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Dynamics of phase separations of a dissipative system and a fluid mixture
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The temporal evolutions of structure functions Sk (t) of quenched binary mixtures are studied theoretically. With
the aid of a Langevin-type equation, basic nonlinear kinetic equations for the composition fluctuation are derived for
a purely dissipative system and for a fluid mixture. Predicting that the free energy is expanded on the basis of a
cluster gas picture, the equations of motion for structure functions are derived. The inverse nonhydrodynamic
susceptibility yk, which is the first-derivative coefficient of the free energy, and S„(t)are assumed to have the
form R y™(kR)' and R S(kR) in d dimensions. Here R is the average cluster diameter, which behaves as t '
[a ' = {d + 2)

' or (d + 3)
' for a purely dissipative system and a ' = 1/d for a fiuid mixture]. Ify„'has a gap of the

order R, then our calculation of Sk (t) yields good agreements with experiments (for d = 3). The renormalizations
both of the mobility and of susceptibility due to long-range hydrodynamic interactions are treated with the use of the
mode-coupling technique.

I. INTRODUCTION

The early stage of the phase separation of a
quenched binary mixture in the unstable region is
called the spinodal decomposition. ' ' The separa-
tion of the composition is accomplished in a short
time interval, generating small clusters whose
compositions are almost equivalent to the compo-
sitions at the coexistence state. Ending such an
initial stage the system undergoes the cluster
coarsening ~co

When a system of a binary mixture is brought
suddenly into a two-phase region (below T,) from
a single-phase region (above T,), the system be-
comes thermodynamically unstable and then ex-
hibits a phase separation. In the classical theory
of Cahn-Hilliard for the alloy, ' the equation of mo-
tion for the local composition fluctuation t)I(t, r)
(difference in the densities of composite species)
or its Fourier component t)-„(t}is investigated. It
is assumed that the free-energy @ of an alloy
quenched into two-phase region has an unstable
point at q-„=0:

e= —,'Q (ak'-b) ~t)-„~'+O(t)'), (1.1)

k' on the second side comes from the particle
number conservation; namely, (1.2) must be a
diffusion equation. If t)-„atinitial time (I =0) has
a nonvanishing value t)z (0), then we obtain

'rg (I)/t)-„(0)= exp[ kaTM' —k'(ak' —b)f] . (1.3)

There is a wave number k„atwhich (1.3) has a
maximum. The quantity k ' may be regarded as
a diameter of the precipitates generated after the
quench.

There are several insufficiencies in the above
treatment of the phase separation, and many
theoretical investigations have been made on this
problem. Firstly, there is no term in (1.2) rep-
resentiag thermal fluctuations, i.e., there is no
Langevin's fluctuating force. If t)„- in (1.2) is in-
terpreted as the mean value, then Langevin's
fluctuating force is not necessary. However, g-„
always vanishes for the initial condition t).„(0)= 0.
Therefore g„- interpreted as a mean value is not a
convenient variable to describe the phase separa-
tion. Cook then interpreted q„-as a microscopic
variable (though it may be coarse grained}. t This
means that a fluctuating force f ', should be added
to (1.2):

—qq= -k~TM k
d 028@
dt

(1.2)= -kaTM ks(ak'-b)t)I+O(t) },
where Me is the kinetic coefficient (mobility) and

where g and b are positive constants, respective-
ly. Here the free-energy @ must be distinguished
from the free-energy of a completely phase-sep-
arated state. The latter would not have a maxi-
mum at ti=0. Equation (1.1) is a coarse-grained
free-energy with small coarse-grained cells. '
Following the theory of the irreversible thermo-
dynamics, tI-„(t)obeys the equation of motion:

—t7„.(t) = kTM k (ak-s - b)t)-„+f„(t), -

(f-„(t)f-„)e=2kaTM k'b(t),

where ( ), means an appropriate ensemble aver-
age. Then Cook obtained the equation of motion
for the structure function S„(t)= ( ~t)s(t) ~'),:

—„,S,(f) = 2k, TM'ks[1 -(ak'- b)S,] .
Even if S„(0)= 0, Ss(t} for t& 0 has a nonvanishing
value. Cook's theory as well as the theory of
Cahn-Hilliard is, however, capable of explaining
only very early stages of the phase separation.
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4~= ~ Xq Wj, +0 (1.6)

which should be reduced from the coarse-grained
free-energy, and must be identical to the coarse-
grained free-energy if the diameter of the coarse-
grained cell is equal to R. For the sake of sim-
plicity, we shall call }i~ the susceptibility. In fact
X~ corresponds to the susceptibility of a cluster

Equation (1.5) exhibits an exponential growth for
S~(t). This violates the validity of the approxima-
tion which neglects the higher-order terms in
(1.2) and (1.4).

Assuming that the nonlinearity is responsible
for the renorxnalization only of the constant b in
(1.1)-(1.5), Langer, Bar-on, and Miiier4 found
thai the constant b is a decreasing function of time
t. They found also that both the peak height of
8~(t) and peak position k„show slow temporal
changes like t", where x is a suitable constant in
each case. They obtained good quantitative agree-
ment with computer simulation of the spin-ex-
change kinetic Ising model near the critical point
in three dimensions. " The decay of k repre-
sents the growth of the cluster diameter. In their
theory, the constant b is still positive, and there-
fore the coefficient of q~ in (1.4) can be negative.
This means that fluctuations are still enhanced
unstably.

When the average cluster diameter R exceeds a
thermal correlation length $, the usefulness of
the coarse-grained free-energy with maximum at
g„-=0becomes obscure. The composition of a
cluster is almost the same as that on the coexis-
tence curve. Thus the system is in a local equi-

. librium state almost everywhere in space.
A physical interpretation of the late stage of the

phase separation was done by Binder and Stauf-
fer. ' They proposed the cluster diffusion-reaction
mechanism of the late stage of the phase separa-
tion. In this model a cluster is treated as a free
Brownian particle. Clusters grow not because of
the instability which took place in the early stage
of the phase separation where clusters are not
well developed, but because of the thermal noise
acting on clusters. In this mechanism there is no
need to have the maximum of the free-energy at
g=0. This may be interpreted as follows. In the
cluster-gas picture, any internal degrees of free-
dom of clusters are averaged out. Thus the free-
energy appropriate to the cluster-gas picture is
not the coarse-grained free-energy mentioned
above, but a partially renormalized free-energy
which should become identical to the free-energy
of a completely phase-separated state in the limit
of large cluster diameter. The renormalized
free-energy 4„,is written as

gas. X~ should be determined by the cluster shape
and the cluster configuration. If the diameter of
the coarse-grained cell is of the order g, then the
renormalized free-energy (1.6) may be constructed
from the coarse-grained free-energy by taking
only the effect of the cluster formation (the amount
of the local composition may be the same for both
free-energies).

When the correlation among clusters is not
strong, the formation of well-developed clusters is
allowed if the first derivative of the coarse-
grained free-energy for g„-WO.' The same effect is
obtained if the inverse susceptibility X,

' for small
wave number is vanishingly small. The gapless
susceptibility was already examined and was found
to possibly be consistent with experiment. "
This does not, however, mean to deny the exis-
tence of a small positive or negative gap of the or-
der R ". Such a small gap of the susceptibility
must be recognized in the cluster-gas picture.

We have calculated the structure function both
for purely dissipative systems and a three-dimen-
sional fluid mixture at low temperatures. We have
then compared them with experimental data" "
and have found at least in three dimensions there
is no need of the negative part of X„'for the cluster
growth. Therefore, the diffusion of the clusters
has been found to be essential to the cluster
growth.

Besides the renormalization of the susceptibility
mentioned above, there should arise the renormal-
ization of the mobility due to the formation of
clusters. This is the reason why a cluster may be
regarded as a free-particle, even though the basic.
kinetic equation is a nonlinear equation. A cluster
is treated as a free-particle with a renormalized
mobility similar to the usual many-body problem.
In the cluster diffusion-reaction model of Binder
and Stauffer, ' the renormalization of the mobility
may be regarded as the problem in calculating the
cluster diffusivity. Particularly, for a fluid mix-
ture the cluster-gas picture might be strongly
modified. This is because the hydrodynamic
interaction is not only nonlinear but also of long
range. It yields further renormalizations of the
mobility and the susceptibility, changing the
growth rate of the cluster diameter. ' The growth
rate of the cluster diameter R for fluid in the case
where clusters are connected was considered phe-
nomenologically by Siggia. " Clusters in such a
case grow by means of the internal flow caused by
the pressure difference due to the surface tension.

In this paper we shall consider the case where
clusters in a Quid mixture are well separated from
each other, and therefore the clusters in the fluid
grow by the diffusion-reaction-like mechanism.
For the quench of a fluid mixture near the critical
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point, Kawasaki and Ohta' obtained the equation of
motion for the structure function, adding to the
equation of Langer, Bar-on, and Miller, a term
arising from long-range hydrodynamic interac-
tions. The troub1. esome-to-treat short-range hy-
drodynamic interaction may be'avoided as fol-
lows. The structure function S~ with large wave
numbers is readily reduced to the value in the local
equilibrium state and has an asymptotic solution
S~= X~. This would be valid also for a fluid mix-
ture. Thus, S~ for a large wave number is as-
sumed to be independent of the details of hydrody-
namic interactions. Therefore, me may treat only
long-range hydrodynamic interactions. This en-
ables us to use the mode-coupling method used by
Kamasaki and Ohta. '

In Sec. II the nonlinear Langevin-type equation
for the composition fluctuation will be derived. In
Sec. III the equation of motion for the structure
function S~(t} will be derived. A brief review of
the cluster diffusion-reaction mechanism of Binder
and Stauffer' will be made in order to obtain the
mobility. In Sec. IV, the composition with the ex-
perimental data both for the three-dimensional-
spin-exchange kinetic Ising model and the three-
dimensional Quid mixture, at low temperatures,
will be made. The gaps of the inverse susceptibil-
ities mill be examined. Section V is devoted to the
discussions.

II. KINETIC EQUATIONS

We shall use a Langevin-type equation to obtain
the kinetic equations for the composition fluctua-
tion. The original Mori equation" is a linear
Langevin-type equation. This can be extended to
include nonlinear terms. " These equations are
valid only in a stationary state, i.e., the time cor-
relation functions appearing in these equations
satisfy the time translation symmetry. The intro-
duction of a two-time fluctuating force is capable
of extending the linear Langevin-type equation to
be valid in the nonstationary domain. " The equa-
tion thus obtained mill be useful for the present
purpose. A further formal extension of the
Langevin-type equation valid in the nonliner-non-
stationary domain is easy as mill be seen below.

Let A, be a set of dynamical variables and let
H, be another set of dynamical variables, which
may be a functional of A, . We shall introduce a
time-dependent projection operator P,(t):

introduce a two-time fluctuating force R(t, s)
which satisfies the equation

—R(t, s) = -P,A,'R(t, s), (t ~ s)

R(t, t) =(I -P,)A„

(2.2)

(2.3)

where the dot stands for the time derivative P,
—= P,(t) and A,'—= dP, (t)lds ~, . Then it can be shown
that (2.2) and (2.3) are equivalent to the Langevin-
type equation

A, = P,A, — R t, r H,* H,H,* 'H, d7 + R t, s,
S

(2.4)

(R(t, s)Z.') = O. (2.5)

The same method provides us with a linear
Langevin-type equation" for H, if we replace A
by H in (2.3):

H,H*-'H dg+R t s
S

(2.6)

&R( t, s)H,*)= 0, (2.7)

(R(t T)H, ) = &R(f, 'r)R'(r, r)&. (2.8)

The fluctuating force R should be obtained by
solving (2.2) for the final condition (2.3). For the
present purpose, however, we shall assume the
existence of well-separated time scales, i.e., the
Markov approximation can be used. The charac-
teristic time scale of A or H is much larger than
the fj.me scale of R, &„.We can then put

(A,H,"), 0&t-~&~„
&R(t, ~)H~) =

7 7ge

(2.9a)

(2.9b)

Smooth functions such as (A,H,*) contribute only
the correction of the order y„to the short time
integration and therefore can be neglected.

A. Nonlinear equation for composition fluctuation I

We here derive the first basic equation for the
composition fluctuation

mhich is related to the original Mori equation. The
difference between the Mori equation and (2.6) is
that (2.6) is valid also in nonstationary states. In
the integration of (2.4} one may find that

P~('f)G= (GH, )(HqH~) H, , (2.I)

where t and s are the time arguments. Here, the
asterisk means the Hermitian conjugate and ( )
means an ensemble average performed on the in-
itial ensemble. Here it is assumed that H is the
quantity which has the inverse (H,H,*) '. Let us

q„-(t)= q(t, r)e "'dr,
N" (2.IO)

q(t, r) = [n~(t, r) —n~(t, r) j,
H~+ Sg

(2.II)

where N is the total particle number, n& ~ are the



1538 HIROSHI FURUKAWA

local number density of A, B species, respectively,
and the bar denotes the mean values. It is as-
sumed that the coarsening is slow enough. Thus
the coarsening proceeds isothermally. There-
fore, the basic equation which we shall derive
needs only a thermal equilibrium ensemble
po(T& T,), which describes a coexistence state.
The time-evolution operator (or Hamiltonian)
commutes with p,(T& T,). In such a case (2.4) re-
duces to the equation in the thermal equilibrium
state. "

The first nonlinear equation for qk is derived by
extracting all nonlinear terms of slow modes, i.e.,
of q-„and of transverse velocity u-'„. This can be
done by putting

5(ng —]I)Mt) }5(q—u.„(t)},
A, = j-„(t),

(2.12)

(2.13)

where g is the thermal correlation length and the
carat denotes phase-space functions. The stream-
ing term P,A„which is odd with respect to time
inversion, may be assumed as

d]7-„(t)
P, A, —= H, (()(q, u-„) H, , g. , d])}-„,du-„,

k'

(ff(t)f-„.(r)) = 2ksTk M 5-„-„.5(t —r) . (2.20)

The nonlinear Langevin equation of the first kind
is written as

A—j„-(t)=tkg e;(t)j;(t)+k,TM'k'

+f-„(t) (kE&1), (2.21)

In o&(]I) corresponds to the coarse-grained free-en-
ergy 4 and must have two local minima corre-
sponding to two stabel phases. Equation (2.21) is
basically the (nonlinear) Cahn-Hilliard equation,
amended by a hydrodynamic term and the fluctuat-
ing force.

B. Nonlinear equation for composition fluctuation II

J «(fN'~fl(~l»&l ~'» . . ~~
g-0 i

=Mk Tk' ( 19)
5j;(t}

where we have rewritten the fluctuating force 8
as f' and assumed„that f' is statistically indepen-
dent both of g and u'. The bare mobility M' is
given by

= ik$ u-'„;(t)q;(t),

where ( )=Trp(T&T, )

(2.14} The next step is to eliminate the transverse ve-
locity u'. H, is now chosen as

o)(q, u') -=&5(q-„-q-„)5(~ - u'-„)) (2.15)
Hl = Hl —=

, , 5(rt„.—]7-„(t)}. (2.22)

is a time-independent distribution function for the
thermal equilibrium state below T, (the coexis-
tence state). The following relations are also
used:

The streaming term P,A, in this case vanishes
due to the time translation symmetry. Here we
shall assume that the characteristic time y, of
~k is much larger than the time of u'. The second
term on the right-hand side of (2.4) is written as

& 5(a —A) 5(a' —A)) = 5(a —a')(()(a),

& 5(a -A)5(a' -A)) '= 5(a -a')o)(a) '.
(2.16)

(2.1V)

A,

) 1H&

l-l'o dt dt Srt" (t)

Let us assume that there is no slow mode other
than g and u'. Then the correlation time q-„ofthe
fluctuating force is assumed to be vanishingly
small. Thus the second term on the right-hand
side of (2.4) is written as

dj-„(t)dj„(t) sH, -

l o dt dt s]7, (~)

(2.23)

Since smooth functions such as & j-„(t)g„.(r)) give
only a small contribution of the order y„(2.23)
can be transformed, with the aid of (2.21}, into

, s Ino&(rl(t)}

si=„(t)

x...[ dg„-„du-„,(2.18}
klI

where we have assumed that o)(r], u') = o](q)(d(ul).
Here we have neglected the correlation between

g and u' because of the time inversion symmetry.
Equation (2.18) is transformed into

(-( ),S]To(t}n;«}o](Ct))
alt, {t)

By extending the lower bound of the integration to
-, we obtain



DYNAMICS OF PHASE SEPARATIONS OF A DISSIPATIVE. . . 1539

—)Vi(t) = ks Tk'M

- E J &r((&i.,(0) I&'&-;(~)])
ee'&'

Equation (3.6), which can be regarded as the fluc-
tuation-dissipation theorem in nonequilibrium

. state can be rewritten into the equation of motion
for the structure function S~—= (q-„(t)q-„(f)),:

d—S,(f)=K,(f, f)S,(f)+K,(f, f)S,(f)

where we have rewritten 8 as f '.
(2.24)

= [K (t) + K (t) ]8 (f) + 2k Tk'M (t) .

)(,(( ~) (- ~, i-=()))(i;(t.-)„4(t)) (3.2)

III. QUENCH FROM A SINGLE-PHASE REGION

The quench of a binary mixture is done by sud-
denly bringing the system to a coexistence region
from a single-phase region. At an initial time the
system is in a thermal equilibrium state described
by the phase distribution function po(T& T,) of a
single-phase region. The initial ensemble

p,(T& T,), does not commute with the time-evolu-
tion operator in a coexistence state. Thus the
Langevin-type equation (2.4) describing a quenched
mixture is nonstationary. We. shall consider the
linear Langevin-type equation for & =H= g. Then
the streaming term is given by

~,i,=K,(f, f)j-„(f), (3.1)

where

&t —RDc1 & (S.8)

where R is the average cluster diameter and the
intercluster distance is roughly given by R. In
each collision, a cluster diameter is lengthened
by the amount of the order R. Thus the average
cluster diameter R obeys the equation

K~(t) and M~(t) will be calculated by the use o( the
nonlinear equation (2.21) or (2.24).

Before proceeding further, we shall review the
phenomenological theory of Binder and Stauffer, '
which will help us to reduce (3.7). Binder and
Stauffer considered the cluster growth by a reac-
tion of clusters. They assumed that a cluster be-
haves like a Brownian particle, which collides
once in a mean time at If th. e cluster diffusivity
D,), which is the diffusion coefficient of the cen-
ter of the gravity of a cluster is known, then t
is given by

and where d R—R=——
dt ~t R (3.9)

( ~ ~ ~ ),= Trp, (T& T,).
Since the time-evolution operator of ~ does not
commute with po(T& T,), (3.2) does not vanish.
The second term on the right-hand side of (2.4) is
written as

ks Tk'M~S~(-t) 'q~(t),

where

(3.3)

J d~=k Tk'M (f)
dt dt

(3.4)

d q;(f) =Ki(t, s)q-„(f)+f-„(t,s),
dt

(3.5)

Here go is the correlation time of the fluctuating
force, which can be equal to y, if the nonlinearity
of &v()7) does not contribute to the renormalization
of the fluctuating force or the mobility. %e then
obtain a nonstationary linear Langevin-type equa-
tion"

If D„is of the form

D„=DQ~,

then we find that

1/f""'.

(3.10)

(S.11)

Binder and Stauffer' evaluated 8 for various sys-
tems. For a purely dissipative system (kinetic
Ising spin) at low temperatures, the composition
of the cluster is almost pure. Thus the Brownian
movement of a cluster is caused only by the ran-
dom movement of atoms at the cluster surface.
Then Binder and Stauffer obtained 8= d+ 1 for the
purely dissipative system. On the other hand they
obtained 8= d -2 for the fluid mixture because of
the Stokes law.

Here we shall use their estimation. By putting
K„(t}= D,)k' and using a simple dimensional anal-
ysis we find that

K;(f, s) =-
d j -„(s) (q-„(t)q-„(s)},'

0

= K (f, f) - k Tk'M (t)S„(t)'

=Kq(t), t - s& vo. (3.6)

1 (dry„. l D„-. 1
ksTk (dt ") k T " " ksT

(3.12}

Let M' be the correction to the bare mobility M'
due to the cluster formation,
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Mq=M +M .
Then M' xnay be given by

Mq= D qR"/ksT,

(3.13)

(3.14)

which is proportional to R for a purely dissipa-
tive system and g' for the fluid mixture. " Thus
for large 8 the renormalization of the mobility
may be neglected for the purely dissipative sys-
tem, while the renormalization of the mobility is
essential to the fluid mixture.

We have examined the validity of the above es-
timation of the mobility. In the three-dimensional
case, a'= (d+ 2} ' for a purely dissipative system
is supported by computer simulations of kinetic
Ising model at low temperatures. " However, if
the computation time is extended, a' increases
for the composition near the coexistence
curve. This might be the symptom of the
evaporation-condensation mechanism. ' For the
stage where a'=(d+ 2) '= 0.2, we have acertained
that the prediction M=M' holds. Here in the unit
of coDlputer simulation M . is given by

k, rM'= 1/(4d) (3.15)

for a square lattice or simple cubic lattice struc- .

ture. ' We have ascertained the validity of the mo-
bility:

M~=M, (3.16)

where k„is the position at which S,(t) has its max-
imum. Here the lattice constant a is always unity.
This suggests that there is no effect of the bare
mobility in this region. The mobility (3.1V) is that
of the cluster diffusivity by Binder and Stauffer.
This can be found as follows. Since the cluster
diffusivity is caused by the random movement of
atoms on the cluster surface, the mobility of the
Binder and Stauffer process is given by

M =M S/V, (3.18)

where S and V are the cluster surface area and
the cluster voluxne, respectively. For two di-
mensions S/V=4R '=vR '=k„.Thus (3.18) is
consistent with (3.1V). The growth rates of the av-
erage cluster diaD|eter 8 are consistent with the
mobility for two and three dimensions. However,
strictly speaking, (3.1V) must be replaced by the

with the use of the asymptotic solution of S~(t) at
small g, which will be given later. There is the
region where a'o(d+ 2) ' but a'=(d+ 3) ' according
to Binder and Stauffer, ' holds in two-dimensional
kinetic Ising model at low temperatures. " In this
region we found that (3.16) is really invalid. In-
stead of (3.16), the following is suitable:

(3.1V)

k-dependent mobility, in general. We could not
obtain the k-dependent mobility. Thus in the pres-
ent paper we shall not discuss the two-dimension-
al case.

For a purely dissipative system in three dimen-
sions, the hydrodynamic interaction vanishes, i.e.,
y, = 0. Then (2.24) is written as

(3.18)

Next, we must obtain an exactly renormalized
linear Langevin equation corresponding to (3.5).
This may be given by regarding a cluster as a
free-particle, since the diffusion equation of the
ideal gas may be a linear equation. The lineariza-
tion of the nonlinear Langevin equation (3.1S) gen-
erally gives rise to the renormalizations of the
fluctuating force, the mobility, and the suscepti-
bility. However, as was seen above, the renor-
xnalization of the mobility is of the order R ' and
therefore may be neglected. Thus we may simply
replace the coarse-grained free-energy In~(q) by
the renormalized free-energy (1.5}:

)n4'6) —Xp Vg ~

8$~(

where X„is the renormalized susceptibility of a
purely dissipative system and may be called the
nonhydrodynamic susceptibility. If the cluster-gas
picture is appropriate, one may expect that

(3.20}

0-R-", k-k„=v/R
k& k —m/R.

(3.21a)

(3.21b)

It is worthwhile to note that such an assumption as
(3.21) is possible only for a coexistence region, in
which 61n&u(q)/5g~= 0 for nonvanishing composition
fluctuation ri,. Equations (2.21) and (2.24) are re-
placed by

—g„-(t)= -k~Tk M y~'q-„(t) +ik Q u& (t)rt.(t)+f0(t)

—j-„{t)= -k, rk'M'X,-'~(t)
t-Z J «&[ku'„-(t)][k'u'„-(r)]&

ea'k'

(2.21 )

M~=M +M~, (3.22)

where M'„is the mobility correction and given for

(-(t))-i v(t)8;(t)0@t)),
( )»(t)

(2.24')

The mobility for the Quid mixture is calculated
from (3.4} and (2.21'). By putting ra= rwe ob-
tain
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Here we have put

&u»»(t)u'=„(f')&o= &u»»(f)u'=(t')&

=
& ~u» I'& e~[-(k'/~. ) lf -f'I],

i.e. , we have assumed that the velocity correla-
tion is independent of the initial condition. The
method of obtaining (3.23} is the same as that for
the long-time tail in the normal fluid. ~ We have
used the fact that the time scale y, of ~ is much
longer than y,.

Since in the late stage the relevant scale length
is the average cluster diameter R only, one may
assume that the structure function S»(t) must be
scaled as

S»(t)=R S(kR). (3.24)

Then we can find that M' is the quantity of the or-
der R'. Thus the equation of motion for S,(t) in a
late stage of phase separation of a purely dissipa-
tive system is given from (3.V) by

three dimensions by

(3.23)
and where

~= Iim «,& ~~ ~'&/(3k, r).

IV. SUSCEPTIBILITIES

A simple mean-field calculation showed that y, '
= 0(R ~} for k & k = m/R and y»' = ~ for k& k„for a
purely dissipative system at low temperatures. ~
We shall here expect the susceptibility similar to
this. Namely, we expect the following form for

qt'= ak'. [(k/k. )~+,P], k„=vR-'. (4.1)

Here, k is the wave number for which S, has its
maximum. We may predict that

For a purely dissipative system a'=(d+ 2) ' is
consistent with computer simulation of the three-
dimensional-spin-exchange kinetic Ising model
with one-to-one composition" and also with one-
to-four composition, "at a low temperature. In
these cases M~= M' has been ascertained. Other
computer simulations, i.e., the quench near the
critical point and the quench at a' later time for
the composition near the coexistence curve at low
temperature, ""in three dimensions exhibit
growth rates faster than that determined by (3.30).
Near the critical point, the cluster diffusivity D„
takes different values. ' The change of the growth
rate of cluster diameter in later time would be
the symptom of the evaporation-condensation pro-
cess of Lifshitz and Slyozov. '

d S (f}= 2ks TM k (1 -x» S»}, (3.25) a-m" P —1. (4.2)

where from (3.19) and (3.20) we observed that

K»(t) = k~ TM k'X-»'.

For a fluid mixture we obtain

(3.26)

—S»(t}= 2keTMP'(1 - X'» ~S»), (3.27)

where we have put

X»(t) —= -ks TM»k X» ', (3.28)

and the renormalized susceptibility X„willbe cal-
culated later. In order that (3.24) is the solution
of (3.25) or (3.27), X» or X,

' must be also scaled as
R y»(kR} or R~X»(kR). Then R satisfy the equation

R= Roc' .
Here, for the purely dissipative system32

a'=(d+ 2) '.

(3.29}

(3.30)

a'= 1/d. (3.31)

At th6 present there are a few cases where
(3.30) and (3.31}are consistent with experiments.

Of course, we obtain a'=(d+ 3) ' as did Binder and
Stauffer, ' if M is given by (3.1V). For a fluid mix-
ture we obtain22

At intermediate wave numbers near k, the expo-
nent y may depend on the surface conditions of
clusters.

We shall present a simple estimation of y. Let
us consider a cluster with a typical size and let
0 be the total volume of the area of other clusters
with the opposite composition, which can exist
within the distance r from some point within the
former cluster. Here r is assumed to be smaller
than R. The pair correlation function may roughly
be estimated as &q(t, r)q(t, 0}&,= const+ R 'Q.
Here the cluster volume is regarded as R". j et r
be smaller than R but of the order of R. When
cluster surfaces are smoothly curved, ' then 0
=rR" '. When, however, cluster surfaces are
extremely tangled, theg. 0= r". Therefore, the
asymptotic solution S~= X~ for k ~ k gives y= d+1
for smoothly curved surfaces and y= 2d for ex-
tremely tangled surfaces. The surface condition
depends not only on the surface tension but also '

on the average composition q. As the surface ten-
sion increases and as the average composition g
approaches its pure one, the cluster surfaces be-
come smoothly curved. For instance one may
predict that y= d+1 for the composition near the
coexistence curve and y= 2d for the composition
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near the center of the miscibility gap.
If we introduce the following set of reduced pa-

rameters:

24.60

a=-R~o ~a, t) -=Rosh, A = ROA— , (4.3)

then Ro does not appear explicitly. Equation (4.2)
and also d+1 & y & 2d give approximate estima-
tions. These constants are more sensitive to the
details of the properties of system than the ex-
ponent g'. Therefore, we have determined n
and M' or A. by comparing them with experimental
data. Namely, for smaB t, (3.25) and (3.27) have
asymptotic solutions:

1230

0
0 223,0 334.5 446.0

t(try per site)

S,(t) = 2k, rM'k't,
t

S,(t) = 2k, rk' M', (t)dt
0

(4.4)

(4.5)

respectively, and for large t, where dS,/dt =0: 12.30

S,(t) = y,„,y„'= a 'k„""k". (4.6)

In order to compare the theoretical structure
function S~(t) with experimental data, we have re-
written (4.1} into the form

X '= a't '"('t'"k"+ P') (4.&')

Since k is observable, we can determine k'
=—g'k„. Thus we have

X-'= a'(k')-'"k' [(k/k„) + P'(k'.)"]. (4 l")
Here, e' and P' can be determined using experi-
mental data and k' is determined from the theo-
retical calculation of S„(t}.For the spin-ex-
change kinetic Ising model at low temperatures,
the best agreement of the theoretical S„(t)with
experimental ones was found for y= 6. In the unit
of the computer simulation the susceptibility thus
determined is given by

(4.V)X,'= —,', k'„[(k/k )'+ 0.86],
for the one-to-one composition at T= 0.5&T, (Ref.
23) [see Figs. l(a) and l(b}] and

[(k/k. )'+ 2.8), (4.9)

if we assume that the susceptibility X„is not re-
normalized by the hydrodynamic interactions, i.e.,

Here the constant a can not be determined,
since the data are not those for the structure func-
tion but those for the scattering intensity. The
gap P is about three times as larger as those of

q„-'= ' k'„[(k/k„)'+0.84], (4.8)

for the one-to-four composition at T= 0.59T,."
The above two susceptibilities are consistent with
the prediction (4.2).

For the mater-rich binary Quid mixture far from
the critical point" we observed that

0
0 4

15k~
FIG. 1. (a) and (b). $&(g) of the three-dimensional-

spin-exchange kinetic Ising model with one-to-one com-
position quenched at T = 0.59T~ (Ref. 23). The solid
curves are calculated using (3.25) with the susceptibility
(4.7).

the purely dissipative systems. Let us consider
the renormalization of the susceptibility due to
hydrodynamic interaction. %e shall assume that
the hydrodynamic interactions essential to the
cluster diffusivity are those with small wave num-
ber k&k . Since X~ is an asymptotic solution of
S~(t) for large k (&k„)and is a static characteris-
tic determined by the cluster configuration or
cluster surface condition, we shall also assume
that X~ for k& k is not renormalized by hydrody-
namic interactions. To treat remaining long-
range hydrodynamic interactions, we shall as-
sume that long-range hydrodynamic interactions
are not responsible for the nonhydrodynamic prop-
erties of the system, i.e., for the cluster config--
uration. Therefore, the free-energy or the prob-
ability distribution function &o(g} should be the
same as that of.a purely dissipative system. Thus
(3.20) with (4.l) is applicable. Then we have used
a usual decoupbng approximation to treat long-
wavelength modes. Then, using (2.24'} and the
first identity of (3.6) we have obtained K~(t) or
X„'defined by (3.28}:
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X-1+ A q k+q l„k+0
k& pk„

X digs k ~ k (4.10a)

(4.10b)

k'„[(k/k„)'+0.91]. (4.11)

The gap of P for the fluid mixture is consistent
with those of (4.V) and (4.8). The difference in y
is due to the surface conditions of clusters.

In the later stage of the phase separation of a
purely dissipative system, the Lifshitz and
Slyozov process or the evaporation-condensation
process' wiQ become dominant. Then the present
analysis cannot be applied. Using computer simu-
lation, Penrose et al."found in the later stage of
the phase separation of kinetic Ising model the
same growth rate as (4.1&) for the composition
near the coexistence curve. However, for the
same system, Marro et a/. "found that S„(t)is
scaled as R'S(kR) with R ~ t '" (in three dimen-
sions). One may find for this system the k "tail
of S~(t), which is nearly consistent with the k ~ '
tail.

V. DISCUSSIONS

We have studied the structure function S,(t} of
quenched binary mixtures at low temperatures in

where the bare mobility M is neglected. Here p
is a constant of the order unit and is chosen so
that S~(t} may be stationary with respect to p.
The second term on the right-hand side of (4.10a)
vanishes in thermal ~uiiibrium states (y, = S„);
X„is not renormaiized by the hydrodynamic inter-
action in thermal equilibrium states. Thus it is
natural to put X~ =X~ for k& k, where all modes
are already in a local equilibrium state.

It is easy to firid that the second term on the
right-hand side of (4.10a} is scaled as R 'F(kR).
Thus (X„')"'is also scaled as the same. Equation
(4.10a) is also found from the equation of motion
for I~ by Kawasaki and Ohta, ' if we replace X~
~(k —p) by X~ given by (4.1). The overall con-
tribution from the second term on the right-hand
side of (4.10a) is positive as it is examined nu-
merically. The cut-off parameter p was chosen
so that the second term on the right-hand side of
(4.10a), which is a function of p through S,(t), takes
a stationary value as a function of p. p thus de-
termined, is slightly larger than unity. %hen
(4.1) is taken for the nonhydrodynamic suscepti-
bility y~, the renormalized susceptibility X, is no
more of the same form as (4.1). X„'' thus given,
has a minimum near k= k . The most appropri-
ate nonhydrodynamic susceptibility for the water-
rich binary fluid mixture' is given by [Figs. 2(a)
and 2(b}]:

1500

Ik(t )

1000

500

0.'.
200 400 600 8OO

- t(s)

750

Ik(t )

5OO

250

0
0 16

k(10 cm )

FIG. 2. (a) and (b). The scattering intensity I~{t)for
the off-critical quenching of isobutyric acid+ water
mixture (Ref. 26). The solid curves are S&(t) calculated
with the use of (3.27) with (3.23), (4.10), and (4.11).
The constant A which determines S&{t)for small k or
small t, and n which determines S~(t) for large k or
large t are suitably chosen.

I

three dimensions. At least from the present study,
the inverse susceptibility X, in three dimensions
seems to have a positive gap rather than a nega-
tive gap. Since X„for k small enough gives only
a little contribution to S, [see (4.4) and (4.5)] the
present work might not yet give the firm evidence
of the positive gap of X~'. In actuality, however,
this is noi an essential problem. No negative part
of X~ is responsible for the cluster growths. The
diffusion of clusters' "or free atoms seems to be
responsible for the cluster growth at tempera-
tures far from a critical point.

Nevertheless, the positive gap of X~' is plausible
by two reasons. One is as follows. Infinitely large
number of configurations of clusters is possible
under the condition that the first derivative of the
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free-energy vanishes. Thus there exists an am-
biguity in the cluster configurations. In order to
remove such an ambiguity, one may introduce a
statistical averaging procedure. The simplest
way of performing the averaging procedure is to
regard the assembly of clusters as the assembly
of free-particles. One thus assumes that the free-
energy can be reexpanded on the basis of the clus-
ter-gas picture. Therefore, one speculated the
existence of a smaQ gap of the order of R " in X~'.
The other reason to believe the existence of the
small gap in the inverse susceptibility is as fol-
lows. Consider well separated clusters; how do
attractive interactions among clusters inQuence
the susceptibility X, '? It takes a long time for two
or more than two clusters to meet. When each
cluster moves freely, the system may be regarded
as the assembly of free-particles. After a cer-
tain time interval the average size of clusters be-
comes larger because of the coalescence of clus-
ters due to attractive interactions. Then the sys-
tem is rescaled by the new scale length R(t}. The
system is similar to itself before the coalescence
occured. The grown clusters are again treated as
free-particles. The rescaling procedure or the
time-dependent scale length R(t} masks the at-
tractive interactions among clusters. In fact,
since the inverse susceptibility X„for a small k
is a decreasing function of t, the free-energy
~ y~' ~g-„~'for a fixed value of ~g-„~ is a decreasing
function of t. This means that the free-energy may
decrease even if ~g„-

~

increases. Thus the scaled
susceptibility X~ may yield the same effect as that
of a negative susceptibility.

The above speculation is, however, marginal
when the correlation among clusters cannot be
neglected. Two cases may be considered. In the
one case the correlation among clusters acts io
reduce the gap of the susceptibility. In this case
the gap may be negative. Namely, the distinction
between the early stage and the late stage is not
clear. In the other case the correlation among
clusters gives rise to a drastic change in the
properties of clusters. The growth rate of the
cluster diameter may be different for different
fluid mixtures. Also the cluster shape may be
changed drastically. For instance, there arises
the transition between the free cluster gas and
the infinitely connected clusters, ~ such as in the
case of percolation problem. " In this case it
might be possible to restore a positive gap of the
susceptibility because of the existence of infinitely
large number of metastable configurations, al-
though this depends on how strong the remaining
correlation among nese clusters is.

At least in three dimensions at temperatures far
from critical points, there is no evidence of the

need of the negative part of the susceptibility for
the growth of clusters. At small k, S~ increases
not because of the negative curvature of the free-
energy but because of the reduction of the positive
curvature of the free-energy. Then the composi-
tion fluctuations of phase-separating binary mix-
tures may have properties similar to those fluc-
tuations in a thermal equilibrium state. For in-
stance, the fluctuating force is important for the

8,(t) to grow; also the volumes of clusters do not
always monotonically increase, but often decrease,
as is observed by the computer simulation. " It is
the average size which increases with time.

For two-dimensional kinetic Ising model at low
temperatures" we observed rather a negative gap
y„&0,using (3.1V) for the mobility. This situation
was not changed even if we put M~= M' = const.
Correlations among clusters due to the fluctua-
tions characteristic to low dimensions would be
effective in two dimensions. In fact, in one di-
mension there is no phase separation due to large
fluctuations and thus the cluster-gas picture is
essentially invalid in one dimension. We con-
sider that two-dimensional system is a marginal
case of the free-cluster-gas picture of the phase
separation. Therefore, in two dimensions, there
would be no definite distinction between the early
stage and the late stage of the phase separation.

Recently Horner and Juggling" discussed the
phase separation of a purely dissipative system
and found that the exponent g' approach —,

' in three
dimensions for large t. This behavior of the ex-
ponent g' was first noted by Binder regarding the
theory of Langer, Bar-on, and Miller. Such a
behavior of a' results from the k' term in the
free-energy" (kinetic energy term of the Gintz-
burg and Landau free-energy). If this term re-
mains, then. the structure function S~ must have
the k ' tail. However, experimentally, no such
tail has been found at least in the late stage of
the phase separation. Therefore, it seems that
the k' term in the free-energy must be canceled
out in order to form well-developed clusters. '
As can be seen from the relation between the mo-
bility and a', a' is always an increasing functionof
time t or a cluster diameter R.' Therefore, our
exponent a'= (d+ 2) ' for the purely dissipative
system wiQ fail in the later stage where the bare
mobility is not dominant. However, we consider
that this is not due to the neglect of the k' term in
the free-energy but due to the neglect of the Lif-
shitz and Slyozov process.
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