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Frequency-dependent critical diffusion in a classical fluid

Jayanta K. Bhattacharjee and Richard A. Ferrell
Institute for Theoretical Physics, Uniuersity ofCalifornia, Santa Barbara, California 93I06

and Center for Theoretical PhysicsD, epartment ofPhysics and Astronomy. Uniuersity ofMaryland, College Park, Maryland 20742
(Received 2 September 1980)

The frequency dependence of diffusion in a classical fluid is a consequence of the frequency dependence of the

viscosity and leads to a small but observable deviation from a pure exponential decay of the order-parameter

fluctuations. Our calculation of the deviation at the critical point gives a good fit to the data of Burstyn, Chang, and

Sengers. The theory also agrees with the temperature dependence that they found.

I. INTRODUCnoN

One of the major predictions of critical dynamics
is the nonexponential decay of the time-dependent
correlation functions for various types of fluctua-
tions. The resulting non- I orentzian spectral
shape has been calculated for the entropy fluctua-
tions in liquid helium near the lambda point, ' for
the magnetization and staggered magnetization
fluctuations in the antiferromagnet near the Noel
point, and the magnetization fluctuations near the
Curie point in an isotropic ferromagnet. ' But this
effect has not yet been treated theoretically for
the classical fluids, doubtless because experi-
mentally the small deviation from Lorentzian
shape has until recently evaded detection. This
is unfortunate as it might lead to the conclusion
that the classical fluid constitutes an exception to
the general rule that critical fluctuations have a
non-Lorentzian spectrum. To show in detail that
the classical fluid is not a special case apart, but
in fact fits well into the general picture, is the
motivation for our calculation in this paper of the
deviation from exponential decay of the order-
parameter correlation function. The order param-
eter is the entropy density and the concentration
in the single- and two-component fluid, respec-
tively. We demonstrate that, although small, the
effect very definitely exists. Our calculations
yield good agreement with the recent experiments
of Burstyn, Chang, and Sengers detecting this
elusive effect.

The cause of the non-Lorentzian spectrum is the
frequency-dependent diffusion coefficient. The
reason that the effect is small and had hitherto
been neglected is that the frequency dependence
in the diffusion coefficient does not enter at 0(&)
in an a expansion about a=4. To calculate the
effect one has to go to 0(e ). In other words one
has to consider the frequency dependence of the
viscosity. The work of Kawasaki and Ohta ig-
nores this effect and consequently is not relevant
in the critical region. Calculation of frequency

dependence for any system to 0(&') in the different
formulations of critical dynamics is a highly non-
trivial task, which to our knowledge has not been
performed. In this work, we will avoid these dif-
ficulties by working with the dressed single-loop
diagrams for the viscosity and diffusion coeffi-
cient. By working within a self-consistent scheme
in a=3, we actually incorporate effects to all
orders in e. The two and higher loop diagrams
will in principle contribute. But, for the classi-
cal fluid, the contribution of these diagrams is
suppressed by a geometrical factor that is re-
sponsible for the small value of the viscosity ex-
ponent, and hence can be neglected. This is the
same reason that the single-loop Kawasaki func-
tion is a good description of the wave number-
and temperature-dependent relaxation rate.

The physical basis for the nonexponential decay
rests, as mentioned above, with the frequency de-
pendence of the critical viscosity. The divergent
critical component of the latter disappears at high
frequencies because the underlying fluctuations
which are responsible for the critical viscosity
cannot follow at frequencies higher than the char-
acteristic relaxation rate of the fluid. As a con-
sequence the short-time decay of an order-param-
eter fluctuation is determined by the noncritical
background viscosity. But' at later times the
critical component of the viscosity sets in, result-
ing in a slower decay. A, semi-logarithmic plot
of the correlation function versus time will there-
fore show an upwards curvature. Our quantitative
calculation of this curvature is based on a spec-
tral-function approach. The frequency-dependent
integral cannot be evaluated in closed form. Con-
sequently, the spectral function has to be deter-
mined in an approximate manner. To establish
the reliability of our spectral function we proceed
in three steps. ' The simplest spectral function,
a step function, is considered first and yields
answers in closed form. A slightly more sophis-
ticated two-term spectral function is considered
next and the answer can once again be expressed
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in closed form. Finally, a three-term spectral
function which we believe to be a very close ap-
proximation to the truth, is considered. Now the
answers can no longer be expressed in terms of
tabulated functions but can be obtained as series
expansions. The differences between the answers
with the three different spectral functions are
moderate and systematic (see, for example, Fig.
4) and serve to establish the credibility of our
approximations.

In Sec. II we establish the general formulas for
the deviation of the time-dependent correlation
function from the simple exponential form. In
Sec. III the special case of the binary liquids is
considered and a three-term high-frequency ex-
pansion for the diffusion coefficient is established.
Section IV deals with the spectral function. The
results at the critical point are shown and com-
pared with the experiments of Burstyn, Chang,
and Sengers in Sec. V. The temperature depen-
dence is discussed in Sec. VI. Section VII con-
cludes with a brief summary.

II. FREQUENCY-DEPENDENT DIFFUSION

The intensity of the light scattered by a fluctua-
tion of wave number k is proportional to X(k, «),
the Fourier transform of the equal-time order-
parameter correlation function. In this paper we

will use throughout the Ornstein-Zernike approx-
imation

1
X(k, «)=k2+ 2,k +K

(2. 1)

g(k, «, ~) = 1
-i~ + y(k, «, (o)

' (2. 2)

The frequency-dependent rate, which is a kind of
memory function, is given by

y(k, «, ~)=, , x(k, «, (o) .
g(k, x)

(2.2)

g(k, «) ' is the thermodynamic stiffness of the
system, while the final factor in the right-hand
member of Eq. (2.2) is the critical Onsager co-
efficient. As is indicated by the dependence of
this function on both k and ~, this function repre-
sents a nonlocal conductivity. The ratio A/g is a

where «
' is the correlation length. This approx-

imation is justified by the small value of the criti-
cal index g, which is known to amount to only a
few percent. '" The distribution of the scattered
light in frequency ~ is given by the Fourier, trans-
form of the time-dependent factor of the order-
parameter correlation function,

nonlocal diffusion coefficient. It is the purpose
of this paper to explore the experimental conse-
quences of the frequency dependence of A., which
reveals itself as a departure of the relaxation of
the fluctuations from exponential decay.

The inverse Fourier transform of Eq. (2.2) is
the time correlation function

1
G(k, «, t) = — d(ug(k, «, (o)e '"'.

2' m+0

(2.4)

Because y is a causal function, analytic in the
upper half of the frequency plane, it follows that
Eq. (2.4) vanishes for t &0. We further assume
that y is bounded in the entire lower half of the
complex frequency plane. For t &0 this permits
us to deform the contour of integration into a very
large circle. y can then be neglected in the de-
nominator of Eq. (2.2) and we obtain the sum rule

G(k, rc, 0+) = 1 . (2. 6)

The frequency dependence of the diffusion in a
classical fluid is a, very small effect. Therefore
it is useful to take the ~ =0 value of y as a refer-
ence value. To a first approximation the fre-
quency dependence of y can be neglected in the
denominator of Eq. (2.2). Replacing y by

y -=y(k, «, 0),
leads to the simple exponential decay

G(k, (c, t) = e "&'= e

(2. 6)

(2. 7)

Here we have introduced the dimensionless time
variable 7 = y, t. In order to,reveal the deviation
from exponential decay we introduce the deviation
function

&G(k, «, &)
—= G(k, «, t) -e

The sum rule of Eq. (2. 5) becomes now

&G(k, rc, 0+)=0.

(2. 6)

(2.9)

by virtue of Eq. (2.6). It follows that &G must
have at least one zero.

The deviation from exponential decay is evident
as a nonlinearity in the plot of lnG vs &. In terms
of the deviation function this is

lnG=ln(e '+bG) = r+ln(1+— &Ge)

—-7+ g bQ (2.11)

where the expansion of the logarithm is justified

%e can obtain a second sum rule by integrating
over the deviation function. This gives the zero-
frequency Fourier component

J d«G(k, «, &)=,—1 =0,
0 yk, «, 0)
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a=~/r„ (2. 12)

for &= 0(1) by
~

&G
~

«1. Taking the derivative
helps to reveal the underlying small frequency-
dependent effect. This yields, upon introducing
the dimensionless frequency

0= -i. Only ReI' contributes to the residue at
the pole. The distributed contribution is a Cauchy
principal value integral. Thus we obtain

—(e'EG) = -ReI'(-i) + —P iml'e1 . , ds (1-S)V
d7' m J s-1

Sp

and the dimensionless deviation rate
I'= [r(k, ~, ~) —r,]lr„
d 1 '" ( - i~+1
d7 2g ~-iQ+ 1+ 1" )

(-)0+1)vdQ

2g —i~+ 1

(2. 12)

(2. 14)

(2.15)

A further integration using the sum rule of Eq.
(2.9} as an initial condition gives

f" ds
b.G=-Rel'(-i)&e + —P I 2 ImI'(e —e ) .v, (s —1)

where to first order we are permitted to neglect
I' in the denominator of the integrand. A further
differentiation gives the curvature function

d
OO

d7' 2g2 (e'&G) =-e' — d& I'(II)e '"'. (2. 15)

Except for the factor of -exp&, this is nothing
other than the inverse Fourier transform of the
frequency-dependent relaxation rate. It is gen-
erally difficult to carry out the Fourier integration
such as indicated in Eq. (2.15), and the problem
is often more tractable when converted into a,

I aplace integration. This is the case here be-
cause, as will be established in the subsequent
section, the analytic properties of the relaxation
rate are especially simple. The singularities lie
entirely along a cut on the negative imaginary
axis. %e therefore change to the variable

(2.19)

It is worthwhile to verify that Eq. (2. 19) satisfies
the sum rules. The zero-time sum rule is satis-
fied identically. %'e therefore turn to the zero-
frequency component which, according to Eq.
(2. 19), is

AG d&= -Rei'(-i) + —P ImI'.1 I'" as
v ~, s(s-1)

(2.20)

In order to verify that the two terms of Eq. (2.20)
cancel, as required by the sum rule of Eq. (2.10),
we need a dispersion relation for I'. Cauchy's
theorem in subtracted form, with the subtraction
point at 0=0, reads

s=i~, (2. 15)

and deform the contour of integration into a loop
along the cut to find (with the k and a dependence
no longer being exhibited explicitly)

d 1
dT2 r .2 (e'&G) =- — &s iml'(-is+ 5)e" '". (2. IV)

Sp

6 is a positive infinitessimal quantity, ensuring
that the imaginary part of I is evaluated along the
right-hand side of the cut, beginning at the branch
point, or threshold, at s= sp.

Integration of Eq. (2. 17) with respect to & within
the integrand yields a Laplace transform for the
slope function. This is in the form, however, of
an improper integral with an inadequately defined.
singularity at s =1. Therefore it is preferable to
return to the Fourier;transform for the slope
function and to carry out the deformation of the
contour of integration on Eq. (2.14}. Upon doing
this, we find a distributed contribution from the
cut and a discrete contribution from the pole at

Evaluated at the pole this gives

ReI'(-i) = —P Iml",ds
s s-I

Sp

(2. 22)

at the modified rate 1+ReI'(-i). The correspond-
ing strength renormalization constant for the pole,
using Eq. (2.21), is given by

resulting in the required cancellation.
ReI'(-i) is the amount by which the pole is

shifted because of the frequency dependence. The
first term of Eq. (2. 19) combines with the zero-
order expression for G to give the exponential
decay

e '[1-Re 1'(-i)&] = e ' exp[-Rel'(-i) &]

=exp-[1+Rei'(-i)]& (2. 23)
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8
Z '-1=i—ReI'

8Q

1
" ds dImX'

m' s —1 ds
sp

(a. 24) =-v 'Imr(-i~+5)(s '), (a. 29)

~f" ds 1 "ds dImriI"(0) =- —
ll

—
2 Im I"= -—

s &
so s ds

sp

The derivative at an arbitrary value of ~ along
the cut is

where the "first moment" is defined by the aver-
age

8 1 f" ds d Imli —ReI'= ——P80 r s-i~ ds
8p

(a. 3o)

8 1 f" dsi —Rel = ——
i 2

Iml" .s 0 v (s —i&)'
sp

(a. 26)

Only when ~ moves upwards along the negative
imaginary axis above the branch point do we have
i &sp. The principal value sign can then be
dropped and integration by parts carried out to
yield

Because the first moment is one of our main
mathematical tools, it is useful also to have it
expressed in terms of a mean time. We obtain
such a relation from the Fourier transform of the
deviation function [by substitution of Eq. (2. 13)]

Z=1+—1 ds
2 ImI' .(s-1) (2. 27)

If the pole were isolated from the cut, so that
so &1, then we could substitute Eq. (2.26) into Eq.
(2. 24) to find Equation (2. 31) differs from the subtracted version

of Eq. (2. 2) by a factor of Z, . By differentiation
within the integral and by virtue of r(0) =0 we
obtain from Eq. (2.31)

The &» 1 behavior of the correlation function
would then be determined entirely by the pole re-
normalization parameters as

Z -f1+Rex' (-] ) 3v

(2.32)

Substitution from Eq. (2.29) yields therefore

dS=- Rer(-i)&e + —
2 Imr .

v (s-1)
Sp

f"d7' &n,Q(&)

ImI' -i~+ 5

HI. DECOUPLED-MODE THEORY

(2. 33)

Here we have substituted from Eqs. (2.23) and
(2. 27) and expanded only to first order in the
small terms. Equation (2.29) is identical to Eq..

(2.19) under the assumed conditions so &1 and
7»1 because in this case the second term in
parentheses in the integrand of Eq. (2. 19) is neg-
ligibly small compared to the first.

But the renormalization of the pole parameters
do not, . in fact, play an important role in the pres-
sent work because, as we shall see in the next
section, sp &1 and the pole is not isolated from
the cut. Therefore the pole contribution is not
clearly separable from the contributions to the
correlation function coming from the continuous
distribution of spectral strength. We will conse-
quently have no further use for Eq. (2.24) in this
paper. Instead of Eq. (2. 24), a more useful de-
rivative is the initial slope. From Eqs. (2.26)
and (2.25) we have

The decoupled-mode' version of critical dynam-
ics is the lowest order in a systematic mode-
coupling formalism based on the equations of
motion. Because of the small effect being stud-
ied here, this lowest order version will be ade-
quate for our purposes. In its simplest form it
is based on the Kubo ' formula for the transport
coefficient responsible for the critical diffusion.
The current which produces the transport of con-
centration in the binary liquid, or the transport
of heat in the single-component liquid, is the
product of the hydrodynamic shear velocity field
and the scalar order parameter

J'= vQ . (3.1)

(J(1)J'(2)) = (v(1)v(2)) ($(1)Q(2)) . (3.2)

For the Kubo formula we need the space-time cor-
relation function of the current, which in its de-
coupled, or factorized, form is
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P R(P ~ &~ ~ )
(3.3)

The approximation in the final expression is jus-
tified by the critical slowing down. The diffusion
rate is consequently very small compared to the
damping rate of the shear modes. The hydrody-
namic shear viscosity has the critical variation

The Fourier component of the velocity correlation
function at wave number p' and frequency ~' is

1
(v(1 e(2 )~. ,„.=, ,2 (, ,

)

A=3m —6 —61n2=0. 734.

This provides an excellent overall fit to the Perl-
Ferrell curve. The value of A is in fact a com-
promise between the values of 0.95 and 0.60
which give low- and high-frequency fits, respec-
tively, to the Perl-Ferrell curve. The expansion
of the exponential of the power in its logarithmic
form is permitted by z„«1. The computation of
the frequency dependent decay rate requires the
reciprocal of the viscosity which again, because
of z„«1, can be written as

ri(k, o, ~) ' =q(k, o, o) '(1+—', z„in[1 —iA(&u/y„)]) .

'g(0, K, O)~ K (3 4)

where the critical index from decoupled-mode
theory is

z„= 2 =0.054.8
16m

(s.8)

The renormalization group to two-loop order in
the e expansion (where the space dimensionality
is D =4 —&) gives the slightly larger number

z„=0.065 . (s. 8)

It follows from scaling that the wave-number de-
pendence of the viscosity at the critical point is

The diffusion rate p(k, 0, ur) is determined by the
k, (u Fourier component of Eq. (3.2). The product
of the correlation functions thereby becomes a
convolution integral over the wave numbers p' and

p constrained by momentum conservation

p+p'=k. (3.12)

-iy&+ co'= (d . (3.13)

The p component of the order-parameter correla-
tion function decays as exp(-y~f), corresponding to
frequency -iy~. "Frequency conservation" there-
fore requires

q(k, o, o) k '". (s. 7) This causes the logarithmic term in Eq. (3.11) to
become

Similarly, scaling requires the viscosity in the
long wavelength limit to have the critical point
frequency dependence

q(0, 0, (u) ~ (-i(o) '" (s. 8)

where we are neglecting a small correction to the
exponent of O(z2).

For the rest of this section, in the interest of
simplicity, we will work exactly at the critical
point, where v=0. The temperature dependence
will be taken up in Section VI. For the present
purposes we need the scaling function of the var-
iables k and (d which will bridge between the two
limiting cases expressed by Eqs. (3.7) and (3.8)
above. This function has been computed by Perl
and Ferrell' and plotted as their Fig. 3. A con-
venient alternative is the lowest order four-di-
mensional expansion result of the present authors, "
q(k, 0&v) = q(k, 0, 0)[1—iA(~/y, ] "

= q(k, 0, 0)(1 —&z„in[1- iA(&o/y~)]f, (3.9)

where

=ln 1+A —+1n 1 —i

where the dimensionless frequency has been in-
troduced from Eq. (2.12). The effect of the first
term of Eq. (3.14) on q(k, 0, 0) has been studied
by Perl and Ferrell" and will not be discussed
further here. We are interested now in the net
frequency dependence resulting from the second
term when the p, p' values are weighted according
to the convolution integration. At this point it is
convenient to scale the intermediate wave numbers
with respect to the external wave number, so that
Eq. (3.12) becomes p+p'= k/k, of unit magni-
tude. Because y~ varies as k to the power"
3+z„=s, the coefficient of i& in Eq.-(3.14)
becomes (P3+A ~P' ) '. With these Preliminaries
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out of the way we can now substitute Eqs. (3.14}
and (3.11) into Eqs. (3.3}, (3.2), and (2. 13) to
obtain

erties of the spectral function. The deviation of
the first moment from Eq. (3.19) for A=1+»,
to first order in &A, can be estimated from

I'(0) =~ I'(0)
3

ln 1 —i —
3

By virtue of the subtraction at zero frequency,
from now on all quantities of interest will carry
the small coefficient z„/3 =0.065/3 =0.0217. We
therefore simplify the notation by omitting this
coefficient and distinguishing the resulting quantity
by a tilde. The average of a quantity L is defined
by the integral

1 d p (s. 16)

where 8' is the angle between p' and k. The nor-
malizing integral is the decoupled-mode expres-
sion to zero order,

It will be noted that z„«1 has permitted us to
neglect the viscosity in Eqs. (3.16) and (3.17).

According to Eq. (3.15}the initial slope is

1))"(0)=
3 ~ ~ i,~ ) .

From Eq. (3.15}we see that the coefficient in the
right-hand member of Eq. (2. 29) is

-v-'lmi'(-i +5)=z„/3.
Comparison of Eq. (3.18) with Eq. (2. 29) conse-
quently permits us to identify the quantity within
angular brackets in Eq. (3.18) with the first mo-
ment defined by Eq. (2.30). In the next section
we will establish the full equivalence of the aver-
ages defined in these two different ways.

The inverse moment provides useful informa-
tion. The integration in Eq. (3.18) can be carried
out in bipolar (elliptic) coordinates, as in the com-
putations of Perl and Ferrell, if we depart from
Eq. (3.10) and set A= 1.0. For this special case
the integration is done analytically in Appendix A,
yielding

((p'+ p")-')=o. 52o .

The choice of A=1.0, although "unphysical" in
that it is in conflict with Eq. (3.10), is a conven-
ient mathematical simplification which will be
used in the next section for studying certain prop-

~i/2
3 + ~-1~~3 ~i /2~3 +~-1/2~i3

= (I+-'»)&[&'+P"+-'»(O'-P'}J }
3 /3

=(I+-'») (p'+p") i1 -'»-
2 2 p3+p)3

where

= [1+(1—P)-'»]&(p'+ p") '}

0 &P &1.

p is a kind of average value of (p —p' )/(p +p' ).
The inequality follows from the asymmetry intro-
duced into the integrals of Eqs. (3.16) and (3.17)
by sin O'. This factor tends to suppress the con-
tributions from momentum space where p' &p.
As the upper limit corresponds to the point p' =0,
of zero measure, we may fairly estimate P =

~ + ~,
so the fractional reduction in the first moment is
given by

((p +A 'p' ) ') =[1+(1.0+0.5)g»]&(p +p' ) ').
(3.22)

With» = -0.27 from Eq. (3.10) we find a frac-
tional reduction of 9+5/q, which changes Eq.
(3.19) into

&(ps+A 'p' ) ') =0.47+0.03 . (s.2s)

In order to carry out the averaging in wave~
number space required by Eq. (3.16), it is nec-
essary to find a means of doing the integration
for arbitrary values of O. This is in general a
difficult task. Vfe have, however, found that a
high-frequency expansion provides a great sim-
plification and yields satisfactory results. In the
range ~ » 1 we can write the logarithm in Eq.
(3.15) in the form

(s.24)

(s.25)

Thus the leading term in the average of Eq. (3.24)
is»(-if') and requires no integration. The cor
rections to the leading term are given by

I'(0) = 1n(-iG) —&in(p +A 'p' )
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(ln(p'+A 'p "})= 2. 11, (3.26)

where A is given by Eq. (3.10). ln the next sec-
tion we find from our own calculation

(ln(p + A p
' )}= 2. 14,

The constant correction to the logarithm has been
calculated by Perl and Ferrell using a two-step
procedure and was found to be equal to -2.11.
As they did not use an approximation for the vis-
cosity of the form of Eq. (3.9), their numerical
result cannot be put directly into the present
framework. However, to the accuracy with which
Eq. (3.9) is a good fit, we can use their result to
write

in confirmation of Eq, (3.26} and the underlying
approximations. The inequality

-1
(ln(p +A 'p' )) ~ ln P+& P' (3.27)

follows from the convexity of the logarithm and
is evidently satisfied by Eqs. (3.26) and (3.23).

The calculation of the frequency-dependent cor-
rection term in Eq. (3.25) is easily carried out
to lowest order. By virtue of »& 1 the dominant
contributions in p space come from the range
p =p'»1. The distinction between P and p' can
therefore be neglected, which reduces the convolu-
tion integral to

+ P ~ l 1 + Ps

2 t' dp ( 1+A 3 2 1+A'I' "
dN—

2 ln~ 1+ . p3 = — .
~

4&3 ln(1+u) .
p2 ~

.Q gg
.Q ~

4/3 (s. 26)

(The angular average of sin e' is —,'. ) The definite integral is equal to sv/sin(w/3) so that substituting this
and the value of I from Eq. (3.17) gives

1+a '
3 32 1+a' '/

(s. 29)

A further term in the high-frequency expansion for F(Q) is obtained by calculating the error in the high-
momentum approximation used above. This error will accumulate over the entire interval 1 cp'
s(-iQ) ~3, where we will now have to pay attention to the slight difference between p and p'. The error
incurred in the approximation P =p' is found by keeping p +A. 'p" unaltered as well as by introducing a
correction factor p' /p in the integrand. (The latter changes the weighting function from the high-momen-
tum approximation of p' back to its original form where p is not equated to p'. ) The correction to the
previous work is consequently

3 +A-1P13)
& ln 1+- .~

= .~& p+A p'

(s.so)

We obtain the required averages by substituting

p = 1+p' + 2p' cos 8' .
Taking advantage of p'» 1, we have for the difference of the two variables

(3.sl)

1
p —p™,(1-cos'e') + cose'

2P'

, (1 —(cos e'))=, (1 ——,') =1
2P' 2p' 5p' ' (s.32)

where the second line expresses the result of angle averaging (with the weighting factor sin'8'). The
other difference required in Eq. (3.24) is
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1 1 1-4cos ~' cos~'
p' p' p' p'I4

(3.33)

Substituted into Eq. (3.30), Eqs. (3.33) and (3.32) tend to cancel one another, yielding

t p+A p™I
~ ~ ~ ~

-&0 j -iA

4 —2A ~ jp' 4 —2A ],n(-tQ)t~ ]5(2 A ) ln(-t'Q)
-jQ 15I P' 15I -jG 45m' -jQ (3.34)

(3.35)

to logarithmic accuracy. The divergent integral is naturally cut off below at p'=1. The upper cutoff is
determined by the breakdown of the approximation used in the first step of Eq. (3.30) (the expansion of the
logarithm}. Therefore, the upper limit of the integral is (-iQ)t~s. Substituting Eqs. (3.34) and (3.29) into
Eq. (3.25) gives the four-term high-frequency approximation

r(Q) = in(-t Q) —(in(p'+A-'p"))+ I 1+A . 16(2 A ) ln( tQ)

IV. SPECTRAL FUNCTION

It is convenient to express the analytic continua-
tion of I'(Q) to the right-hand side of the cut,
which is required for the various expressions in
Sec. II, in terms of a spectral function f(s) de-
fined by

Iml'(-is+5) =-vf(s) . (4.1)

According to Eq. (3.35) the three-term high-fre-
quency approximant for the spectral function is f(s) = (e(s -p'-A-'p"). (4.V)

~l 1-' 'A-"" =-8 -p'-A-'p" 45
p + p

where the step function is

() 0, x&0

1, x&0.

Substituting Eqs. (4.5} and (3.15) into Eq. (4.1)
gives

f(s) =1-as ti'-bs ',

a= (]+A ')'~'16
37r2

(4.2)

(4.3)

'Ihe positive definiteness of f(s) follows from that
of the step function. Furthermore, every in-
crease in s adds a non-negative quantity to f(s) so
that, according to Eq. (4.7), the spectral function
is also monotonically increasing. Additionally we
see that f(~) = 1 because in this limit the step

, (2-A-'). (4.4}
0.50—

In order to make use of Eq. (4.2}, we need to have
some information on the range of validity of the
high-f requency approximation. In other words,
down to how small a value of s can Eq. (4.2) be
used& This question will be studied in this sec-
tion, by establishing and exploiting the positive
definiteness and monotonicity of -Iml'. The
basic idea is illustrated by the solid curve of
Fig. 1, where we have plotted a three-term ex-
pression of the type of Eq. (4.2) vs s. It will be
noted that f(s) has a zero at s=s, =0.5V. For
s&sc, f(s) would become negative. This is not
permitted by the positive definiteness of the spec-
tral function which we now proceed to establish.

We need to return to Eq. (3.15) and study the
analytic continuation of the logarithm. At the cut
this becomes

0.25-

0
0 0.5 I.0

S
l.5 2.0

FIG. 1. Spectral function f (s) versus frequency vari-
able s =iQ. The threshoM spectral function of Appen-
dix C is shown by the dot-dash curve, while the dashed
curve indicates the interpolating function between the
physical threshold and the high-frequency approximant.
The solid curves labeled 2 and 3 show the two- and
three-term approximants, respectively. The shifted
solid curve labeled s/k =s shows the three-term ap-
proximant at an elevated temperature.
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2(~)"'
(4.9)

where 8 = 1+A '. Integration of this expression
with respect to s and substituting Eq. (3.1V) re-
produces the second term of the right-hand mem-
ber of Eq. (4.2), with the coefficient in agree-
ment with Eq. (4.3). In Appendix B we obtain the
third term of Eq. (4.2) in a similar fashion.

The alternative derivation of the three-term
spectral function provided by Eq. (4.9) and Ap-
pendix B makes it clear that Eq. (4.2) is subject
to the general constraints of positivity and mono-
tonicity. Therefore Eq. (4.2) must not be used
for s & s,. Thus we arrive at the picture of f(s)
vanishing for s less than some threshold value,
and rising monotonically for s above threshold.
Because of the error incurred in the high-fre-
quency approximations the true threshold value
will not necessarily equal sp This comparison
can be made explicitly for the special case & =1.
Then the minimum value of P3+p" occurs for
P =P'= &, so the true threshoM falls at the rela-
tively small value of s = —,'. In Appendix C we
demonstrate that the threshold behavior of f(s)
is proportional to (s ——,')' 2. This rise at thres-
hold is shown by the dot-dash curve in Fig. 1.
The solid curve represents Eq. (4.2) with b not
given by Eq. (4.4) but rather raised to the larger
value 0.10. This adjustment yields the correct
first moment, known from Appendix A to equal
0.52. Substituting from Eqs. (2.30) and (4.1) and

integrating by parts expresses this moment con-
dition in terms of the spectral function as

ds I

-) = = J(,,f(~). (4.10)

1 dsf'

The larger value of b required by Eq. (4.10) can be
considered to take into account the higher order
terms neglected in the truncation of the high-fre-

function becomes identically equal to 1. For some
purposes it is convenient to consider the deriva-
tive, which converts the step function into the
Dirac delta function according to

(4.8)

A simple application of Eq. (4.8) is to the first
high-frequency correction term in the asymptotic
behavior of f(s). As in the derivation of Eq. (3.28},
we can approximate p =p' and immediately carry
out the angle averaging to find

f'(s)= ——&(s-&P )I 2 dP 3
p2

2(~)"' d(SP'), (B . ,}9I +ps)4/s

quency expansion at three terms. Ne keep a,
however, fixed by Eq. (4.3) which for A =1 gives
a = 0.68.

By interpolation between the dot-dash and solid
curve we can generate a smooth monotonic curve
for f(s) which rises continuously from the true
threshoM at s=4 and has all of the required pro-
perties. The extra low-frequency tail adds, how-
ever, approximately 10% to the moment. There-
fore the solid curve has been shifted to the right,
corresponding to a larger value of b and sp, as
shown by the dashed curve in Fig. 1. The dotted,
lowest portion of this curve has been replaced by
the tail extending down to the true cutoff. The
result is, we believe, a fairly accurate represen-
tation of f(s) over the entire range —,

' » s & ~. Both
the dashed curve (with the tail) and the solid curve
(with no tail) satisfy Eq. (4.10) with (s )=0.52.
For the calculations in the next section we will
use the solid curve, regarding it as a reasonable
approximation to the dashed one, and much more
convenient to work with. A further, much rougher
approximation is shown by the solid curve labeled
2, which represents the two-term approximant

f(s) =1-—,1
(4.11)

for s ~ 1. Equation (4.10) yields the rounded-off
value (s '}=0.50. An even cruder approximation,
which is nevertheless useful, as will be seen in
the next section, is the step function (not shown
in Fig. 1)

f(s) =e(s —2) . (4.12)

zr= i ~i+ . „,„)).p+ p
(4.13)

Cauchy's theorem in its subtracted form applied
to Eqs. (4.1) and (4.13}becomes

r =s f(s) . (4.14)
S S+gSp

Equation (4.14) provides a linear frequency depen-
dence in the low-frequency range (0» s «1) with

the slope given by the first moment

p+A ' s
(4.15)

in accord with Eqs. (2.29) and (2.30).
For the range g»1 it is convenient to introduce

The abrupt threshold at s =2 is adjusted to give
the same moment (s ')=0.50.

To demonstrate the effect of the various approx-
imations described above, it is useful to study the
relaxation rate along the positive imaginary fre-
quency axis. %e therefore introduce z = -i. In

terms of this variable, Eq. (3.15}reads
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FIG. 2. Rate function versus frequency variable s
=-iO. The dashed, dot-dash and, solid curves are
based on the one-, two-, and three-term approximants,
respectively, all normalized to the same initial slope.

explained in the preceding paragraph, in the range
z»1 the curves lie successively below one an-
other because of their progressively increasing
spectral deficits. From Fig. 2 it is clear that
for low-frequency or long-time behavior a two-
term or even one-term approximant may be ade-
quate. On the other hand, for high-frequency or
short-term behavior, such approximations may
entail considerable error.

Let us now estimate the error incurred in ne-
glecting the tail of the dashed curve in Fig. 1.
This is the part of the spectral function which
connects its high-frequency three-term approxi-
mant with the true threshold at s = —,'. The change
in going from the solid curve to the dashed curve
is, from Eqs. (4.14) and (4.1V) for z»1,

G7S
rhC = — —Afs

the complementary spectral function

f (s) =1-f(s),
in terms of which Eq. (4.14) becomes

(4.15) fr—8S+
S Sp

Sp

tfS QSr=z -z f (s)„s(s+z), s(s+z)

z 'I " ds=»(1+—I-z f (.)
so) q S(S +Z)

= ln — f (s)
Z QS

so Sp

= lnz+C. (4.17}

—Sp —
2 ps+ (4.19)

where fr is the "tail" portion (i.e., the amount by
which the dashed curve is above the dotted curve).
The approximation in the last line of Eq. (4.].9) is
permitted by the fact that the tail is concentrated
in the vicinity of s =s,. Equation (4.19) can be
compared with the change in the first moment

The approximations are permitted by z» sp and

by the fact that the integral converges over a,

range where s=0(1). The "spectral deficit" is
t

C = on(p'+&-'p")) = lns, + f (s), (4.18)
S

and can also be written as = lns» where s, is an
effecti, ve step threshold. The value of C dis-
tinguishes between different spectral functions
having the same first moment, but different
shapes. GeneraOy, a spectral function rising more
more graduallyfrom threshold will have a larger
spectral deficit. This is readily illustrated by the
comparison of the step function, for which t"
= -ln(s '), with the two-term approximant of Eq.
(4.11), for which C = 1- ln2 - ln(s ~). The three-
term approximant with the same value of (s ') has
an even larger value of t".

The full course of I'vsz for the one-, two-,
and three-term spectral functions is shown in
Pig. 2 by the dashed, dot-dash, and solid curves,
respectively. These are all calculated for & =1
and therefore all have the same initial slope cor-
responding to the first moment (s ') =0.52. As

f, ~h=-ds—
S 2Sp

EES

Sp

(4.20)

But the dashed curve is adjusted so that there is
no change in the moment, which requires

,— =2 - 2-ds =2& ,(4.21)

aC =s ~~ —=0.025.1
~ s (4.22)

This result signifies that the true spectral func-
tion (dashed curve in Fig. 1) would yield a plot
of 1 vs z in Fig. 2 slightly below the solid curve.
The amount of shift indicated by Eq. (4.22} is,

ar(s ') is the change produced by the tail alone,
whi'ch as mentioned above, is 10% of (s '), or ap-
proximately equal to 0.05. Substitution of Eq.
(4.21) into Eq. (4.19) yields
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however, completely negligible, being an order
of magnitude, smaller than 1- ln2 = 0.31, the dif-
ference of the spectral deficits of the two upper
curves of Fig. 2. This serves to establish the
accuracy of the three-term spectral function.

A further check on the three-term approximant
comes from the actual numerical value of the
spectral deficit. With

1, 1 term
(s ')

2 term(s
2, 3 term

(4.29a)

(4.29b)

(4.29c)

substituting Eq. (4.29c) into Eq. (4.27) gives

spectral function. According to the type of ap-
proximant we find

f (s) =as '~'+bs ',
and the threshold value

f (sf=as, ') '+bs, '=1,

(4.23)

(4.24)

&= (s ')z —((s ')z)'+ ~ ~ ~

=-,'[2(s-')z --,'(2(s '&z)'+ ~ "]
=-', ln(1+2(s ')z), (4.30)

we obtain

J f =3a—so ~ +bs, =3-2bso .f dS -1
s

Substituted into Eq. (4.18) this gives

(4.25}

where the final line is suggested by the require-
ment of logarithmic asymptotic behavior. Equa-
tion (4.30) yields a good fit to the solid curve in
Fig. 2 and is the approximation used by Ohta. "
It corresponds to the single-step spectral func-
tion

C = (in(P'+A. 'P "))= lns, +3 —2—
Sp

(4.26)
f(s) = ,'e(s —sg—, (4.31)

To compare this result numerically with the Perl-
Ferrell" value we have to take into account the
fact that all of the above discussion has been based
one =1, while Eq. (3.10) gives the true value as
A=0.734. As explained in Sec. III this results in a
10% reduction in the moment which happens to
correspond to the difference between the dashed
and solid curves in Fig. 1. Therefore we can
use Eq. (4.21) to obtain the required increase in
b as

rR =

astro

b,r (s ') = 0.03 .
This raises b from 0.10 to 0.13. A more precise
calculation gives b = 0.14 and a new threshold at
s,= 0.65, as shown in Fig. 1 by the dotted exten-
sion of the dashed curve. With these parameters
Eq. (4.26) gives C =2.14, in good agreement with
3 &0.60- ln&=2. 11, the Perl-Ferrell value as
expressed by Eq. (3.26). As the latter was ob-
tained in a completely different way, this check
is a convincing indication of the reliability of our
three-term approximant. With this background,
we proceed in the next section to use the three-
term approximant for calculating the time-de-
pendent deviation function.

We conclude this section with an additional
criterion for distinguishing the different curves
of Fig. 2. From Eq. (4.14) we obtain the moment
expansion

where s,=2 '(s ') '=1. The requirement f(~) =1
can be satisfied by the addition bf a second step
at s =s,. If s~»sp the first moment will be not be
appreciably affected. The value of s, can be deter-
mined from the spectral deficit. According to
Eq. (4.18) we have

C =-,' 1n(s, s,) . (4.32)

Setting this equal to the Perl-Ferrell value of
C=2.11 and substituting sp=1 from above gives
s, = exp 4.22 = 68.0.

V. TIME-DEPENDENT CORRELATION FUNCTION

With the above results we are now in a position. -

to calculate the time-dependent correlation func-
tion based upon the three-term spectral function

f(s) = 1-0.68s 'i'-0. 14s ' (5.1)

B(v) =
z (e'aG) =e' ' ds f(s)e ".

d72

The substitution of Eq. (5.1) into Eq. (5.2) gives
integrations which can be carried out by means of

.the integral exponential function

(5.2)

"dt
Ei(x) = P —e'

I;
(5.3)

for s & so=0.65. According to Eq. (2.1'I) the curva-
ture function is

f'= &s ')z --,'(s ')z'+ ~ ~ ~

where

(4.27)
and the incomplete X' function,

)'(n, ) ) =f

dt's

e'. ' (5.4)

(4.28)(.-)=.f,'„'., y(.).
Sp

The second moment depends upon the shape of the

Thus~

$(v)=e'- e 'o'-0. 68~ ')'Z (-', , sr) +0 14Ei(-s, .}.T
(5.5)
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The two-term approximant of Eq. (4.11), with the
threshold now at so=1, leads to the simpler ex-
pression

a(~) =~ '+-Ei( ~-), (5.8)

'Ihe even cruder step function f(s) =e(s —2) gives

B(v)=r 'e ' (5.Va)

The weakened step function of Eq. (4.31) gives

(5.Vb)

dQ
= T —2(e " —1) + q. ln2

Q

=v[Ei(-~)+ in2]+e '-1, (5.8a)

where the last line follows from an integral by
parts and the substitution of Eq. (5.3). Equation
(5.Vb) leads to.

The first three of these functions are shown in
Fig. 3 by the solid, the dot-dash, and the dashed
curves, respectively. It will be noted that the
cruder approximations overestimate the curva-
ture, but that the error vanishes for & &1. It is
interesting further to note that if we had only Eq.
(5.6) and (5.'I) and not the more complicated ex-
pression of Eq. (5.5), we could nevertheless get
a rough estimate of the location of the solid curve
by extrapolating down from the two other curves of
Fig. 3.

The deviation function is calculated by substitu-
ting Eq. (5.1) into Eq. (4.1) and Eq. (2.19). We
carry this out first for the simpler one- and two-
term approximants. The step function gives

e~hG =
ds (e-"-"'-1)+rln2

(s -1)'

e'AG =~7 1nr ——', (1- lny), (5.8b)

where lny = 0.5772 is Euler's constant. Similarly
for the two-term spectral function we find

e'&6 =e' Ei(-r)+ r —in' - lny. (5.9)

VI. TEMPERATURE DEPENDENCE

The temperature dependence of the effect studied
in the preceding section is readily visualized in
terms of the three-term spectral function of Eq.

Unfortunately, it is not possible to carry out the
necessary integration for the three-term spectral
function in terms of known tabulated functions.
Therefore, we have had to resort in Appendix D
to a series expansion. In Fig. 4 one-, two-, and
three-term results are exhibited by the dashed,
dot-dash, and solid curves, respectively. Just
as in Fig. 3, it is also apparent in Fig. 4 that the
cruder approximants overestimate the effect.
The more refined three-term spectral function
gives a curve for the deviation function which
lies above the other two curves. It is this curve
which is the most reliable one according to the
discussion in Sec. IV and which we compare in
Fig. .5 with the experimental data of Burstyn,
Chang, and 8:ngers. ' This data has been gathered
into bins of width &7 =0.1. The arrow bars show the
the standard deviations for each bin. Because of
the factor e' the standard deviation is larger for
the bins corresponding to larger values of 7'. lt
is evident that the theoretical curve gives a good
representation of the experimental data. It is
worth emphasizing that this agreement has been
accomplished zvithout any fitting parameter what-
soever. The two parameters of the theory, z„and
&, have been fixed by information from other
sources, totally independent of the experiment
of Burstyn et aL '

0
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I

0.6 0.8 l.o l.2

B(T) -Ol

-0.2
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I

0.8
I
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FIG. 3. Curvature function versus reduced time v.
The dashed, dot-dash, and solid curves are based upon
the one-, two-, and three-term approximants, res-
pectively.

FIG. 4. e~ times the deviation function versus re-
duced time y. The dashed; dot-dash, and solid curves
correspond to the one-, two-, and three-term approxi-
mants, respectively. The solid curve labeled It/&
=2 is based upon the three-term approximant at an el-
evated temperature.
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(4.2). Both coefficients a and b increase with
rising temperature, as shown in detail in Appen-
dix E (as a function of x, the reciprocal of the
correlation length). As a conseq. uence, the thres-
hold of the spectral function recedes toward higher
frequencies, with the asymptotic limit staying
constant, however, at f(~) =1. The spectral func-
tion for K/k =2 is shown by the right-hand solid
curve in Fig. 1. The threshold has receded from
so.= 0.65 out to so= 1.28. This can be understood
qualitatively from the fact that as ~ increases the
characteristic frequency for the viscosity varies
as x'. The reference relaxation rate for wave
number k varies, however, as ~k'. The threshold
frequency variable s, can be expected therefore
to vary as a linear function of x /II, which in turn
implies for the first moment

(s ') '=2(1+b,a'/k'), (6.1)

where we have rounded off the re =0 value of (s ~)

to 0.50. The value of b, follows from Appendix E,
or alternatively and more directly from the de-
tailed study of (s ~) in Appendix A. The two de-
terminations are consistent for & =1 and yield
b, =4.8, which substituted into Eg. (6.1) gives
(s ') =0.24 for ~/u =-,'.

Proceeding now just as we did for ~ = 0, we ob-
tain for z/k =2 the uppermost curve in Fig. 4 from
the series expansion of Appendix D. This curve
is replotted in Fig. 6 along with the data of Bur-
styn, Chang, and Sengers' for the nearby value
of z/k = 0.42 (corresponding to T -T, = 11.7 mK}.
It can be seen by comparing the curves in Figs.
5 and 6 that the theory predicts a decrease of ap-
proximately 88'%%uo in the maximum deviation as a
result of the rise in temperature. It is evident
that the data are in very good accord with this
prediction.

Although the above type of computation can be
carried out for any temperature, it would be use-
ful to have a simple measure for the temperature

0.2 0.4
T

0.6 0.8 I.O l.2
I '

I

O—-2
C5
Cl
4P

dependence of the deviation. Burstyn et al.'
adopted for this purpose the curvature of the best-
fit parabola. %e have found, however, that this
approach can be misleading, as it tends to de-
emphasize the "hook", or steep left-hand portion
of the curve for e'bG. Therefore, we prefer to
characterize the curvature by the integral of the
deviation function over the interval 0~ w ~ &„
where &~ is the (first) zero of bG. The mean
value of the curvature function B [Eg. (5.2)] is
related to the integral by

r e
sod~= ——„'vg(&)

0
(6.2)

the "double tilde" indicating the simplification of
dropping the factor e'.

Because the zero of 4G plays an important role
in our work it is useful to exhibit the full course
of this function. This is shown for ~=0 in Fig. 7,
with the zero occurring at v, =1.37. Although Fig.
V is based on Eg. (5.10}and the simpler two-term
approximant, it serves to illustrate the general
features of &G. (The more accurate three-term
spectral function, according to the series expan-
sion of Appendix D, gives 7', = 1.49.) It is evident
that the area, under the curve for 7 ~ &, is suffi-
cient to balance the integration for 0~ T v'„so
as to satisfy the zero-frequency sum rule of Eq

I, I, I, I I

FIG. 6. e~ times the deviation function versus reduced
time y at the elevated temperature such that the corre-
lation length is g times the wavelength of the fluctua-
tion. The experimental data are from Ref. 6.

0
0
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FIG. 5. e~ times the deviation function versus reduced
time v. The experimental data are from Ref. 6.

FIG. 7. Deviation function versus reduced time v for
the two-term approximant, exhibiting the zero at v~
= 1.37.
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(2.10). This sum rule enables us to relate the
integration required in Eq. (6.2) to the rest of the
function according to

r
00

g
00

46dr = — AG dv' = —— AGTde
(r&,

~G~d~ = (~&-'(s-'& -(6..3)

0

-0.05

Here, after introducing an average 7', defined for
w~ &„ we have approximated the integral by the
actual first moment of 7. This is justified on the
basis that the contribution from 0- 7' ~ 1» to the
moment is small compared to the contribution
from r~ r, Th.e final form of Eq. (6.3) follows
irom substitution of Eq. (2.33). Identifying Eq.
(6.3) with. Eq. (6.2), we obtain the temperature
depe'nde nce

(B&~&,'&s '&. (6.4)

(Here we have introduced the further assumption
(7'& ~ r1, dictated by the idea that 7', sets the over-
all ti.me scale. )

Because of the rather rough approximations
made in deriving (6.4), it is desirable to confirm
it by an alternative derivation. This is obtained
by considering the Laplace transform

Zg= due ~dG(v).
0

(6.6)

According to Eq. (2.31), the integral is equal to

I'
(1-z)' ' (6.6)

and has the initial slope

d4g ,

'dX' 1
gg I dz

(6.7)

Equation (6.6} is plotted as the solid curve in
Fig. 8 and it will be noted that the function exhi-
bits a minimum atz +»'. This is because the
integral of Eq. (6.2) is approximately simulated
by Eq. (6.5). With g = &,' the region 0~ ~ ~ r,
contributes negatively while at the same time, be-
cause of the exponential factor, the positive con-
tribution from 7'~

w» is suppressed. Combining
these considerations with the initial slope of Eq.
(6.'I), we obtain

(ag) „~-~,'(s '&. (6.8)

Identifying Eqs. (6.8) and (6.2) leads again to Eq.
(6.4).

In order to make use of Eq. (6.4) we need to es-
tablish the temperature dependence of the separ-
ate factors r1 and (s '&. The latter is specified
by Eq. (6.1). The required information on the
temperature dependence of &» is obtained from the

-0.Io-

FIG. 8. Laplace transform of the deviation function
versus frequency variable g= —jQ. The shift of the
minimum to the right at the elevated temperature
(dashed curve) reflects the decrease in v ~.

two-term truncation of Eq. (4.30),
I'= (s '&g —((s-')g)'. (6.9)

Substituting Eq. (6.9) into Eq. (6.6), we find to
second order in z

ag=-g&s '&[I —(2+(s '&)zj. (6.10)

Identifying z, with Y'~ and raising it to the fourth
power gives the desired approximate proportion-
ality

v, ~(1+2(s '&) '. (6.12)

Equation (6.12) has the considerable advantage
that it reduces the entire problem of the temp-
erature dependence to the variation of a single
parameter, the moment (s '). The dashed curve
in Fig. 8 exhibits the shift in ~, described by
Eq. (6.11). It is drawn for (s '&=0.24, one-half
of the x=0 value. Because the minimum is shifted
in the direction of increasing g the value of (hg') „
is not decreased by the full factor of one-half.
This illustrates how the shift of &,' tends to coun-
teract the temperature dependence of (s '&.

Substitution of Eqs. (6.12) and (6.1) into Eq. (6.4)
gives for the temperature dependence of the
curvature

88 "»5
B~ g -4(s-1& ~

1+2(s '&

1 1/2
(s ') '+2 2+5 (g'/0') '

It is convenient to normalize the curvature to its
g= 0 value, Bo, by the ratio Kg=8/B, . Thus we
obtain

Equation (6.10) mimics the true g dependence of
4g shown in Fig. 8, in that the linear behavior
for 0 ~z &&1 is modified by the second term so as
to produce a minimum at

(6.11)
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ments on carbon dioxide near the critical point.
We conclude by remarking that the above calcu-

lation makes the classical fluid share the common
characteristic of nonexponential decay of fluctua-
tions, which has been already calculated for liquid
helium, antiferromagnets, and isotropic ferro-
magnets. The deviation from the exponential
shape is a crucial point in critical dynamics,
showing the existence of non-Markoffian effects.
This should serve as a warning to recent attempts
to fashion a theory for critical dynamics by ig-
noring the non-Markoffian effects at every stage
of iteration of a real space renormalization group.
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1+b, (K'/&') ' (6.14)

with pa=5t/2 =2.4. Equation (6.14) is plotted in
Fig. 9 and provides the desired continuous des-
cription of the temperature dependence of the
curvature. Substituting K/)t =—,

' into Eq. (6.14)
gives E,=-', = 0.625, which can be compared with
the 38% decrease found from comparison of Fig.
6 with Fig. 5. [This close agreement is some-
what fortuitous because the factor exp~ is lacking
from the work leading to.Eq. (6.14). Further-
more, a factor of ~,' should be taken into account
when comparing the maximum deviation with the
curvature. ]

VH. SUMMARY

We have shown how the frequency dependence
of the viscosity leads to a significant frequency
dependence of the diffusion coefficient. This
shows up as a deviation from pure exponential de-
cay for the time-dependent correlation function of
the concentration fluctuations. Our calculated de-
viation compares mell with the measurements of
Burstyn, Chang, and Sengers' at the critical
point, where the correlation length is infinite.
As the temperature is raised, the correlation
length becomes finite and the effect decreases as
well. Our computed temperature dependence for
the curvature of the semi-log plot of the correla-
tion function agrees mell with the observed temp-
erature dependence. As in the case of T = T„ the
agreement for T &T, results without the introduc-
tion of any fitting parameter. It is also worth
noting that the frequency dependence of the vis-
cosity, "which forms the backbone of the calcula-
tion, may have been detected in recent measure-

Fig. S. Curvature versus &/k. K is the temperature-
dependent correlation length and k is the scattering
wave number.

APPENDIX A: TgE FIRST MOMENT

In this appendix we calculate the first moment
at T =T„and the first change that sets in when
the temperature is raised above T,. To permit
analytic evaluation, A will be set equal to 1 in
this section. The ~-dependent generalization of
Eqs. (3.15), correct to O(K'), K being the inverse
correlation length, is

(Al)

where all momenta are scaled to set the external
momentum equal to 1. v is also measured in
units of k. Note that P' has not acquired any w'

correction, because the Kawasaki function does
not have a term of O(K'). The scale for the fre-
quency dependence of the viscosity, however,

'

changes with temperature as O(K') and hence P"
is altered by the factor [1+ti, (K'/P")]. The co-
efficient g, will be determined later in this ap-
pendix. At a finite correlation length $ =K ',
Eqs. (3.16)-(3.18) generalize to

p +K p
(A2)

4v p +K p' 3 1+K

7F , +O(K'), (A 3)

and

We acknowledge support from the National
Science Foundation under Grapts PHYVV-27084
from the Institute for Theoretical Physics, Urd. -
versity of California, Santa Barbara, and DMHV9-
011V2, 79-00908, and 79-10819 from the Univer-
sity of Maryland. We are also indebted to Dr.
H. Burstyn, Dr. R. F. Chang, aud Dr. J. V. Sen-
gers for numerous stimulating discussions.



l526 JAYANTA K. BHATTACHAR JKK AND RICHARD A. FKRRKL I.

1 1fr(0)=, „,, = —. A4p'+ p" [1+ n, (~'/p "}]
[&(a) is the Kawasaki function. ]

%e first study the v=0 behavior. In this case
I= w'/8 and we have

n' /8 1 1 I' d p sin 8'
1+x s 4v J pp" p +p"

, ( 1 d'p sin'8'

1 1 d3p' sin 8'
8 s 4m pp' p +p' (A5) q,

t
d'p sin'8'p'

J pRp p2 (p3 p p3}2

'The convenient way of evaluating such integrals
is the introduction of the bipolar coordinates. %e
write Now,

(A14)

p =p' + 1 —2p cos8 (A6)

and we use it to eliminate the angle variable by

' d'p p' sin'8' 18m 32 ln2
4g ~ p'p" (p'+ p' ) 105&3 315 420

p' sin8' de' ~p dp (AV)

and

—0.343, (A15)

(1 -p'+ p "}'
4p p2 (As)

1
t d 'p sin'8' 99 ln2 1353 16&3m

4v J' p'p ' p'(p'+p") 105 2520 105

The further substitution of

and

(Asa)
Thus ~

—0.946 (A16)

puts Eqs. (A8) and (A5) into the form

(A9b)
r' 1

8(1 2
—= 0.646 —a'(0.343 q, + 0.946) + ~ ~ ~ .8 1+~' s

(A17)

and

("-1)(1-y')
(x -y)' (A10)

To determine g„we need the frequency de-
rivative of the nonlocal viscosity q. The first
variation of this derivative with v at zero fre-
quency is

1 "" dx t' (x'-1)(1-y')
8 s ., x J, (x'-y')(x-y)' x'+3y'

t" x'-1 I' (1-y')(x+y)'
x 0 x —$ x +3/

s7j(k, Ic, (0) 1 t d p p2(p2 —p' ) sin g

9(-iv) 0 4w J p p' (p +p' )

d'p sin'e(p'- p")'
» ~ p'p" (p'+p")'

(A11)

The resulting integrals can now be evaluated by
elementary techniques to yield %e find

+0(~'}. (Als)

giving

= 0.646,

1 4w. 81n2 29 sv3 ln2 117&3
8 s 15 15 140 45 1440

" d'p (p'- p")'sin'e
4 . p" (p"p")'

m'
= —+ — ~ (2m+ 6 +4) —0.0844,

8 3'
where G (Catalan's constant) =0.916 and

(A19)

= 0.52. (A13)

dx x tan x.=0.505.
1

We turn now to the temperature dependence. The
first effect of a finite correlation length is found

by linearizing Eq. (A5) in e to get
Equation (A19) agrees with the result of Perl and

Ferrell, "whose notation we are using here.
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1 ( d p sin'e(p'-p'2)' 1V 9m' 3v' 221 2V &158 2
4m ~ PP' (P+P') 3 16 2 15 8 ( 63 75 4

1 ( 4g 1 11' 3 "28 12 1 4@i 2
+ —

i
2G+2J- — ——+ ——+ — 2G+2J'+ i+—

2 ( 9 ~ 15 8.15 175 9) 3

= 0.342. (A2o)

Cons eq,uently,

st}(u, «, (o)

s(-i(o}

yielding

(A21)
p, ' 1p' =p ———s 2 4p,

(BV)

and obtain from Eq. (83}the required connection
in descending powers of P, as

g, =8.10. (A22)

7r2 1
~ ~= 0.646(1 —4.76 «'+ ~ ~ ~ ),8 s (A23)

the desired initial temperature dependence of the
first moment.

With the substitution of Eq. (A22), Eq. (A1V) gives,
to 0(«),

Substituting Eq. (B7) into Eq. (B5) and carrying
our the angle averaging (weighted according to
sin'8' = 1 —p,") yields

(
ds ' 1 &p, ') 1 &-1 7= sp. —,~. ~ ~. l, ,4+,4 ~'&.)

1 1
6p, 6op,

'

APPENDIX B: HIGH-FREQUENCY SPECTRAL
FUNCTION

-4/3 -2s +
15

s (B8)

f'(s) =&6(p'+p '
s)& . (B1)

For a fixed value of p, ' = cosa' we can eliminate
p in terms of p' by means of

In this appendix we present an alternative de-
rivation of the three-term spectral function of
Eq. (4.2). For simplicity we set A =1, for which

Eq. (4.8) becomes "1
2 2du'(1- u") = —.

3I

Upon substitution of Eqs. (B8) and (3.1V), Eq.
(B1) therefore becomes

(B9)

by virtue of Eq. (B6). The average occurring in
Eq. (Bl) is connected to the above angle averaging
by the factor

p pI +2pl pl + 1 (B2)

The Dirac delta function of Eq. (B1) then imposes
the approximate constraint

s =2p" +3p"p'+ 2p'(1+ p, ")
26(2)'i' 16s"'+—,s'

9m 45m
(Blo)

from which we obtain

dp'
-6p"+6p'g'+-'(1+ p,")

The integration over the delta function brings in
the reciprocal of Eq. (B4) so that to three-term
accuracy the integrand for the remaining angle
averaging becomes

,2(ds ' 1 p, ' 1 (-5 27
6p" 2p"' p" i(24 ' 24"

(a5}

It remains to eliminate P' in terms of s. For
this purpose we introduce

Integrating and imposing the boundary condition
f(~}=1 gives consequently

in agreement with Eqs. (4.2), (4.3), and (4.4).

APPENDIX C: THRESHOLD SPECTRAL FUNCTION

According to Eqs. (4.V) and (3.1V) the spectral
function with A. set equal to one is

f(s) =&8(& -p'- p"))

, „sin 8'8 (s -p -p' ) .dp 2, 3,3

m PP" (Cl)
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(C2a)

and

(c2b)P =&~ »1~
where 1=k/i'6, and work in the range p, «1. If
a is the angle between P; and 1

(1+p, cos n)'

(I+ps)'

To find the threshold behavior we introduce the
variable p; in terms of which

p=21+ 2p,

(1+p,)'+ (1 —p, )'=2+ 3p', (1+cos'n)+0(p', ),
and consequently

e(s —-', [(1+p,)'+ (1-p,)']}
=e(4s —aop,'(1+cos'a)},

where M =s -—,', we find

8
I'Sh,s/3(1+ cos2a)] ~

f(sj=, ( sin'sds JW 0 0

s ~, /s
sin'n da5v' 0 ~3 I+cos'a)

(c5)

(cs)

P1 sin G —2P1 cos &

(1+p, )'

In terms of the variable p„Eq. (6.1) becomes

4 d'p, p,'sin'n —2p, cosa
(S)=

(I+p.~ (I —p, ) (1+p,)'

(c3) 1024 0 2 ' sin'n dn
45' v 3 0 (1+cos a) /

4096
( ) /2

135&3m'

= 1.775 (&s)6/' (c7)

Noting that

(c4) This is the required threshold behavior of the
spectral function and is shown as the dot-dash
curve in Fig. 1.

APPENDIX D: CORRELATION FUNCTION

In this appendix, we present the results for e'G(r), when the full three-term spectral function

f(s) =1 —a/s'/' —b/s

is used in Eq. (4.2). The integration over s can be performed in closed form for the first and third terms
of f(s). Unfortunately, this is not true for the second term and we have to resort to a series expansion.

The most convenient way of handling this is to consider the contributions of this term to the second de-
rivative:

d " ds e "'"-1, " e"
1)'

SO SO

e' S(}

~2/ 3 r(2) ed' JI s-1/se-s~ds
0

(, ) g r" ' ', /, ,g (rs,)"(-1)"

-2g3' 74
=r(2)r-"') I.+r+ +

6
+

24
+

—so '[2+ (2 ——', so)r+ (-', ——', so++, so)r'

Integrating twice,

3 3 2 1 3i 3 I 1 1 3 2 1 3 1 4i 4
+ 'L4 —1o So+ 16 So 22 So/r +116 1o So+ 22 So 22 So+ 112 So)t + ' ' '] ~

(D 1)

- (s-1)&ds e —1, 4&3 9 9 9 2 3 3 3 4
P J" s1/2 (, 1). -«6) (.+26 140 +260 r +1664 +

S(}

6
I 1 1 3 2 1 3 1+( — S + S — S + S ) +''i 16 10 0 32 0 22 0 112 0 3P

+ Cv', (D2)
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where

ds g 'o ds
s s 1 3 p s s 1

(D3)

The integrals

and

P [ds/(s-I)'](e ''"-1)
Sp

P J" (ds/s)[e " '"—1)/(s -1) j
Sp

have already been evaluated in Sec. V. %e are thus led to
OO S

- (6"1)v
P ds f(s) 1, ——=[(1-b)r —b] Ei((1-s,)7)- (1—

S

(4+ 4~++146 ~ + 6663

@
(1-Sp)&

b) + b ln ' + be'Ei(-s67')
1 —sp Sp

3 3 4T +1664' + '''}

+CESp 4 7' + 2 S Sp + g 5 Sp+ 16 Sp

5
11 3 3 2 1 Si T

+(4 —S + —S ——S )10 0 16 0 22 0~ 20

=E(r),

+(—- —s+—s - —s+ —'s) + ~ ~ ~ ] —aCrI 1. 1. S 2 1 3 1 4w

16 10 0 32 0 22 0 112 0~ 30

with C given by Eq. (D3). Equation (2.19) and Eq. (4.1) yield

e' h,G(v) =E(v) C+r,

where

(D5)

0
~Sl

+&3 tan, f, +3s, a., iso"'
2+Sp

For a =0.68, b =0.14 and s, =0.65, this function has been plotted in Fig. 5 and as the lower solid curve in

Fig. 4.

APPENDIX E: SPECTRAL FUNCTION TEMPERATURE DEPENDENCE

The three-term spectral function at a finite correlation length is calculated in this appendix fram a high
frequency expansion of the diffusion coefficient. The temperature-dependent generalizations of Eqs. (3.15),
(3.16), and (3.1V) have been given in Appendix A. The generalization of Eq. (3.25) reads

I'(k, &)=in(-i&) -(In@6+4 'p" [1+1},(~'/p")]])

pS++ 1pfS ] + q g2 pf2
(EI)

To obtain the high-frequency expansion for the last term in Eq. (E1), we proceed exactly as in Sec. III.
The term in (-iA) ~ is changed only by the normalization factor T. The coefficient of ln(-iQ)/(-i&)
acquires additional z dependence coming from the expansion of (p'+v') ' and the argument of the loga, -
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rithm. Thus,

1" ( 11)-1 ( 'i1) (1 [p A-t ~a[1 ( a ~ )])) (2 A ')
45 iA

w'I ' (q,A '
t d'p p sin'8' 1+A ' ' d'p p'sin'e'

-i A 45 iQ-

The v-dependent spectral function consequently is

2I-' (1+A-~)t/af(s)=1-—,(, — (4'5 (2-A ')++~'[A 'g, —(1+A ')]}.
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