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Analytical channel functions for two-electron atoms in hyperspherical coordinates
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By expressing the two-electron wave functions in hyperspherical coordinates (R,Q) in an adiabatic approximation

F„{R)%„(R;Q),I describe a simple procedure for obtaining the channel functions 4„{R;Q)analytically. These
analytical functions, 4 {R;Q)in the finite-R region, are obtained by generalizing the known hydrogenic solutions in
the asymptotic (R—+oo) limit for each channel p and are required to satisfy proper boundary conditions in the
hyperangles, Q rigorously. It is shown that these analytical functions compare well with the channel functions
obtained previously from numerical calculations and, in a straightforward manner, describe the + and —channels
of doubly excited states. The implication of this result as a method of generalizing hyperspherical coordinates to
many-electron problems is discussed.

I. INTRODUCTION @s(R.g) R-5&2~n(R)@ (R.g)
In recent years hyperspherical coordinates have

been used in studying various properties of bvo-
electron atoms. ' ' In particular, many interesting
features of low-lying doubly excited states of 8
and He have been predicted and the results have
since been confirmed by recent experiments. ' "
However, except for the preliminary applications
to three-electron systems, "this method has been
limited to two-electron systems because of concep-
tual and practical difficulties. The independent-
particle model (or the shell model) which has been
so successful in atomic and nuclear physics, does
not emerge simply from the treatment in hyper-
spherical coordinates. In addition, the numerical
difficulties encountered in treating problems in
hyperspherical coordinates prevents this method
from becoming a competitive technique of dealing
with many-electron atoms. On the other hand,
when electron correlations are important, the in-
dependent electron approximation is not useful;
previous works indicated that such systems might
be conveniently treated in hyperspherical coordin-
ates.

In this article I describe the attempt in linking
the two treatments by generalizing the solutions
from the independent electron model to solutions
in hyperspherical coordinates. In terms of the usual
spherical coordinates (r„g„g,) and (r„g„g,)
of the two electrons, the hyperspherical coordin-
ates are obtained by replacing r, and x, by a hyper-
radius R = (t, +r', )' ~' and a hyperangle u =arctan
(r,/r, ). In this coordinate system, R measures
the "size" of the atom and 0=(ct, i",,0,)—, where
r,. = (g, , P,.), denotes the orientation of the elec-
trons in the space. For low-lying states, earlier
works indicated that the bvo-electron wave func-
tions are well represented by an adiabatic approx-
imation

where p specifies the channel and n defines the
different excited or continuum states in that chan-
nel.

All the important properties of electron correl-
ation are contained in the channel functions 4„
(R;0). Values of R-0 mean that the two electrons
are packed more tightly than in ordinary states and
accordingly possess very high kinetic energy, and
values of R ~ mean that the two-electron system
is fragmented into two parts where the two elec-
trons are separated by a distance R from each
other. Each channel function C„(R;0)describes
the gradual evolution of the tightly packed state at
R -0 to the fragmented state at large R in an
"adiabatic" procedure. The asymptotic forms of
the channel functions in the fragmented state are
known, they correspond to the hydrogenic wave
functions; the channel functi. on in the limit R -0
are also known analytically""" despite that they
are less familiar. By examining the two limiting
solutions in the two limits I propose in this article
simple analytical functions which are to serve as
the approximate charinel functions for the region of
Rin between. The validity of these proposed analy-
tical functions are checked against earlier numer-
ical calculations. In Sec. II, I outline the mathe-
matical equations satisfied by g „(R;0). Since an
exact analytical solution of @,(R;0) at finite R is
not available, the proposed approximate analytical
solution is required to satisfy certain conditions.
In Sec. III, the desired simple analytical functions
are "deduced" through examples. Admittedly,
these deduced analytica1 functions are not unique,
but I show that they reproduce the numerical re-
sults very we11. Further discussions about these
functions and the applications to structure and
collision calculations are presented in Sec. IV.
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II. CHANNEL EQUATIONS IN HYPERSPHERICAL
COORDINATES

In the adiabatic approximation (1), the channel
function 4„(R;0) satisfies the partial differential
equation

(-A'
, + IC—„(R;n)=U„(R)e„(R;n),~R' R (2)

where A' is the squared grand angular momentum
operator and -C/R is the total Coulomb interac-
tion potential

-C 1( Z Z 1
ii R i sica cosa (1 —siosa coos„)'~')' (3)

In (3), Z is the nuclear charge and e» is the angle
subtended to the nucleus by the two electrons.
Atomic units are used in (2) and (3) and throughout
the rest of this article.

By introducing the substitution

e„(R;fl)
sine cosa '

and expressing AB explicitly, Eq. (2) reduces to

~Q'da' R' sin'e R' cos'a R j.

=U, ( R)4„( RQ), (5)

where U„=U„-4. For low-lying doubly excited
states, it is convenient to expand 4„(R;0)as

where A is the suitable symmetrization or anti-
symmetrization operator (the spin function is not
explicitly considered in this article) and P„, ~„
(r„i,) is the coupled orbital angular momentum
function of the two electrons. Because of the
symmetrization, the summation over the pair
[l,l~] is not different from the summation over the
pair [l,l,].

Substitution of a truncated expansion (6) into (5)
results in a set of coupled differential equations
for fI;,', (R;a) which are solved to obtain the eigen-
values U„(R}. Three different methods have been
employed in solving these equations: (1)'Numeri-
cal integration of the coupled equations, "(2) di-
agonalization using eigenfunctions of the A Oper-
ator, ' ' and (3) the finite difference method. s ' All,

three methods have some limitations. The numer-
ical integration method often suffers from instabil-
ity and the finite difference method is inefficient
when the expansion (6) has to include many pairs
of [l,lm]. The diagonalization method is inaccurate
at large R because a large basis set is needed.

Because of these limitations, only low-lying doubly
excited states have been investigated and the con-
vergence in the [l,l,] truncation is not carefully
examined.

The solutions of (5) in the limits of R =0 and
R — are well known. In the absence of electron-
electron interaction, the expansion (6) can be trun-
cated to a single pair of [l,l,]. This condition is
approximately satisfied in the two limits R =0 and
R- ~. As R-O, the kinetic energy term -&'/R2
is much larger than the potential energy term 2C/
R, thus [l,l,] pair is a set of good quantum num-
bers. As shown in Ref. 2, the channel function
g, (R =0;0) in this limit is given by

where

f„, (a }=N„„(sine )'&"(cosa )'2"

XE,(-m, l, +l, +2m+2~ i, + —,
' Icos'a) .

(6)

The function E(-m, l, +l, +2m+2~ i, + s ~cos~a) is
proportional to a Jacobi polynomial of degree of m
in cos & and N» is a normalization constant./1l2m
In the other limit that one electron remains in the
core and the other stays far out, corresponding to
R-~ and n -0, the electron-electron interaction
can be neglected and@, (R;0) is

(9)

This corresponds to the fact that electron 1 is in
its nl, hydrogenic orbital and electron 2 has an-
gular momentum /2.

In the two limits c.onsidered, only a single pair
of [l,l~] is needed. For the purpose of seeking ap-
proximate analytical expression for the channel
functions, it is advantageous initially to consider

(R;0) in a single [i~1m] pair subspace. This will
allow us to study the variation of the e-dependent
part of the channel function with R only, a.s the
dependence of @. (R;0) on ~, and r", is given by

p, , ~„(r"„rm) at all values of R. The solution (V)

is valid throughout the whole range of e, O~n
~ w/2, at R=0, but (9) is valid only for e-0 as
R ~. Before the analytical expression in the in-
termediate region of R can be sought, we have to
generalize (9) to the whole range of a first.

III. ANALYTICAL CHANNEL FUNCTIONS IN AN

flgl2] SUBSPACE

Within the [l,l,] subspace, the channel function
(6) is expressed as

(10)
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For Q', »,' (R;0) to satisfy all the boundary condi-
tions rigorously, we note that g,",' (R;n) has to
vanish at n =0 and m/2. If I, =I,=I, the sym-
metry condition also imposes g»"'(R; o) to be sym-
metric or antisymmetric with respect to the re-
flection at n = w/4. These boundary conditions
mill be enforced throughout all the'range of R
since the relaxation of these conditions corres-
ponds to solving Eq. (5) with incorrect boundary
conditions.

To generalize (9) to the whole range of o, and to
satisfy boundary conditions rigorously, we first
note that (9) does not satisfy the boundary condi-
tion g', ",' (R;e = w/2) =0. To find the proper gen-

1 2
eralization we proceed by examples:

A. Lowest nondegenerate channels for 8
Consider first the lowest p. =1 channel for 'S~

in the [I,ls] = [00] subsPace. In the large R limit,

g'"(R'n) . =, r,e 'i=R sinne R'"'

to within a normal. ization constant. Currently (I1)
does not satisfy tmo boundary conditions: It does
not vanish at n = w/2, nor is it symmetric with
respect to n = v/4. The usual symmetrization
procedure where (ll) is replaced by [R sinn e-""""
+R coso. e-R'~ ) is not useful since it does not
vanish at n =0 and n = s/2. A possible guidance
to the desirable form is to notice that (11) is valid
only for n -0 and thus multiplication of coso. to
(11) will not change the asymptotic form (ll) in the
region ~ -0. It is clear that a generalized func-
tion

To show these are indeed very good generaliza-
tions, in Fig. 1 I compare the potential curves for
H- obtained from these analytical functions (in
dashed linea) with the "exact" numerical solu-
tions (in solid lines). The good agreement shows
the quality of the simple analytical expressions
(12) and (13) throughout the whole range of R.

Next consider the lomest p =1 channels in the
[01] subspaces for 'P' and 'P', the generalized
analytical functions take the form

01
/

+ cosa sin~a e "' aj„j»(r"„r,}]",

(14)

where the +(-) sign is for 'P' ('P') channel. The
analytical functions (14) reduces to u„, at 8 =0
and to the hydrogenic 1s orbital in the limits
R- and ~ —0. It is straighforward to general-
ize (14) to other 1sel channels. One simply re-
places sinn casse in (14) by sine (cosn)" and the
second term is obtained by symmetrization. In
Fig. 1 the p=1 potential curves for 1seP'P' and
ised'De of H obtained from the analytical calcu-
lations are shown; they do not show any noticeable
difference from the numerical. calculations rep-
resented by the solid lines.

It is interesting to note that among the potential
curves shown in Fig. 1, only the 'S' curve has the
attractive well to support a bound state, corres-

+&i&(R.&) +(R) sin2& 8-R eisa cosa (for 1$e) (i2) -0.5 —
i

does satisfy all the boundary conditions and re-
duces to (ll) as n -0 and R- ~. Furthermore,
(12) also reduces to the function f~,(n) [cf. (8)] at
R =0. With the normalization constant N(R) de-
termined by

r
I' /2

[g( i& (R .~ )]sd~
0

for each R, we expect (12) to represent the n-
dependent part of the channel function QMi (R;0}
adequately. Before comparing with numerical re-
sults, consider the corresponding p, =1 curve for
Se in the [00] subspace. The function g~i' in this

case reduces to (11) in the limits R —~ and n —0
but the generalized form is required to be anti-
symmetric with respect to a = w/4 and .reduces to
sin2& cos2n at R =-0. An obvious generalization
ls

g'"( eR) =N(R) sin2n cos2o. e R'"''~a (for S'} .

CL
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O
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I

5

FIG. 1. Lowest potential curve of H for each symme-
try shown. Those from the accurate numerical calcu-
lations are shown in solid lines. Those from the simple .

analytical functions are shown in dashed lines. For ~P

and ~D, - there is no difference in the two results within
the scale shown.
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ponding to the ground state of H . The ene rgy
level calculated from Fig. 1 is —1.02617 Ry (Ref.
13) which is to be compared with the best value
-1.055 502 Ry according to Pekeris. ' " The dif-
ference is due mostly to the neglect of angular
correlation which can be easily taken into account
in this approach, as will be discussed in Sec. IV.
The failure of Hartree-Pock calculations in pre-
dicting a bound state for 8 is thus primarily due
to the failure of properly representing radial cor-
relations.
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8. Doubly excited channels

Consider' the first doubly excited channel p =2
for 'S in the [90] subspace, i.e. , the channel in
which=2ses '8& states belong. This channel dis-
sociates to the hydrogenic 2s state and is repre-
sented by

r,R~(r, ) =r, (1 ——,'r, ) -e'""~

=R sinn(1 ——,'R sinn}e-'~'"""

0.50
L

O

I I I

2 4 6
I I
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l2 l4 IS l8

in the limit R —~ and e -0. This is generalized
to

g~(R;e) =N(R) sin2o. (I —-'R sine cosa)e '~'~'" ~~
(i6)

at finite values of R. The generalized function
(16) vanishes at a =0 and a = v/2. It is symmetric
with respect to the reflection at e = v/4. However,

g2, does not reduce to the solution f«, at R =0.
Notice that fo» sin2o.'(1 —~~ sin'2e) where the
polynomial inside the parentheses is second de-
gree in sin2e, whereas the corresponding poly-
nomial in (16) is first degree in sin2e. At large
R, the node in e is given by the equation sin2e
=4/R. This node disappears for R &4 and thus
the nodal structure for g~(R;n} is not preserved
at smaller R. To obtain a smooth va, riation, it is
apparent that a more complicated polynomial in
sin2e is needed if a single function of the form
(16) is pursued On. the other hand, it is more
convenient to express

gt (R;o.) =a(R)f„,(n)+b(R)g„(R;a},
where a(R) and b(R} are obtained by minimizing

FIG. 2. (a) Potential curve for the doubly excited
2seg ~8 of H . Solid line is the exact result from nu-
merical calculation, the dotted lines are calculated from
the analytical function g2~, Eq. (16). (b) Mixing co-
efficients z,(R) and b(R), see Eq. (17).

the energy U(R) at each R.
The function g~, although it does not reduce to

fo» at R = 0, actually represents the outer region
of R very well. In Fig. 2(a), I show the +=2 po-
tential. curve calculated from g~ alone (in dashed
lines). It agrees quite well with the result from
the numerical calculations at larger R. The de-
viation occurs near the minimum of the potential
well. In Fig. 2(b), I show the coefficients a(R)
and b(R) of (1V). Both coefficients are large
only in a limited range of R. In this region the
overlap integral (f~, ~g„) [shown in dashed lines
in Fig. 2(b)] is also large.

The generalization of (16) to 2ses'S' states is
straightforward. All we have to do is to multiply
cos2n to (16). In the case of 2PeP'S', the gener-
a1.ization proceeds as

r R (r ) =r e ' ~-R sin'n cos'n e-'~'""' '~
1 @ 1 Q~.~.fz ~ 1 (18)

Since there is no node in n, the general. ized function (18) reduces to f», at R=0. Notice that cos c. has
been multiplied to the asymptotic form such that the proper. limit f», is obtained at R =0.

C. The + and —channels

If there are two degenerate hydrogenic nl, and

nl~ states in the dissociation limit, then the so-
called "+"and "-"channels arise. Consider,

I

for example, the p =2 and 3 channels for '3I"
state of H- in the [01] subspace. These two
channels dissociate to the n=2 limit of the hy-
drogen atom. They originate from the two de-
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Ce, (R;0) =A[sinn cos o. (I - -'R sine)

"e '"'"'"&tie(rt rm)]

and the corresponding Pp:

@ @(r;0) =A[sin'n cosa sino. e' "/I"" g 0»( r„r)]
(2oa)

=A[costa.'sinn cosa. e '"/"'~'&»»(r"„r~)],

(2Ob}

where A is the suitable symmetrization operator.
The + and —channels at large R are now repre-
sented by

y,"'(R;&)= a,,(R)C „+a„(R)C,„.
In Fig. 3(a), I show the potential curves (in dashed

(2I)

g &20-
43

0.25—
4P
O

Q.50—

0.50—

P 0.60—

0.70—
CL
O

~~ 0.80—
O

0.90—

I I

2 4
I I I I I I

6 8 10 12 14 16 18

R(o.u. )

FIG. 3, (a) the+ and —potential curves of 2gp 3'
for H . Solid lines are from the exact numerical cal-
culation, the dotted lines are from the calculations
using zeroth-order+ and -'analytical functions, Eq.
(21}. (b} Mixing coefficients am~ and a$&, see Eq. (21}.

generate hydrogenic 2s and 2p states in the asymp-
totic 1.imit. The weak dipole interaction between
the two electrons allows the exchange of the two
orbital angular momenta l, and /, . If this dipole
interaction is included, new channels (simply cal-
led + and —channels) are obtained whose eigen-
functions are linear combinations of hydrogenic 2s
and 2p functions. By generalizing the 2s and 2P
functions separately to smaller R, we obtain the
generalized 2s for ' SP' states

D. General form of the analytical channel functions

The preceding examples allow us to find the gen-
eral form of the channel function in each [I,l,] sub-
space. If I, = I, = I, the function g„,(8;a.), which
converges to the hydrogenic nl state, is obtained
by replacing every r, in the x-weighted radial hy-
drogenic wave function r,R„,(r, ) by R sinn cosn
if I-+ S=even; an additional factor cos2n is mul-
tiplied if I + S=odd. If l, & L„ the generalized
analytical function is as follows:

(I) Express r,R„, =r r'~P, ,(r,)e "~/"

where p„, (r, ) is the Laguerre polynomial.

(2) Replace r, above by R sinn and multiply
(cosn)'2" to obtain the symmetrized generalized
analytical function

(22)

@„, =A[(sino. )'~"(cosa)'2'P„, ,(R sinn)

xe-Reine/ncaa (r r ) ] (23)

The multiplication of (cosa. )'&" to the asymptotic
form (22) is essential, since the kinetic energy
term of Eq. (5) requires such a symmetric treat-
ment, as can be seen from the solution of (5) at
R=O. [cf. Eq. (8)]. The term containing 1~2 in Eq.
(5) is often not considered in the single-particle
approximation because in this approximation on1.y
the region e —0 is properly treated.

The generalized channel function given in (23)
allows us to obtain a loca1. potential which depends
upon I and S even within a one-channel approxi-
mation. These potentials differ from the usual
local-potential models of atoms. They are similar
to the so-called V"'(I.S) potentials" " in the
many-body perturbation theory except that these
later potentials are nonlocal.

If there are two hydrogenic limits for a given n
within the [I,I,] pair, then the generalized func-
tions are the zeroth-order + and —channel func-
tions. One first obtains a generalized

lfnes) for the + and —channels in '&' calculated
from @,' ' and compare them with the numerical
calculations (shown in solid lines). The agree-
ment in the large-R region is quite satisfactory
which indicates that a single @,(@,) is adequate in
representing the outer region for the +(—) chan-
nel within the specified [I,I,] subspace. In Fig.
3(b), I show the variation of a2, and a» with R.
Notice that the absolute values of a'„and a' (and
similarly a„and a») remain very close to each
other in the region R & 6. Their ratio approaches
the values given by the close-coupling approxima-
tion am/, /am, = —

e and ae~/a» = 4, only in the large-
B region.



1590 C. D. I IN

C „, =&[(sinn)'"~(coen)'&"P„„(R sinn)

Xe-BItnu/ny (& & )j (24)

IV. DISCUSSIONS

In this article I propose simple analytical func-
tions in hyperspherical coordinates which can be
used in atomic structure and scattering calcula-
tions. These functions can be used in a diagonali-
zation procedure to obtain adiabatic channel func-
tions @ „(R;0). Since only one such a function is
needed for each dissociated [l,l,] channel in the
outer region, the number of basis functions in the
outer-R region is very limited. To implement the
deficiency of these simple functions in the small-
R region, the low-lying eigenfunctions u, , of
A' operator can be used. Therefore, in the di-
agonalization procedure for calculating adiabatic
potential curves several functions described here
and several u, , functions are used as basisl ply
functions. For example, to obtain all the poten-

the zeroth-order + and —functions are then ob-
tained by diagonalizing (5) in the two basis func-
tions (23) and (24). There are no analogous poten-
tials in the many-body perturbation theory for the
+ and —potentials.

tial curves which converge to the hydrogenic limits
n ~ 3 in a single calculation, only about 15 basis
states are needed to get good convergence.

The analytical functions described here can also
be used as "target" states in a close-coupling or
an R-matrix calculation for electron-atom scatter-
ing problems. Notice these target states are un-
like the target states used in the traditional close-
coupling calculation where the distortion of the
target by the impinging electron is not allowed.
Using the target states described here the scatter-
ing problem reduces to coupled differential equa-
tions instead of the coupled interodifferential equa-
tions.

The procedure discussed here can also be gener-
alized to two-valence electron atoms if the core is
approximated by a certain model potential. The
solutions in the limit R- ~ and e- 0 are ex-
pressed as linear combinations of Slater functions.
The generalization procedure in Sec. IIID can be
applied directly.

ACKNOWLEDGMENT

This work is supported in part by the Department
of Energy, Division of Chemical Sciences and in
part by the Alfred P. Sloan Foundation.

J. H. Macek, J. Phys. 8 1, 831 (1968).
C. D. Lin, Phys. Rev. A 10, 1986 (1974}.

3C. D. Lin, Phys. Rev. Lett. 35, 1150 (1975).
4C. D. Lin, Phys. Rev. A 14, 30 (1976).
H. Klar, Phys. Rev. A 15, 1452 (1977).
H. Klar and M. Klar, J. Phys. B 13, 1057 (1980).
C. H. Greene, J. Phys. B 13, L39 (1980).

BU. Fano, Phys. Today 29, No. 9, 32 (1976).
9H. C. Bryant, B. D. Dieterle, J. Donahue, H. Sharifian,

H. Tootoonchi, D. M. Wolfe, P. A. M. Gram, and

M. A. Yates-Williams, Phys. Rev. Lett. 38, 228 (1977).
M. E. Hamm, R. W. Hamm, J. Donahue, P. A. M.
Gram, D. A. Clark, H. C. Bryant, C. A. Frost, and
W. W. Smith, Phys. Rev. Lett. 43, 1715 (1979).
C. W. Clark and C. H. Greene, Phys. Bev. A 21, 1786

(1980).
~2P. M. Morse and H. Feshbach, 34efhogs of Theoretical

Physics (McGraw-Hill, Neer York, 1953), p. 1755.
C, D. Lin, Phys. Rev. A 12, 493 (1975).

~4C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
~5H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref.

Data 4, 539 (1975),
J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett.
10, 518 (1963).

~~M. Ya Amusia and N. A. Cherepkov, Case Stud. At.
Phys. 5, 47 (1975).
T. N. Chang, Phys. Bev. A 15, 2392 (1977).

9H. P. Kelly and R. L. Simons, Phys. Bev. Lett. 30,
529 (1973).


