero 'due to symmetry
(our NON is entirely radial in nature). To do this,
we first form pseudospin orbitals and pseudocon-
figurations by neglecting the principle quantum
numbers. For example, the pseudoconfigurational
equivalent of 1s'2s3d is s'd. The determinant
Is0alsOP2s0nSd+2a would be reduced to
(s On}'(sOP}(d+ 2o.). These pesudoconfigurations
(determinants) are then tested to see if they sat-
isfy the relevant one-electron selection rules. If
they do noi, they are discarded. A common de-
terminantal survival figure is about 1 in 10, e.g. ,
~ 10000 interactions survive out of 100000. (2)
The deep core radial functions are state indepen-
dent and thus can be shown to make no contribu-
tion to the matrix element. So we treat something
less than all N electrons and something more than

just the "active" electrons. (3) If the two deter-
minants differ in one and only one pseudospin or-
bital, then we begin by making the reduction of
Westhaus and Sinanoglu" as it applies here (see
also Nicolaides et al."). Owing to the ordering
of the d, , , and our assumption, d„„is zero. For
a nonzero result, we must restrict i =N in Eq. (9).
Furthermore, these authors showed" that

S-1

(det U)(det V~) „d»= det (D'), (lla)

where

D',.f = D,.f+ U,.gV*.g

Hence

(lib)

(12)

which means we need only obtain the lowest root of
DD~ and D~D, not all roots (which cuts down diag-
onalization time). But it is possible to avoid diag-
onalization altogether, "since we already know our
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eigenvalue (= 0), and can obtain the eigenvectors
by solving a small system of linear equations for
the components of U„and V„belonging to the sym-
metry block of the jumping pseudo-spin orbital.
With these steps, the problem of NQN becomes
extremely tractable. Calculation times for A are
1-15 min on a DEC 2060.

D. NON to first order

Our NQN calculations are done to all orders.
However, in order to analyze the effects of NQN,
it is useful to look at its first-order effects which
are of two types: (1) deviation of normalization

i

integrals from 1, (2) deviation of.orthogonality
integrals from zero. A first-order NQN expres-
sion would contain all terms having a single nor-
malization or orthogonality integral.

As an example consider the LII 1s.'2s-1s'3d
transition. . The determinants involved are
(lsnlsP2sn) and (lsnlsP3d2n), where the bars
are used to denote the state dependence of the ra-
dial functions. The dipole matrix element is then

&A(lsnlsP2sn

which to first order is

&Isn)lan&&lsP )IsP&&2sn ~r'~3d2n& —(2sn ~isn&&lsP ~lsP&&lsn ~r'~3d2n&

= (ls (ls&'&2sn [r )3d2n& —(2s )Is&&is [ls&&lsn ~r'(3d2n&

(to get the second term of the right-hand side we
have performed one interchange in the first; at
this stage we must maintain spin orbitals, as only
ones with the same lm, m, can be rotated). Tech-
nically, this should be further simplified to get
the first-order results, but this form is easiest
to work with. In Sec. IV, where the effects of NQN

on the HF length result are given, we compare
the above result to that for full orthonormality
(&nl ~nl) = &n, n in the above).

III. FIRST-ORDER THEORY OF OSCILLATOR
STRENGTHS FOR E2 (FOTOS/E2)

We develop. the analysis for E2 along the same
lines as that for E1.""For each state, there is
one or possibly two (see Beck and Nicolaides" for
examples) dominant conf jguration(s) which al'e
used to construct the reference function, @. To
predict the correlation configurations which are
to appear in the other state, we (1) apply the quad-
rupole operator of equation (4) to the abovepseudo-
configuratio~, using the selection rules of equa-
tion (5), viz, s- d, p- p+ f, d- s+ d+g, which
then yields all pseudoconfigurations of the other
state which survive, to first order, in the quad-
rupole matrix element. In reducing 4 to its
pseudoconfiguration, subshells assigned to the
deep core (see Sec. II) are neglected (and through-
out the analysis). In abstract terms, if the initial
pseudoconfiguration is s'p d", application of the
E2 operator creates the pseudoconfigurations

hatt-1 ptndn+1( ~ d)

s p d"(p ~ pt d ~ d)

s ttptndn+E2 ( s tpt1dtftt(p nf )

ls1t+tpndln( d s)

t s'p"d 'g(d-g)

s, - s „(internal polarization)

s,.s& - s,.s1, (internal)

s,.-v, , (virtual polarization)

s,.sz —s,vz, (hole-virtual)

s,.sz- v, v&, (bivirtual) .

(14a)

(14b)

(14c)

(14d)

(14e)

The above divisions have both computational and

t
and, (2) we then replace the newly created pseudo-
configurations with actual configurations, by ex-
panding the pseudosubshells in terms of actual
subshells.

Before carrying out this second step, we must
review the process by which the full first-order
correlation function is constructed" "for any ar-
bitrary property, for we shall not permit FOTOS/
E2 to produce any configurations which are not
part of this function. In essence, the full corre-
lation function just contains all single- and double-
subshell excitations from the configurations in the
reference function. For most properties, there
will be several subshells in the deep core, i.e. ,
kept frozen. We excite from configurations rather
than determinants as in the past ' in order to en-
sure production of I.', S' eigenstates. This reduces
the errors in energetics, transition probabilities,
etc.

More critically, wedivideup the radial space into
the Fermi sea (FS) and its orthogonal complement,
the virtual space. The Fermi sea consists of all
radials in 4 and any additional radials nearly de-
generate with them. Specific examples appear in
Sec. IV, while surveys may be found elsewhere. '
Designating occupied IS subshells as s, , open IS
subshells as s,. (occupations less than 4l+ 2), and
the orthogonal virtual subshells as g, , the full
first-order correlation function may be written
schematically as a sum of five parts:
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conceptual significance; for example, for many
one-electron properties of ionized species '"
we need no excitations of the type (14e). Further
examples are given elsewhere. """

First-order perturbation theory, which has dic-
tated the form of the correlation function, also
serves to limit the virtual symmetries of sections
(14c) and (14d) to SIM», where lM» is the maxi-
mum Fermi sea azimuthal quantum number.
Computational practice suggests such a limit is
adequate for part (14e) as well.

The unknowns of the correlation function are the
radial functions —FS and virtual —and the CI coef-
ficients. We determine the FS radials using either
the numerical restricted HF (RHF) code of Froese-
Fischer ' or the matrix code of Roos et al. ,

'
mhich is based on Roothaan's work." Generally,
FS radials not appearing in the reference function,
4, are obtained by separate single configurational
RHF calculations, and then orthogonalized, if nec-
essary, to those in 4. Virtual radial functions, on
the other hand, are determined as part of the varj-
ational CI process. Prior to orthogonalization,
they are represented as one or tmo Slater orbitals
(STOS) or Gaussian-type orbitals (GTOs), with un-
known nonlinear parameters, i.e., exponents.
These quantities can be very well estimated (to
start the variational process) by forcing them to
have the same (r) as that of the subshells they re-
place. Virtuals associated with K, L,M, . . . sub-
shells then have very different characteristics.
Once the configurations and FS radials are known,
the correlation function is generated in acomplete-
ly automated way by program SMART-PSI developed
by the author and C. A. Nicolaides. '

How do the above considerations specify which
configurations are to be used for E2? There are
two general restrictions in effect: (1) No pseudo-
configuration |:an be mapped to a configuration
which has more than two virtuals, (2) in substan-
tionally ionized systems, we shall exclude bivir-
tual configurations as these would involve, when
computing the quadrupole matrix element, an
overlap integral with the FS of the other state,
mhich is nearly identical to the FS of our state;
hence, the overlap integral is nearly zero. Con-
figurations producing overlaps between FS radials
belonging to different shells are likewise small.
To demonstrate these considerations, let us con-
sider the example Cu 3d'"S-3d'4s'D. What does
FOTOslE2 applied to the upper state predict should
be in the lower one? We will assume that 1s,
. . ., 3p subshells belong to the deep core, i.e. , re-
main frozen.

Sd'4s -d's ('D pseudoconfig) x E2 .
-d"+ d's'+ d's+ d'sg ('8 pseudoconfig) .

We take the '8 reference function to be solely 3d",
and further assume that the active FS = 3d only
(any Sd, 4s degeneracy effects will be adequately
picked up with a v,). With these considerations,
and our earlier restrictions, we can recover the
appropriate configurations:

10 3d10+ 3d9v + 3d8v2
d d P

.d's'- 3d'v'

d's - none:no 'S,
d sg~ 3d v~v

The one major remaining question is whether
any of the excluded configurations can significantly
affect the coefficients or virtual radial functions
of the configurations admitted by ForosjE2. If
they do, they will have to be added to those we al-
ready have. Generally, me mill in fact need a few
such configurations. These will be of three types:
(1) A few of types (14b) and (14d) representing the
largest correlation effects. Each such configura-
tion is generated such that all FS subshells in-
volved in the excitation have the same principle
quantum number (otherwise they will be small and
can be excluded). Examples are np'-nsnd; np'
-ns v„. Further examples are found in Sec. IV
and in previous work" which contains a nearly
complete list. (2) Particular attention should be
paid to the largest arising from the same pairs
s,.s& as these admitted by

Folios/E2.

They are of
types (14b), (14d), (14e); and (3) single excitations
of the type nl-x„, (x= FS or v) where I is pre-
served, are critically important'FOTOS/E2 con-
figurations; they serve to correct the radial part
of the HF one-electron functions in @. Yet these
excitations are only weakly connected to 4, be-
cause Brillouin's theorem is frequently nearly
satisfied. They are in fact most directly con-
nected to double excitations of the type nlm'l'
-y„;z,g, where m'=n if possible, or at least n
+1. The matrix connecting the single and double
excitations then have the structure

I Im l xnan ~num'g'
12

which we have radially maximized because m' =n.
As an example, consider again the Cu 3d"'S
state. The 3d- v„polarization is chiefly con-
nected to the Sd' excitations (and progressively
less so to SpSd- and SsSd-, etc. ). The largest'o
replacements for the 3d' pairs are v&, v„', and

v~, which serves to fix l, l'.
Before closing this section, it is of some inter-

est to point out the "expensive" part of the eval-
uation of the correlation function. Our variational
CI calculations used as an pl-electron basis, sym-
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metry adapted single-configurational functions.
These are fixed linear combinations of Slater de-
terminants which in the past, "we have obtained
solely by direct diagonalization methods. For
systems involving open d subshells such as the
transition metals, however, several hundred de-
terminants are involved, and these can no longer
be generated solely by diagonalization. Instead
we break the problem up, using vector coupling
methods and step up or step down operators, which
completely removes this as a calculational bottle-
neck. Details of the method will be reported else-
where. " Typical calculation times for the wave
functions needed in Sec. IV range from 2-10 min
(DEC 2060).

IV. RESULTS

A. The alkalis

With the exception of E2 transitions within gp'
and nd' ground-state configurations, the alkalis
have been the subject of the earliest and greatest
interest. Experimentally, all laboratory measure-
ments to date" have been on members of these
classes. As is true in general, most theoretical
work on the alkalis falls into a few categories:
(1}users of the Coulomb approximation'" "as
developed by Bates and Damgaard. " Here one
solves a differential equation for the radials in-
volved in the transition using the experimental
ionization potential. In addition to the assumption
of an independent particle formalism, the chief
uncertainty lies in the necessary use of a cutoff
radius, beyond which the inward integration
ceases. An a,dvantage of the method is that rela-
tivistic and correlation ("core-polarization" ) ef-
fects are partially incorporated into the model
(through the ionization potential). As is usual, the
method can be expected to be most accurate for
one-electronlike transitions (core nl to core n't'},
for which the length form of the operator is to be
used, and (2) partially or fully ab initio Hartree-
Fock treatments. '""" The common feature is
evaluation of the radial length integral J 0 drr'PP'
using some sort of Hartree-Fock procedure.

L,i13d~2s; 3p ~2p

We study these transitions in order to permit a
comparison with previous theoretical work; I i
was chosen to minimize the role of correlation ef-
fects to allow a more direct comparison. No ex-
perimental results are available.

In Table I we report results obtained for the
length and velocity operators obtained using both

analytic and numerical RHF wave functions. The
small (10 '%) effects of nonorthonormality are in-
cluded in these results. The analytic ones are

TABLE I. Spontaneous emission probabilities, AQ, in

sec for Li.

Method
28)/2 M5/2

NRHF/l '
NRHF/V '
ARHF/l '
ARHF/~
HF/POL'
Model potential g

261.7
255.4
255.8
255.3
252.5
252.5

2P3/2 3p&/2
h

NRHF/l
NBHF/V
ARHF/l
ARHF f/'
HF/POL f

Model potential ~

27.57
26.76
27.50
26.75
26.63
26.43

taken from the work of Weiss. " Contrary to the
finding of Boyle and Murray, ' we find excellent
agreement between analytic and numerical values.
The only noticable difference is in the Sd- 2s
length value. From the values given by Boyle and

Murray, ' Caves, ' and Table I, it appears that the
numerical HF values of the first authors' are the
ones most suspect. This changes the conclusion
reached by Caves, ' who contended the Coulomb ap-
proximation is to be preferred in this system. As
Table 1 shows, no values differ by more than 4%,
which should be about the size of core polariza-
tion effects. One should note the size of AQ.. elec-
tric dipole A. 's are on the of 10', configuration
changing (e.g. , Li) E2 around 10', and Sp&, Sd& E2
transitions around 10'.

We should mention that the experimental energy
differences as given by Moore' have been used to
construct Table I. Thesevalues given in cm ', and
were converted to eV using the relationship given
in that work for ionization potentials. We then

AQ( P3/ 2 3P3/2) =AQ(2pi/2 3p3/2) =YAQ(2P3/2 3p&/2)
with no fine-structure splitting, the equivalence would
be exact.

" Numerical BHF results obtained from Froese-
Fischer's program, (Ref. 46), length operator, experi-
mental (Ref. 54) &E. This work.

Same as (b) except velocity operator.
Analytic RHF results obtained by gneiss (Bef. 53) us-

ing the Boothaan technique (Ref. 48). Length operator,
experimental (Ref. 54) &E. This work.

~ Same as (d) except velocity operator.
~ Hartree- Fock-like results obtained from polarizabil-

ity calculations by Sengupta (Ref. 13). In effect, the or-
bitals contain core-polarization effects.

~ Results obtained by Caves (Ref. 2) using a variant of
the Coulomb approximation.

"AQ(2s~/2 3d3/2) =—AQ(2sg/2 M5/2).
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converted eV to a.u. using 1 a.u. = 2'7. 20976 eV.
These considerations are of some importance as
the length form of Ao varies as (LE)' and the ve-
locity form as (LE)'.

CsI 5d ~6s

This is a transition which is being used by Nay-
feh" in his laser photoionization studies. It has
also been measured by four groups"" "with
conflicting results.

Cs I is the largest system we study here; its
Z is high enough to warrant careful examination
to see the size of relativistic effects. We begin
by looking at b, E, which has an experimental value
of 1.7973 eV (5d, &,-6$, &,). To estimate the effect
of relativity on the gap, we do a numerical non-
relativistic LSCF calculation using the Froese-
Fischer program, "and follow it with a relativistic
&SCF Dirac-Fock calculations using the program
of Desclaux. " We find that relativity widens the

gap by 0.194 eV. This effect is quite substantial-
the length scale factor (&E') nonrelativistically is
0.6 of the relativistic value. Obviously, relativis-

I

tic effects can not be ignored.
For the moment, let us set this aside and treat

the problem entirely ~nonrelativistically. Here,
we are to use the nonrelativistic "experimental"
energy difference of 1.6033 eV to compare the
length and velocity results. We then go on to in-
clude relativistic effects in an ad hoc manner to
provide a final value. A procedure like this is
necessary because there is currently no system-
atic ab initio way of including both relativistic and
correlation effects at the level required here.

The Cs I C configurations are 1s' 2s' 2p' 3s' 3p
3d" 4s' 4p' 4d' 5s' 5p' (6s+ 5d). Of the thirteen
subshells listed, all but 5p, 6s, and 5d will be
considered part of the deep core. FOTOS/E2 pro-
duces the configurations 5p' (6s+ v, ), 5p'(v~v,
+ v,vz + v,v~) in the ground state and 5p' (5d+ v, ),
5p'(v, v~+ v,v& + v&v„+ v~v& ) in the upper state ('D).
the upper state ('D).

The correlated nonrelativistic (NR) results are
shown in Table II. Several things are apparent.
Both the NR-RHF length and velocity values are
equally bad. Once again, we have a specific ex-

TABLE II. Spontaneous emission transition probability, A~, in sec for Cs I 5d 6s.

Upper Lower Method &E (e~ Length Velocity

5d 3y2 6s~y2

5d 5/2 6Sg/2

NR-RHF
NB- FOTOS /E2
R- FOTOS/E2 A
C.A. '
c.A. '
Expt-Abs
Expt. electron ~

impact
Expt. emission h

Expt. Hook'

NB-BHF
NB- FOTOS /E2
R- FoTos/E2 A
'C.A. '
C.A. ~

Expt-Abs f

Expt. electron g

impact
Expt. emission
Expt, 'Hook

1.6033
1.6033
1.7973
1.7973
1.7973
1.7973
1.7973

1.7973
1.7973

1.6033
1.6033
1.8094
1.8094
1.8094
1.8094
1.8094,

1.8094
. 1.8094

19.32
13.83
24.5
19.6
20.8
23&2
49

79
75

19.32
13.83
25.3
20.7
21.8
24+2
49

84
87.5

17.98
12.96

18.22
12.96

Numerical nonrelativistic BHF results. "Exact" nonrelativistic &E (see text).
Correlated (FQTOS/E2) nonrelativistic results. "Exact" nonrelativistic &E (see text).
FOTOS/E2 length result using experimental (Ref. 54) &E.
Coulomb approximation obtained by Warner (Ref. 16).
Coulomb approximation obtained by Sassi (Bef. 12).
Experimental result obtained by Sayer et a&. , (Ref. 12), using absorption techniques.

~ Experimental result obtained by Hertel and Ross (Ref. 56) using electron impact tech-
niques.

Experimental results obtained by Gridneva and Kasabov (Ref. 57) using emission tech-
niques.

' Experimental results obtained by Prokofiev (Bef. 58) using the hook (anomalous dispersion)
technique.
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ample of good agreement between operator forms,
with the result being incorrect. This can easily
happen' for one-electronlike transitions, where
the HF operator can become fairly local. Obvi-
ously, we can make no preference here as to op-
erator form, in contrast to Cohen et gl. ' who pre-
fer the velocity form for E2 transitions in the He
isoelectronic sequence.

The correlated results are in good agreement,
and differ from the RHF results by nearly 40/0.
NON effects are also small (10 '0/0) here. If we
accept these as close approximations to the exact
nonrelativistic values, we see correlation can af-
fect both operator forms substantially. There are
two points which suggest we do this.

The results agree well, when corrected for rela-
tivity (see below), with recent experimental ones.
Secondly, we have used considerable care to make
sure the radial space is properly converged; omis-
sions are likely to Pe at the configurational state,
e.g., 5sos, 5s 5d excitations, etc. It is to be noted
that the results obtained from the theoretical ener-
gy difference need to be multiplied by about a
factor of 2 to introduce the exact nonrelativistic
energy. As intended, FOTOS/E2 successfully pre-
dicts the quadrupole matrix element without being
required to simultaneously predict the energy dif-
ference. This is a recurring result throughout
this work.

An analysis of the results shows that the princi-
ple correlation to the matrix element arises from
6s —v, and 5d- v„. The other configurations are
needed as they are the ones most strongly con-
nected with these Brillouin-type virtual polariza-
tions. This suggests that the problem is still fun-
damentally an independent particle one, with rela-
tivistic and correlation effects changing the radial
functions of the outermost electron, and hence,
transitions of this type should be fairly amenable
to a treatment using the Coulomb approximation.

To begin the introduction of relativistic effects,
we choose only the length operator as it seems
more fundamental, "and reevaluate the correlated
nonrelativistic length A with fully relativistic
hE, i.e. , the experimental result. The results,
designated R-FoTos/E2:A, are in good agreement
with the most recent experimental value" and two
Coulomb approximation values. ""Under the
above procedure, if a velocity result were de-
sired, a new X would have to be generated using,
e.g., the Dirac-Breit Hamiltonian in the hyper-
virial theorem.

It would appear that the electron. -impact re-
sults'6 (and earlier measurements" ") are much
too high. There seems to be a similar problem'
in NaI with regard to the electron-impact meth-
od.

B. The transition metals
'~

In 1971, Nicolaides et al." examined many-elec-
tron effects in 2p' transitions, finding them to be
moderate (-I'l%). At that time, the role of bivir-
tual correlation in neutral atoms was not fully ap-
preciated, nor was there a transition oriented
configuration selection mechanism such as FOTOS/
E2. Nonetheless, these results seem to be sub-
stantially correct.

Since that time, there has been little gb initio
work on the role of correlation effects (see how-
ever, Sec. IVC); in particular there seems to be
none on 3p' and 3d' transitions, aside from some
early semiempirical CI used by Garstang. We
attempt to partially remedy this lack here by ex-
amining 3d' and 3d'-3d' 4s transitions in the
transition metals; we take these up rather than
those in 3p' (some of which have now been mea-
sured" "), because we hope more novel features
will appear in them and we are currently making a
study of 3d-4s excitation energies in transition
metals. " The transitions of interest are astro-
physically important and many of them have been
treated " at the independent-particle level using
the length operator. In general, agreement of
these results with guantative (where available)
astrophysical observation seems good. Neverthe-
less, a few critical tests would be useful in this
area.

For transitions within Bd' (or within any single
configuration) we expect to have some difficulty
with the velocity operator. Formal nonrelativis-
tic theory assures us that as Z- ~, these transi-
tions vanish (wave functions, etc. , become hydro-
genically degenerate). At the one-electron level,
we have a proportionality between the radial length
integral, hE, and the radial velocity integral,
which from Eqs. (5) and (6) is

RnlRn'E. r'dr - — r'dr Rn't '
p p

nt

l t+n l'nl dr ~''

This suggests that the right-hand side must vanish
faster than the length integral by a factor of hE.
So, the radial velocity integral must involve a
great deal of cancellation for transitions where
LE is small, i.e. , those with no configuration
change, and hence, be difficult to evaluate and
correct. We can see this explicitly if we take nl
=n'l' and assume the radial functions are indepen-
dent of term. We have B»= —2, so

f rdrR l d
=2 rdr

d
=-2 rdrp„,dRng 3 2 2

p & p dr p

(16)



MAN Y-ELECTRON EFFECTS IN AND OPERATOR FORMS FOR. . . 167

exactly cancels the first term. Thus, the Hartree-
Fock velocity result is only nonzero in such cases
due to the term dependence of the radials, which '

is in fact weak. Generally then, the velocity op-
erator is not optimal for transitions within a con-
figuration, although with some effort reliable re-
sults can be obtained with it, as our following ex-
amples suggest.

A similar analysis of cancellation effects for
electric dipole transitions has been made by I ay-
zer. ' In practice, these are not normally a prob-
'lem because the parity change forces a subshell
change, and subshell degeneracy sets in at a high-
er Z than term degeneracy.

Ti rye 3d 3F+-3d P 3d4s3D

The species TiIII was chosen for several rea-
sons: (1) there was existing theoretical work, ' (2)
the number of d electrons allows the wave func-
tions to be well correlated without introducing the
procedure discussed at the end of Sec. III (which
is currently a bit cumbersome to apply), (3) the

. species is ionized enough to so that 3d-4s inter-
actions do not need special treatment.

Results for the 'I -'P transition within the Bd'

configuration are given in the first part of Table
III. The degree of cancellation with the RHF ve-
locity result is striking; it is —of the length re-
sult. Yet, FOTOS/E2 ("correlated" ) has corrected

them very nicely, so that agreement with the cor-
related length results is satisfactory. It should be
noted that the two length results and Garstarig's
value4 agree quite closely. In this case, correla-
tion effects on the length are rather small; as
are NON effects (0.04%). Once again, we had a
rather large error in ~E (-0.3 eV), which results
in correction factors of 2-3.

For the 3d"I' calculation, we included the con-
figurations: 3d' Ss3d' Sdv Sp'v 3d' v„' v', v'
Sdvg~ SP vy dvs~ 3~ vySdvy, Sp'vqSd, Sp'vqSdv
Only the first four make large contributions to the
(velocity) matrix element. For 3d23P we included:
Sd', Sp'v&Sd', 3s3d', BsBd'v„, v'„, v', Sdv„,
Sp vfvgSd, Bp v~Sd', v~ of which the first four were
important for the matrix element. We should note
that here we had to remove 3s from the "deep
core" to produce agreement.

Results for the Sd"I"- 3d4s 'D transition are
given in the second part of Table III. Here there
was very little difference between the length val-
ues and only 15% for the velocity values. We may
note the considerable difference in the A@ for
these transitions and those within 3d', which is
due to the increased b, E. One might be able to
observe the second transition, as it seems mod-
erately large and there are no odd parity states
below it. The M1 channel will be open of course
(4 and M~ permitting) due to the configuration
mixing of 3d' and Sd 4s.

TABLE III. Spontaneous emission transition probabilities, A~, in sec for Ti III.

3d I' 3d P

&E (eg A@v

Correlated
A~

Q Q Garstang

1.3061
1.3145
1.2917
1.329
1.3063
1.2767

0.039 9
0.013 8
0.025 2
0.001 24
0.008 00
0.027 5

' 0.004 23
0.001 44
0.002 73
0.000 127
0.000 85
0.003 05

0.033 9
0.0117
0.021 4
0.001 06
0.006 78
0.023 3

0.050 3
0.017 1
0.032 4
0.001 51
0.0101
0.036 2

0.039
0.014
0.025
0.0012
0.0079
0.027

3d Eg 3d4s Dg~

4.7185
4.7352
4.7634
4.6957
4.7124
4.7406
4.6829
4.7111

RHF

34.8
15.2
1.12
17.0
25.9
11.4
10.8
39.6

36.8
16.0
1.16
18.1
27.5
12.0
11.6
42.1

35.1
15.3
1.13
17.1
26.2
ll.6
10.9
40.0

Correlated

43.1
18.7
1.36
21.2
32.2
14.0
13.5
49.2

&E is the experimental (Ref. 54) energy difference value (no correction for relativity);
A~, A~ are the length and velocity transition probabilities.

b The RHF and correlated values agree to the figures published.
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Cu a 3d~o is ~3d9 4S ~D
I

Ne study this transition for reasons similar to
those for the TiIII transitions and two additional
ones: (1) In calculating the Cuo Sd"'S- Sd'4p'P'
electric-dipole transition probability Froese-
Fischer" apparently found very large deviations
from Brillouin's theorem. For example, a multi-
configurational calculation with Sd'o+ Sd'v, ('S)
produced a very large (0.3) coefficient of the sec-
ond configuration; this is at least an order of
magnitude larger than "normal", (2) with so many
d electrons, NON and correlation effects may be
enhanced. Additionally, this line has been seen '
in the spectra of g Carinae.

To address the first supplemental point, we be-
gan by doing a varjatj. onal CI calculation on 3d
+ Sd'v„ for only the v„radial and the coefficients
(the 1s, . . ., 3d radials were from a single config-
urational RHF calculation on 3d"). Despite a very
careful search, the interaction remained tiny, a
result we believe reasonable —for even though 4s
and 4d are nearby, we do have a closed-shell con-
figuration, and Brillouin's theorem is usually good
for these. The next step was to look at a three
configuration problem, viz: Sd"+ Sd'z „+Sd'v„',
all three configurations being among those re-
quired byFOTos/E2. Here, we found a large inter-
action with the last configuration, and a modest
one with the middle one. The energy of the com-
bination was much lower than the MCHF (multi-
configurational Hartr ee-Fock) two configuration
energy obtained by Froese-Fischer. ' The result
for the 3d g„coefficient, which was maintained in
the full FOTOS~E2 calculation, does not conflict
with Froese-Fischer's, "from this point of view:
The MCHF calculation allows very great flexibil-
ity to the orbitals —as has been pointed out~ there
are essentially as many unknowns as there are
mesh points. In this sense we can look at the
MCHF calculation as a constrained (by the form
assumed for the CI) one involving ~-tuple excita-
tions of the original RHF orbital, e.g. , it contains
in a constrained way 3d-, 3d'-, etc. Additionally
3d" is no longer constructed from RHF results to
which Brillouin's theorem applies.

The RHF and correlated length and velocity re-
sults are shown in Table IV. Correlation has de-
creased the velocity value by a factor of 2 and
brought it into agreement with the length values
which changes by 4%. NON effects are small (4k).
A rather severe test of FOTOS/E2 was involved as
the experimental energy difference" was 3.256
and the theoretical value 6.783 eV. The large
discrepancy arises from the exclusion of Sd' pair
excitations from the upper state as our work on
Sd- 4s excitation energies along the entire transi-
tion metal period demonstrates" —all gaps were

TABLE IV. Spontaneous emission transition probabil-
ities aA.Q. in sec 1 for Cu+3dio iS-3d948 1D

Correlated
Q Q

Garstang

Q

2.24 3.93 2.33 2.21 2.02

~ The experimental energy difference (Hef. 54) used
was 3.256 eV.

See text for how the results of Hef. 4 were used to
produce this "LS"result.

accounted for there to 0.1-0.2 eV.
The 'S configurations used were: 3d", Sd'g„

Sd'v„', Sd'v', Sd'v v„„and Sd v', of which only the
first two contributed significantly to the quadru-
pole matrix element. For 'D, we used Sd'4s,
Sd vga Sd 5 ) Sd 5g~ Sd vga Sd (guava+ vs + v~+ vy
+ v,') of which only the first two contributed sub-
stantially to the quadrupole matrix elements.

Garstang's4 calculation for this line was done
on a semiempirical intermediate coupling level.
He obtained an A.Q

of 1.9 sec ' for 'S, -'D, and
0.12 sec ' for 'S, -'D,. As with electric-dipole
transitions there should be an approximate con-
servation" of A. Q, i.e., his J S value should be
near 1.9+ 0.12= 2.02 sec '. We give this value in
Table IV. The value for the second line indicates
the 'D, level contains a substantial (-0.2) mixture
of 'D, wave function. Given the size of possible
L,S breakdown in these larger species, a mechan-
ism for treating them in an ab initio manner will
be required. We intend to do this using our re-
cently completed low-Z-Pauli general fine struc-
ture program" which is based on earlier work. ""

At this point some comments on semiempirical
methods seem in order. All such methods assume
a "model" and use a mixture of experiment and
theory to predict the desired result. In the Cu'
case, for example, a two configuration model
Sd'4s+ Sd'4s' was assumed, a radial integral
( f,"P„r'P~,dr) extrapolated (value -2.0, ab initio
result, -2.045), and fine structure constants—
needed for off-diagonal matrix elements —ex-
tracted from structure information which is pri-
marily diagonal in nature. In addition to the cri-
ticisms implicit in the above, the Sd'4s' configu-
ration does not play a dominant role earlier for
excitation energies" or for transition matrix ele-
ments (ihis work). Yet, despite these remarks,
such models seem to work quite well for many
transitions. A major cause for this probably is
the basic correctness of the independent-particle
formalism for these cases.
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C. Alkaline earthlike transitions

So far, we have seen that correlation effects
can be large for the velocity operator in many cir-
cumstances, and as polarizations, for both types
of operators. Yet such cases are still apparently
amenable to other methods such as the Coulomb
approximation and often RHF, as long as they use
the length operator.

There are several reasons to expect that this
will not be the case for all transitions, however.
For example, if we compare (r') to (r)' we find,
in Cs?, the former is only 10-20% larger than
the latter. This indicates that the length operator
samples a region of configuration space only
10-20% further out than the electric-dipole length
operator (-(r)); and for El there is no question
that various kinds of correlation effects can change
the value of both length and velocity results (e.g. ,
Ref. 39).

One of the earliest E1 correlation mechanisms
to be exploited"" involved the p' —sd substitu-
tions for the upper state. These change E1 values
by factors of 2 (Be-F) (Ref. 38) to 30 (Mg-Cl)
(Ref. 43}. They also had similar effects (Be-F)
on the electronic quadrupole diagonal matrix ele-
ments. " The examples referred to above, in-
volved in-shell substitutions, viz. , np' —nsnd or
np' —nsv„. Subshell mismatch causes these ef-
fects to be damped out. For example in the Cu'
transition, we allowed for 3d4s v~ and 3d'—v~('8). Both effects were of modest size. They
are excluded for the TiIII transition due to total
angular momentum restrictions. Contrary to the
E1 case, however, only one configuration asso-
ciated with the p' sd substitution can directly
connect with C in the transition matrix element.
The other configuration will only affect the result
either indirectly (e.g. , connecting to internal cor-
relation) or by in effect reducing the coefficient of
the survivor (renormalization).

The simplest examples of transitions involving
in-shell p'- sd substitutions are the alkaline earth-
like nzdns, np"D-ns"8 ones. These are strong
enough to be seen in absorption; in emission the
E1 process dominates.

gaI 2s S+-2p D, 2d3d ~D

We pick an ionized system so that 1s may be in
the deep core, NON small (&1%), and bivirtual ef-
fects depressed. Yet this is still a rather severe
test, for the 2s' —2p' transition is identically zero
in the RHF approximation. Upon application of
LOTOS/E2, the length and velocity results are
brought into agreement (Table V), with a tolerably
large value of Az. The transition from 2s3d shows
only modest (5-10%) correlation effects, but is so

TABLE V. Spontaneous emission transition probabil-
ities, A.~, in sec

C III 2g Sp 2p D2
RHF

~Z (e~

18.P81

Correlated
A. Q

Av
Q

2648

RHF
C III 2&2'Sp-2~3d D

Correlated
Av

Q Q

P.439x1P6 P 383x1P6 P.37Px]P6 P.353x1P6

large that it is certainly a candidate for observa-
tion in absorption (the equivalent Znl transition,
with smaller A, o, has been observed").

For the '8 we used the configurations: 2s', 2p',
v„', 2sv„2pv» v,', v~ and for the 'D, 2s3d, 2sv„,
2p, v~, 2pv~~ vs3d~ vsvu~ v„, 3d, 2pv» vt, vfy vfy
3dv, . Only the first five are important (both
terms) for the matrix element. The values for
the upper transition (2s3d) should be regarded as
somewhat tentative, as the upper state was gen-
erated from a variational CI calculation in which
the lowest root (2p'} was optimized.

TABLE VI. Spontaneous emission transition probabil-
ities, A@, in sec for ZnI 48 Sp —4s4d D2.

RHF Correlated

2592 3932 36P4 2744

The experimental (Ref. 54) energy difference, 7.7415
eV, was used here.

Znr 4s2~S ~4s4d ~D

The ZnI transition has been observed in absorp-
tion by Brown et al." The RHF and correlated
results are shown in Table VI. While the spread
(deviation from the average value) has been re-
duced from 41% (RHF) to 27% (correlated), the
results are not entirely satisfactory. In part,
this is due to the failure to remove relativistic ef-
fects from the energy difference. A not unreason-
able contribution of -0.2 eV would decrease the
spread to ll%%uo, but there is still a significant re-
sidual error associated with the transition matrix
elements. A much larger spread (factor of 2.3)
was obtained by McCavert and Trefftz" in their
limited MCHF study of BaI 6s"S-6s5d'D. NON
effects are also small (-2%) for this transition.
The '8 was generated with the configurations 4s',
4p', 4sv„4pv~, 3d'4s (4p'+ v~), 3d'4s (4pv~+v,'
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+v~2+v~+v, v~+v~v ), of which the first seven con-
figurations were important. We should note that
the 3d'4s (4pv~+ v~2+ 4p') configurations were gen-
erated from a formally multiconfigurationat, upper
state reference function, i.e., 4p' was added to
the reference function (both states). To generate
the 'D wave function, we used

4s4d, 4p', 3d'4d(4p'+ v,'),
3d 4d(v 4d+ 4sv, + v,v~+ vq+ v~+ 4d

+ 4pv~+ 4pvg+ v~vg+ vy+ 4dv g) i

3d'4s'4d, 3d'4s4p', 3d 4sv~, 3d'4s'v, ,
3d'4s (v,'+ 4sv„+ v,v, + v, vg+ 4sv, ),

of which the first four contributed significantly
to the matrix element. We note that for both
states, and in fact throughout this work, Sd- 4s,
v, excitations were of little importance. For the
'D, there were no large polarization (4s -v„4s
-v~) effects chiefly because the FS radials were
generated by a MCHF calculation of 4s4d+ 4p'.

V. DISCUSSION

A major feature of this work was the develop-
ment of a configuration selection mechanism
(FOTos/E2) which yields good transition matrix
elements with limited CI. From all indications,
this was successful. It is certainly true that some
of the FOTOS configurations are extraneous for a
given problem. However, we see no need to re-
move them as computational costs are already
low and we do not wish to sacrifice the generality
of the approach.

Next, the use of the velocity operator was thor-
oughly investigated. For transitions within a sin-
gle configuration, cancellation effects are too
large to advise use of the operator. For the other
cases, there may be also a moderate preference
for the length operator —particularly since inde-
pendent-particle results with it have on occasion
provided answers close (10—20%) to the correlated
ones.

We have identified the polarizations nl -v, , and
p' sd substitutions as significantly affecting

length values. For the latter, if the HF result is
zero (e.g. , C IH 2s'-2p'), the remaining configu-
ration clearly produces striking results, i.e. ,
correlation effects are large. Should the HF re-
sult be nonzero (e.g. , C IH 2s'- 2s3d), on the other
hand, the remaining configuration has only a mod-
erate effect (by lowering the HF coefficient) ex-
cept for the the few pathological cases where the
two configurations are nearly perfectly degenerate.
As for other properties, we can expect the more
general l' —(l+ l)(l —l) substitutions (all FS with
the same z) to play a significant role.

While our analysis of NON effects at the RHF
level showed they were negligible, past experi-
ence" demonstrates large NON effects can arise
within the correlated parts of matrix e1ements.
The question of whether NON can be completely
neglected for the transitions studied here is left
open.

Relativistic effects were introduced principally
through the energy difference. For CsI, they were
large due to the strong dependence of A@ in b, E.
Some of this could be removed by use of another
quantity such as the oscillator strength which is
proportional to Ao/(hE)' or by inventing combina-
tions like (4'„/Ai)" ' which do not depend on b.E
and represent some "average" A@ [the correspond-
ing El and f-value quantity is the geometric mean
(f if')'i'J. Such an expression gives more weight
to the velocity than the length value however. Ul-
timately what is needed is a relativistic-correla-
tion theory. A variant of one is being worked on
by the author.
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