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Polymer statistics, the n-vector model, and thermodynamic stability
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The scaling hypothesis is now widely used in polymer statistics because of the correspondence between this

problem and the n~ limit of the n-vector model of magnetism. We prove here that if the n~ vector model

satisfies scaling, then its free energy does not always satisfy the usual convexity requirements of thermodynamic

stability, even above the critical temperature in small fields. We also show that, because of the very different role

played by the field variables in the two interpretations, the corresponding model of polymer solutions does not suffer

from this instability.

Sealing ideas have proven very useful in the
understanding of polymers and polymer solu-
tions." The necessity in polymer statistics
for nonclassical exponents in order to account
for deviations from Gaussian behavior was recog-
nized early by Flory, ' and calculations of these
exponents by self-consistent approximation meth-
ods ' and by direct counting of walks on lattices' '
have yielded estimates of increasing reliability.
The introduction of sealing ideas and the wide-
spread recognition of the intimate connection
between polymer statistics and critical phenomena
came only later, with the recognition by De
Gennes" that the statistics of a single polymer
chain is related to the behavior of the isotropic
n-vector model of ferromagnetism in the special
limit n 0. This correspondence was extended
by Des Cloizeanx'2 to the case of polymers in
solution, where interactions between different
polymers must be considered. The result of
this work has been the application of the scaling
hypothesis, ""already well established for
critical phenomena, to polymer statistics. This
development has been rather successful, as
shown by experiments2 and as summarized in a
recent book by De Gennes. '

However, scaling is still a hypothesis, and al-
though other arguments can be given to motivate
the use of scaling concepts in polymer physics, '
one of the most compelling arguments remains
the connection with the n-vector model. This
argument rests on the fact that the n-vector model
is now believed" to obey scaling for n having
physical values 1, 2, 3, and is Presumed to obey
scaling even when n is continued to n 0. In this
note we point out that there is a curious feature
in this argument. We show that if scaling is
assumed for the n-0 limit of the n-vector model,
then the resulting magnetic free energy necessar-
ily fails to satisfy the usual convexity require-

ments of thermodynamic stability as the critical
point is approached from temperatures above T,
along certain scaling curves on which the mag-
netic field vanishes as T-&,. This observation
might appear, at first, to invalidate the whole
scaling picture of the polymer problem. However,
when stability of the polymer problem itself is
considered, using only polymer variables, sta-
bility is recovered and no drastic consequences
of sealing are found. This results from the very
different role played by the independent field
variables in the magnetic and polymer problems.
One is thus in the somewhat curious position
that there is no internal thermodynamic incon-
sistency in postulating the scaling equation of
state for polymers, but that the rigorous cor-
respondence between the two models means
that this postulate implies a thermodynamically
unacceptable free energy for the n-0 1.imit of the
n-vector model. Were the n-0 limit a physically
realizable magnetic system, this would be suffi-
cient reason to rule out scaling in the polymer
problem. However, given the artificial and non-
physical nature of the n-0 limit, one may reason-
ably argue that this should not exclude the use
of scaling for polymers.

We use the correspondence between the n-0
limit of the n-vector model on a lattice and the
statistics of self-avoiding walks on a lattice em-
ployed by G. Sarma, both in the Appendix of Ref.
2 and in a more recent review. " (An earlier
treatment by Bowers and McKerrell" uses a
different normalization of the spins and fields. }
Consider the n-vector model on a d-dimensional
lattice of volume V with Hamiltonian

~= —Jgs„s~ —,H ps"'(R),

where the sum 5~», is over all distinct nearest-
neighbor pairs of spins and where S is a class-
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ical spin with magnetic moment mo and norm
4n as follows:

(S&-&}2=n
a=

(2)

and 8"' is its component parallel to the field &.
In the limit n 0 the partition function S and free
energy (Ref. 18) F of this model are related to
the polymer statistics by the equation~'

&(~N, )'& = 0.
Using standard procedures for calculating fluc-

tuations in statistical mechanincs, "together
with Eq. (3), the expression for A can be rewrit-
ten in the form

where
2 = e" = Q P ~(h )"&'I'(Nq, N, V),

where

2.
&s'F'& s'yl (s'F ~

(sp'j sh'j' gspshj

= ~ [&(~z)2&&{nm)2& &«~M&2] (12)

and where I'(N~, N, V) is the number of ways
to put N~ self-avoiding walks (polymers with ex-
cluded volume) containing a total number N„of
monomers (bonds or steps) onto a lattice of V/vo
sites, where e, is the volume per site.

The concentrati. on of polymers, c~, and of mono-
mers contained in polymers, c, is related to
S (or F) through

2&N, & 1„~SlnZ'~
V ~ E»&s'

&N ) 1 el~I~
V V sp ja'

while the (dimensionless) magnetization density
m and configurational energy density e for the
magnet are given by. &~& 1(»~&~

V VI eh) V
(6)

Z& 1 sing~ &Q&„&&S„S&&
V V sPj V

For the polymer variables X and N~ the "thermo-
dynamic" stability condition corresponds to the
observation that, for all real a and b,

&(AN„+beN~)'& ~ 0,

The thermodynamic stability condition for the
magnetic n-vector model analogous to (9) and
(10) is that F be convex in p and h together, i.e.,
that

B&0

or

&(~~)') s2F&

y 8/2

&(«)'&
V sp' a

(14)

What we shall now show is that for scaling equa-
tion of state that satisfies the requirements of
the n 0 limit of the n-vector model, the magnetic
stability condition 8 & 0 is violated in the vicin-
ity of the critical point with T - T„although the
polymer stability condition A & 0 is satisfied.

The scaling hypothesis made for the n 0 limit
of the n-vector model, and thus the polymer
scaling hypothesis, is that, close to the critical
point, the free energy F in Eq. (3) can be written
as the sum of singular and more regular parts
with the singular part, F„satisfying the scaling
form

where F (Xr X~h)= k' ~F,(r, h), (15)

~N„=N„-&N„&,

n.N~ = N~ &Nq&. -
Minimizing the left side of Eq. (I) with respect
to a at fixed b leads to the requirement that

A= —,[&(nN )2)&(~N, )2& &~N„nN,&'I~ 0,
4

together with

&(&N )')~0
or

(6)

(10)

where & = (p, —p} and && 0 is a variable para-
meter, and where the exponents a and n = P6
are among the conventionally. defined nonclassical
critical exponents. A recent estimate" for the
n-vector model for n 0 gives n = 0.236 and &
= 1.46. (Here we have used the scaling relation
p6 = y+ p = 2- a - p.) To write Eq. (15) with v'

= p —p, it is necessary that p, is finite (T,& 0).
This is well established. "' Examination of
the high-temperature, zero-field susceptibility
series resulting from Eq. (3} shows that the sus-
ceptibility is positive and finite for small P and
diverges to+ ~ at P = P, = 1/p, where
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p, = lim limfl'(N~= 1, N„,V)/V]' x
g ~oo P'~oo

m
(18) B = 2aay(1 —y)v' '" ~ 'x'+ ~, (22}

From Table I of Ref. 9, this gives P,-0.2135
for the simple cubic lattice. It is reassuring
that this value fits well with the values for n
= 1, 2, 3, as estimated from Fig. 14.1 of Ref.
15 and in Ref. 22.

For r &0 (T& T,} the sealing hypothesis may
be rewritten in the convenient form

where the scaling function f(x) is defined on
(- ~, ~}. The singular part of the free energy
is generally assumed to be analytic for 1'& T,
in the vicinity of h = 0, from which it follows
that f(x) is analytic is some region about x = 0.
It is an even function of x, and so possesses the
expansion

f(x) = c+ ax'+ bx'+ ~ ~ ~, (18}

where the coefficients c, a, b, etc., are all func-
tions of n. The peculiar features of the n 0 limit
is that c is zero [(c-n+O(n')1 while a, b, etc. ,
remain nonzero so that

f(x)= ax'+bx + ~ ~ ~ . (19)

A'/A = 2'(1+ E)n/4+0(a'), (20)

which has the appropriate limit as n 0.
If we examine the free energy-E or its deriva-

tives with respect to P and h using the. expansion
in Eq. (19) we find that, as T-T, with x = h/v~

fixed and small, the first term from Eq. (19)
dominates. Accordingly, we may calculate the
derivatives in Eqs. (11) and (12) using the free
energy

2 a-24++. ~ ~
S

We then easily obtain

(21)

The vanishing of c is necessary if the model is
to give sensible results for polymers (it is re-
quired if the osmotic pressure is to vanish as the
concentration of polymers vanishes}. Moreover,
the vanishing of c and nonvanishing of a in the
n 0 limit follow from arguments based on the
h-0 limit of the series in Eq. (3) when viewed
as a high-temperature series. E(v, h = 0) is fo'und

to vanish identically for v& 0 (it is proportional
to n as n 0), whereas (O'F/Bh'), is nonzero for
&& 0 and diverges to+~ at ~ = 0. The vanishing
of E(7,h= 0) for r&0 leads, in the magnetic lang-
uage, to a ratio A'/A, of the amplitudes of the
specific heat above and below T, that vanishes
in the n 0 limit. Brezin et cl.23 have calculated
A'/A for the n-vector model, to order e, as
follows:

where x = k/r~, and we have used the scaling
relation

y = 24+0. —2=1.16. (23)

We see that & is negative sufficiently close to
T whenever y is greater than unity (y = 1 is the
Gaussian result and all estimates of y for the
polymer problem give y&1). In fact, Il diverges
to - as T, is approached along the scaling curve
h/r~ = x for x fixed and sufficiently small. Thus,
if scaling is satisfied for the n-vector model with
n 0, then thermodynamic stability is violated.

For the polymer problem, however, we obtain
for A, in Eq. (11),

4amp+~2-max4+. .. (24)

where the remaining terms of order x contain
higher powers of 7 (e.g. , v'~, r' 2, etc.) and

are, moreover, positive. In addition, of course,
there are also higher-order terms in x (x', x',
etc.). The leading term is positive and is the
result of contributions from the third and fourth
terms on the right-hand side of Eq. (11}.The
fourth term is negative-, as shown above, but
the third is positive and larger in magnitude.

The origin of the difference between the mag-
netic and polymer models is the very different
role played by P and h in these two interpreta-
tions. For the magnet, P and h play a role anal-
ogous to that of chemical potentials, p „(more
precisely, to that of lj.,/kT) in the grand canon-
ical ensemble, while in the polymer problem
they play a role analogous to that of activities,
x, = exp(p, /kT). It is this difference that results
in the "additional" first three terms in Eq. (11)
which save the polymer problem from instability.

It should be boted that scaling and convexity
are quite distinct mathematical properties. There
is no mathematical requirement that a function
which satisfies scaling also be convex. The re-
quirement that E be convex in P and h for mag-
netic systems is based on physical arguments
that are compelling for physical values of n,
i.e., n= 1, 2, 3, etc., but need not necessarily
have much force in the nonphysical limit n-0.
The conclusion that nonconvexity of F implies
nonpositivity of ((a&M+ b&E)2) for some a, b,
P, and h requires that the operators M and E
be well defined and that there exist a non-nega-
tive probability function on the states of the sys-
tem. The usual methods for deriving the n 0
limit avoid these issues and they remain unre-
solved at present, although some interesting
efforts have been made in this direction.

In closing we wish to emphasize that the in-
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stability that me have pointed out here occurs
for T& 7, near h = 0 and is not (at least not obvi-
ously) connected with another curiosity of the
n 0 limit, namely, that & expansion of the sus-
ceptibility beloved T, near h = 0 suggests that sta-
bility is violated if n&1,.~' That conclusion de-
pends upon the appropriate treatment of the &

expansion as vrell as of the n 0 limit and it may
be hoped that a satisfactory resolution of that
difficulty will be found. (The recent contribution

by M. Moore is an interesting step in this direc-
tion. ) The instability discussed here requires
only the ssumption of scaling and the behavior
required of the n 0 limit of the n-vector model.
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