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In this paper we consider the problem of computing the quantum-mechanical corrections to the thermodynamic

properties of systems whose two-particle interaction may be described by a Lennard-Jones 6-12 potential. Using a
procedure first developed by Feynman, together with physical arguments, we develop an effective two-particle 6-12
potential which includes quantum-mechanical corrections. Using this potential in conjunction with the theory of
corresponding states we compute the quantum effects on: (i) the second virial coefficient, (ii) the critical-point
location, (iii) the surface tension, (iv) the critical-point amplitudes and exponents, (v) the correction to scaling

amplitudes and exponents, (vi) the liquid-gas and solid-liquid phase boundaries, and (vii) the Debye temperature at
the melting point. In all cases there is good qualitative and frequently quantitative agreement with experimental

results. The theory is limited to "high temperatures" since exchange effects are not included.

I. INTRODUCTION

The influence of quantum-mechanical (QM) ef-
fects on the thermodynamic properties of nearly
classical liquids is a long-standing question which
was first addressed in the pioneering work of
de Boer et al. ' ' The approach used by these auth-
ors involved the examination of corrections to
corresponding-states theory as a function of the
dimensionless QM parameter y (y =h/gg~e,
~ = mass, and g and g measure the energy and
length scale of the potential energy) for the rare
gases. By plotting experimentally obtained values
of the reduced critical temperature (kT, /e), molar
volume (V, /No', N=Avogadro's number), and
pressure (p,'g'/e) as a function of Z, it was pos-
sible to predict the location of the critical point
of 'He. This approach of examining trends in
experimental data as a function of ~ has also been
extended to include the transport properties of
the rare gases. ~

Attempts to compute QM corrections to.the
thermodynamic properties of simple liquids have
met with limited success. In the case of neon
(X = 0.577), thermodynamic perturbation theory
may be used to obtain excellent agreement with
experiment. ' Unfortunately, perturbation theory
is sufficiently slowly convergent that this approach
is not readily applicable to liquids such as H„
~He, and He where the values of ~ are much larg-
er (Table 1). Attempts have been made to avoid
power-series expansions in ~ through the intro-
duction of model hard-core equations of state."
While this approach gives good qualitative agree-
ment for the location of the critical point as a
function of g, it suffers from the strange model
dependence that one-dimensional hard-core models
seem to give better results than three-dimensional
models. In addition, it is difficult to apply this
method to calculate thermodynamic properties

other than the critical-point location. More re-
cently, Nasanow elan. '"have computed the zero-
temperature properties of quantum liquids for
realistic two-body potentials. The methods and
results are, however, not generalizable to the
case of finite temperatures near the critical point.
Thus, in spite of the rather long history of this
problem, there is not at present any sufficiently
quantitative finite temperature theory which would
yield estimates of QM effects on the thermodynam-
ic properties of, e.g. , H„He, and 'He. This
question assumes added relevance with recent
development of a quantitative theory of critical-
point phenomena" for classical fluids and the
subsequent use of this theory in the interpretation
of the results of high precision experiments on .

'He near its critical point. "
In this paper we present a theory which is cap-

able, in a very algebraically simple manner, of
providing a qualitative and frequently quantitative
description of the ~ dependence of a wide range
of thermodynamic properties. All of our results
are based on the assumption that the bare two-
body Lennard- Jones 6-12 potential may be re-
placed with a QM corrected Lennard- Jones poten-
tial whose parameters are temperature (Z') and y
dependent. The theory of corresponding states"
is then used, in conjunction with the corrected
potential, to compute the ~ dependence of thermo-
dynamic properties. The theory, quite frankly,
lacks the mathematical rigor that we would prefer.
However, the approximations which are invoked
all have a sound physical basis and the subsequent
results often agree remarkably well with the ex-
perimental data.

The remainder of the paper is organized as
follows: Section II describes our basic approach
to the problem and motivates the approximations
we shall use. In Sec. III we apply our theory to
the calculation of the X dependence of the second
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virial coefficient, critical-point location, and
surface tension on. the coexistence curve for a
number of simple liquids (Table I). Section IV
contains an analysis of the ~ dependence of the
liquid-gas coexistence curve and includes a quan-
titative estimate of the X dependence of critical-
point exponents, amplitudes, and "corrections-to-
scaling" amplitudes and exponents. In Sec. V we
apply our theory to the solid-liquid coexistence
curve and the Debye temperature of quantum solids
near the melting point. Finally in Sec. VI we sum-
marize our results and discuss possible refine-
ments of the theory.

all QM effects in e and o a system may be con-
sidered as classical. The most glaring defect
of the above approximation is its inability to in-
clude exchange effects; as a result our results
become increasingly suspect as P*- 0. Fortu-
nately, however, there is a significant range of
temperatures c g*, where exchange effects are
rather unimportant and the theory is capable of
yielding meaningful numbers.

To determine the functions & and g we use the
procedure, first developed by Feynman" (see
Appendix A for an outline), of replacing the bare
potential with an effective potential given by

V(r) = 4m[((r/r)" —(o/r)'], (2.1)

where g and g are given in Table I."" While
such a potential certainly represents an overly
simplified approximation, "it does permit a rig-
orous formulation of a theory of corresponding
states using classical statistical mechanics. "
Thus, if we define a reduced temperature, pres-
sux'e, and molar volume by

r*=kr/~, f*=P~'/~, V*=V/Zo',

where 4 is Boltzmann's constant, then correspond-
ing-states theory would predict that all the sub-
stances listed in Table I would have the same re-
duced equation of state and thus the same critical-
point values p,*, P,*, and p,*. The systematic
deviation from constancy of these reduced quanti-
ties (Table I) as A. increases is indicative of the
increasing influence of QM effects.

Also listed in Table I is the dimensionless quan-
tity P*, V*,/~=P, V,/kZ'„which is much less sen-
sitive to changes in X. This insensitivity provides
a significant motivation for our essential assump-
tion that QM effects may be accounted for by the
replacement e 'i (7'*,Z-) and o - o (7'*,A.) in Eq.
(2.1), i.e. , we shall assume that the major effect
of QM corrections is to produce an effective po-
tential of the same form as the bare potential but
with temperature and g-dependent parameters q

and o (hereafter an - quantity indicates that QM
effects have been included in its evaluation). This
assumption guarantees that P,*V*,/Z',* is independ-
ent of X which, as seen in Table I, is a rather
reasonable approximation. In addition, our ap-
proximation allows us the full use of all the re-
sults of corresponding-states theory and classical
statistical mechanics, i.e., once we have lumped

II. THEORETICAL DEVELOPMENT

As mentioned in Sec. I we shall assume, for
the materials of interest, that we can consider
the atoms or molecules to interact via a Lennard-
Jones 6-12 potential given by

V(r) =
]

—
f

V(P'f)e- ~'-"~ d't',
~m)

(2.2)

e/e = 1 —14.3x '+ 104.9x ',
0'/o' = 1+ 3.77x

(2.3)

(2.4)

and & =no'. The geometry and length scales in-
volved are illustrated in Fig. 1. An outline of the
calculation may be found in the Appendix. In
arriving at Eqs. (2.3) and (2.4) we have consistent-
ly assumed that z» 1 and r =&0. Since Eq. (2.2)
implies that V(r)- V(r) as c.-~, we may regard
Eqs. (2.3) and (2.4) as the leading terms in an
asymptotic series. In the applications to follow
it will be necessary to deal with situations where
the condition g» 1 is not satisfied and a modifica-
tion of Eqs. (2.3) and (2.4) is necessary. A
straightforward attempt to include higher powers
of z ' is both mathematically cumbersome and
of questionable utility. We therefore have chosen
to use physical arguments to arrive at reasonable

where ~ = 3mk 7'/k2= 3(2v)'T*/A, 'o2. This potential
contains the QM corrections through the Gaussian
average whose width is determined by 0. . If we
attempt direct evaluation of Eq. (2.2) using Eq.
(2.1) we find that the integral diverges for all ~
due to the singular nature of V(r) as r- 0. We
can, however, overcome this problem by noticing
that in the high-temperature limit (7'-~) our
Gaussian average approaches a Dirac 5 function.
Vfe would expect in this case to get a good approx-
imation to V(z) for r a o by neglecting the diverg-
ence generated by the infinity in V(r). For tem-
peratures such that ng'z 4 we would expect that
V(~) would be rather insensitive to the behavior
of V(y) in the core region as long as rao. We
therefore choose to expand V(y) as a power series
in [T'~ -r„where &0= 2' eg is the location of the
minimum of V(y). Keeping the first four terms
in this series and evaluating (2.2) for ~=@,we
find that the location of the minimum of V(~) is
shifted to 2' g and the value at the minimum to
-g where
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~/e =x"/3.65 (2.5)

2-

for g s 1. In actual fact we obtain better agree-
ment with experimental results for T,* if we re-
place 3.65 by 5' '=3.34 in the above equation. We
shall make this replacement in our final expres-
sion for i/c.

Finally, since the distance from the hard core
to the minimum of V(r) is of order (2'~' —1)o, we
expect that the asymptotic series of Eqs. (2.3)
and (2.4) is valid for 2a ' c (2' '-l)o or ~o'
a 250. Taking the above results into account we
arrive at our final expressions

I I I

0.8 0.9 l.0
I

I.2
I I

1.3 l,4

r/. =[1+19.1x '+f(x)x-'] ",
o/o = [1+g(x)x ']'~',

where

f(x) = 5+ (177.7-5)[1 —exp(-x/250)]

and

(2.6)

(2.7)

(2.8)

FIG. 1. Normalized Lennard-Jones 6-12 potemtial,

, and fourth~rder power-series expansion about
minimum ——.Also shown is a Gaussian wave packet
used to compute the effective potential via Eq. (2.2).

expressions for e/e and o/o for xs 1.
Since the expression for V(r) may be regarded

as the Gaussian average for a particle of ieduced
mass ~/2 moving in a potential V(r), we would
expect on physical grounds that the divergence
of V(r} would be eliminated by a more exact treat-
ment of the repulsive core region. Such a treat-
ment would presumably involve replacing the
"plane-wave" Gaussian wave packet with a Gaus-
sian ma, de up of wave functions which would be
excluded from the "hard-core" region. Under
these circumstances, due to the short-range nature
of V(r), we expect for a = 1/o', i.e. , x s 1, that
the effective hard core would be given by the radi-
us of the Gaussian plus o, i.e. , o=1/v~+o=2/Wo.
(Fig. 1). Consequently we shall assume o/o = 2x ' '
for gal.

To obtain an estimate for & we can multiply the
average attractive interaction

= -32m
4w V(r) r'dr = eo'

9

by the maximum magnitude of the Gaussian weight-
ed by g 2. Thus

or

III. VIRIAL COEFFICIENT, CRITICAL POINT,
AND SURFACE TENSION

A. Second viria1 coefficient

The second virial coefficient for a classical
gas interacting via the two-particle potential V(r)
is given by"

CO

B(T)= —2wN [exp —pV(r) —1]r'Cr,
W P

(3.1)

where P = (k T) '. Using Eq. (2.1}this expression
may be transformed to yield the reduced second
virial coefficient B*(T*),where

B*=, , = 3
'

[exp —p*f(x) —1]x'dx,B(T)
~ &N(r p (3.2)

f(x) = 4(x "-x ')

and p*= 1/T*. The function B*(T*)has been tabu-

g(x) = 4+ (7.54-4) [1 —exp(- x/250)]. (2.9)

Equations (2.6) and (2.7) reduce to (2.3) and (2.4)
as x-~ and also give the expected x dependence,
with corrected coefficients, for g s 1.

As mentioned in the Introduction, the above
arguments lea, ding to Eqs. (2.6) and (2.7) are lack-
ing the mathematical rigor we would prefer. The
physical arguments used do, however, appear
to be plausible [except perhaps for the replacement
3.65 5'~~ in Eq. (2.5) which, however, is still
within our order of magnitude philosophy]. Bather
than pursue this point further, we shall use Eqs.
(2.6) and (2.7) to determine to what extent they
correctly describe QM corrections to classical
thermodynamic behavior.
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I I I 3
= 0.117, (3.4c)

for all systems interacting via a 6-12 potential.
The variation of the critical point with X is ob-
tained from Eqs. (3.4) by making the replacement

j, 0-o to obtain

AT, /s = 1.26

ol

and

T,*=1.26t/s,

(3.5a)

-6' I I I I I

0.4 06 QS l.0 2
I

8 lo

FIG. 2. Reduced second virial coefficient as a function
of reduced temperature. The classical curve is given by
Eq. (2.2). The nu'ves for He and He are fully quantum-
mechanical results from Ref. 18. The dots ( He) and
squares ( He) are the results obtained using Eq. (3.3).

lated" and is shown in Fig. 2. 1n the absence of
QM corrections all of the rare gases would be
expected to have a B~(T~) which lies along this
curve. To compute the QM correction, we make
the replacement s-s o-o in Eq. (3.1) to obtain
B(T). Dividing both sides of the resulting equation
by —2ssNv' we obtain the QM corrected expression

BQ(TQ) — —
( f

BQ] T+
f

~ 1fE(T i(T) ~s )
Thus, the QM corrections may be obtained by
evaluating the classical result at a temperature
scaled by s/a and multiplying by (&r/o}'. The re-
sults of this operation, using Eqs. (2.6) and (2.V),
are shown for 'He and 'He in Fig. 2. The smooth
curves labeled 'He and 'He are the results of a
fully QM calculation using Schr6dinger's equation
and appropriate phase-shift analysis. " As can
be seen from Fig. 2 our results are in very good
agreement with the "exact" calculation, e.g. , at
T*=1 our approximation is capable of accounting
for = 90% of the QM corrections to B*.

(3.3}

B. Critical-point location

The variation of T,*, P,*, and p*, may easily
be determined by combining corresponding-states
theory with the results of Sec. II. For a purely
classical system we would expect (Table I)

(3.5b)

l.3-
l.2

I I I I
)

I I I I ) I I

I.O

0.9

0.8
0.7

~ 0.6

0.5

0.4

0.2

V+ = 3.1(o/o}',

P.* = 0 11V(s/s)(c/o)'. (3.5c}

Equation (3.5a) may be solved graphically as shown
in Fig. 3 where we have plotted the functions T,*
and 1.26&/z. The intercept of these curves yields
T*, as a function of A, . This intercept, together
with experimental values, is shown as a function
of g in Fig. 4. Once we have obtained T*, vs A.

we may also determine p,* and &,* using Eqs.
(3.5b) and (3.5c). These results are also shown
in Fig. 4 together with appropriate experimental
values. The overall agreement between theory
and experiment is clearly quite good, the chief
deficiency being the too rapid increase of p,* as ~
increases. An additional positive aspect of the
above approach is that it predicts no liquid-gas
critical point for spin-polarized atomic hydrogen
(y = 4.V4) and deuterium (X = 3.35). Such a transi-
tion is expected for spin-polarized tritium
(y = 2.V4). All of these predictions are consistent
with more sophisticated first principle calcula-
tions. "

T*= "=1 26
kz'„

c (3.4a)
O. l

0.5 LO

ga 3 ]V
Ea (3.4b} FIG. 3. Grayhical solution for critical temperature

usirg the equation T+= 1.p6 Z/~,
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FIG. 4. Theoretical reduced critical-point volume,
temperature, and pressure as a function of the quantum
parameter X. Experimental values are indicated by the
data points f (W), & {P~), and {V~+)L.

0.2-
0

He

0
I.O

FIG. 5. Variation of reduced surface tension with re-
duced temperature. The curve for Ar is given by Eq.
(3.6); aQ other curves are obtained from Eq, (3,7).

C. Surface tension

As an application of our theory to thermodynamic
properties below T*, we shall consider the problem
of QM corrections to the surface tension along
the liquid-gas phase boundary, since to our know-
ledge this problem is largely unsolved. The ap-
proach is the same as before in that we assume
that the experimental behavior of the heavier rare
gases may be understood by some appropriate
classical calculation using a potential of the form
given by Eq. (2.1)." Thus we take the reduced
surface tension of a classical 6-12 fluid to be
given by

(3.6)

Setting T,* = j..26 and making the standard replace-
ments for e and o yields for the QM corrected
surface tension

j. 27
y+= = (o/(x)'(C/e)2. 66 1 —

1 26
. (2.7)

In I"ig. 5 we show the predicted variation of y*
with respect to g * for Ne, D„H„and He to-
gether with appropriate experimental results. ""
The qualitative agreement with experiment is
excellent. Of particular interest is that our theory
correctly predicts the bending of y* toward the 7*
axis as g* decreases from 7'*„ the bending be- '

coming more apparent as g increases. This be-
havior is a result of both the decrease of (o/&r)
and the increased bending of 1.26'/q toward the
function T* for T*&T,* (Fig. 3). This provides
additional evidence that the g* and A. dependence
of e/e and 5/&r is of real physical significance and

that Eqs. (2.6) and (2.7) represent more than an
ad hoc interpolation scheme.

IV. LIQUID-GAS COEXISTENCE CURVE

In this section we first apply the theory to an
analysis of the global behavior of the liquid-gas
coexistence curve and then proceed to a more
detailed analysis near the liquid-gas critical point.

A. Global behavior

In determining the QM effects on the global prop-
erties of the coexistence curve we shal. l assume
that the behavior of a purely classical fluid may
be described by'4

V*,/V*, = 1+ —,'(1 —T*/T*, ) + 4 (1 —T*/T*,)' Is (4.1)

where V*, , t/'*„and V,* are the reduced liquid,
gas, and critical molar volume. These equations,
while needing modification near the critical point,
a,re sufficiently accurate for our study of the
global properties.

A quantity of particular significance for our
study is the rectilinear diameter defined by

(4.2)

Scaling arguments ' indicate that the (1 —T~/T~)
term is expected to have a singular behavior near
the critical point, but again, the experimental
data for classical gases may be fit quite nicely by
a linear expression. "'" The curve labeled
"classical" in Fig. 6 shows the behavior of Eqs.
(4. 1) and (4.2) for T*/T,*-l.
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appropriate substitution in Eqs. (4.1), (4.2), and
(4. 3) yields the following expressions:

1+ -' i&1-
f

+ —~~1-

(4.6)

4He 1+- 1-
V,* ~~ &j/ 4 l.26a] 4 l. 26m]

(4.7)

(4.6)

0
l

0.2 Q4
I I

06 08
T/T

FIG. 6. Liquid-gas coexistence curves computed for
the classical case IEqs. (4.1) and (4.2)] and including
quy, ntum-mechanical corrections [Eqs. (4.6) ~~4 (4.7)j.
Experimental points are for Ne (e), H2 (*), and 4He (e).

To determine the QM corrections to the above
equations we use the fact that V,*=3.1 and T~
=1.26. Thus, under the replacement c -i we
find

l. 26 1.26K/c ' (4.4)

while

3.1(e/o)' F((cr/oc)'
yg (4.6)

~here 0, is the value of 0 at T =T, . Making the

In Fig. 6 we show Eqs. (4.6) and (4. 7) for Ne, D2,
H2, He, and He together with selected experi-
mental data ' for Ne, H2, and He. The qualita-
tive agreement is quite good and we get good
quantitative agreement for H2, D2, and Ne. The
behavior of the curves for He for T*/T*&0.8
indicates a breakdown of our approximate expres-
sions for e/e and 6/o. This anomalous behavior
is primarily due to the too rapid increase of e/o
with decreasing temperature.

In spite of the above shortcomings, our results
yield considerable insight as to the effect of QM
corrections on the coexistence curve. In particu-
lar it has long been a puzzle as to why the helium
liquids, where QM effects are most important,
have a symmetrical coexistence curve similar to
that of the classical lattice-gas model, which con-
tains no QM effects and yields a perfectly sym-
metric coexistence curve. Our results indicate
that this similarity is quite fortuituous in that the
QM effects suppress the intrinsic asymmetry of
the classical curve to yield a nearly summetric
coexistence curve. A quantitative measure of the

TABLZ I. Molecular parameters for corresponding states reduction. '
P V/T

3Heb
4He"

HD'
C

Ne~

Kr'

10&2
10.22
37
37
37
36.7

120
166.4

2.62
2.62
2.93
2,93
2,93
2.79
3.41
3,65

3.02
4.00
2.00
3.00
4.00

20.2
40
83.3

3.01
2,61
1.73
1.41
1.22
0.577
0.187
0.102

0.324
0.51
0.9
1.03
1.1
1.21
1.25
1.26

0.146
0.29
0.646
0.73
0.86
1.14
1.16
1.17

6.7
5.31
4,$2

3.9
3,20
3.12
3.10

0,302
0.302
0.31V
0.290
0&05
0 301
0.289
0.288

~Units are K for &/k, A for 0, and gm/mole for M.
b Beference 10,
'Beference 11.
~Beference 12.
'Beference 1.
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+Tc Stheoxy Sexy

Xe
Ar
Ne

D2
HD

H2

4He

3He

&10-'
&10 2

0.025
0.14
0.185
0.27

0.53

0.64

10 3

&-10
-0.02
-0.07
-0.091
-0.15

-0.45

-0.7

0.75
0.75
0.71
0.58
O.M
0.4

-0.43

0 75
0 75
0.72b

0 37c
0.18
0.05

-0.03
-0.01

~Beference 24.
"Beference 26.
'Beference. 28.

TABLE II. Quantum-mechanical corrections to the
rectilinear diameter for Lennard-Zones liquids.

examine the question of QM corrections in an al-
most trivial fashion.

Our approach will once again assume that the
classical problem has been solved and that corre-
sponding-states theory is valid. Since it is not
our purpose to analyze the success of the classical
theory, we shall choose "typical" values for our
classical critical-point exponents. The theory is
sufficiently simple that should different exponents
be desired the calculations that follow may be
readily repeated.

It is convenient to consider the reduced fluid
density and compressibility near the critical point
of a classical 6-12 fluid to be given by' '

Vo 1 B (1 Tg/T g)0. 35
0 c

degree of symmetry is the slope s of the rectilin-
ear diameter where s is defined by

g-1 P Ag F (1 Tg/Tg)-t. 2t
Bp* 0 c (4. 14)

d=l+s(1 —T*/T,*) . (4. 8)

& pur~ly classical liquid would be expected to have
s= 3/4 [Eq. (4.3)]. Experimental values of s,
for liquids where QM corrections are significant,
are listed in Table II."'"Although Eqs. (4.6)
and (4.7) no longer yield a strictly linear rectilin-
ear diameter, we can still define a theoretical
expression for s by expanding Eq. (4. 8) about T*
= T*. %riting

B (1 Te)0.35f0. 35 Bf0.35
yg —

0 ~f c (4. 15)

If we perform the following steps: (i) Set V,*
= 3.1 and T,*=1.26 in Eqs. (4. 13) and (4. 14),
(ii) take T*- T*(c/4), V* - V*(o/o)3, and I'*
-P*(e /&)(o /o), (iii) use the series expansions
(4. 10) and (4. 11), and (iv) keep only terms to the
lowest order in (1 —T~/T,*)=t, then Eqs. (4. 13)
and (4. 14) become

1.26i/e = T,*[1+a, (T*—T,*) ~ ~ ~ ],
3.1((r/o)'= V,*[1+a2(T* —T*) ]

A" + —I' (I T+)-& 2&t t 8& —I'f-& 2& (4. 16)

Equations (4. 15) and (4.16) show that, within our
model, there is no change in the critical exponents
due to finite X. The critical amplitudes are, how-
ever, significantly changed due to QM effects.
In Fig. 7 we show the functions (1 —g&T~) and
(1 —g&T,*) ' ' as a function of A. . Also shown are
the experimental ratios of the critical-point
amplitudes B/Bo and I'/I, where we have taken
&0 = 1.8 and I'0 =0.06. The agreement with ex-
perimental results is excellent. An interesting
aspect of the above results is that only the de-
rivative of i.26'/e [Eq. (4. 10)]enters into the
correction for the critical-point amplitudes.
This behavior is a result of the fact that Eqs.
(4. 13) and (4.14) are only singular functions of
the temperature. The excellent agreement with
experimental results thus confirms our previous
contention that the weakest aspect of our model
lies in the expression used for o/o.

The QM corrections to all other critical-point
amplitudes may. be readily obtained from the above
results if we assume a "restricted cubic model"
to represent the thermodynamic behavior of the

inserting these expansions in Eq. (4. 8), and keep-
ing only terms of order 1 —T*/T,* yields

s = —,
' (1 —ai T,*)+ a2T* . (4. 12)

In Table II, we list the values of g&T*, and g2T~
together with our values of s. The qualitative
agreement is again quite good. From these re-
sults we also see that it is the large negative value
of g2T* which causes our results to be too small
for larger values of X. This suggests that the
primary reason for the breakdown of our theory
at lower temperatures is the excessively rapid
variation of o/o with T*.

B. Local critical-point behavior

The effects of QM corrections to the critical-
point behavior of the liquid-gas system were first
studied quantitatively by Fisher. ' Since that
early work there has been little development of
the theory, primarily because there was no
quantitative theory for the classical system. The
recent advent of such a theory allows us to re-
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l5- I -6

l.4—

2-

0.5
0

liquid-gas critical point. ' ' This model contains
two parameters a and k (not to be confused with
Boltzmann's constant) which are adjusted for each
substance and once determined permit the calcu-
lation of all critical-point amplitudes. ' In par-
ticular the amplitudes Bo and 10 of Eqs. (4. 13)
and (4.14}are given bys

B0=1.602k and I'0=k/a . (4.17)

Equation (4. 1V) may readily be inverted to obtain
the QM corrections to k and a using Eqs. (4. 15)
and (4. 16) and we find

k = ko(1 —a(T,*) (4. 18)

FIG. 7. Theoretical ratio of quantum-corrected criti-
cal-point amplitudes (3,~) to classical critical-point
amplitudes (&p, I'p) as a function of the quantum parame-
ter X. Experimental results are indicated by data points.
Note the change of scale along the ordinate axis.

FIG. 8. Theoretical ratio of classical parameters
(ko, ao) to quantum corre-cted parameters (k, a) used in
the restricted cubic model of critical-point behavior.
Experimental values are indicated by data points and
are taken from Ref. 30.

theory would predict

A,==(1—a T*)-1 91

A c

In Table III we list our computed values of A/A„
the experimental values for He and He, and
the values obtained using the parameters k and g
listed in Ref. 30. We see that our computed
ratios are in much better agreement with experi-
ment than those obtained from the adjustable
parameters" u and a.

Since the critical-point exponents were unaf-
fected, it is worthwhile to extend the above anal-
ysis to include corrections-to-scaling
terms' ' ' to determine how their singular be-
havior is affected. We thus replace Eqs. (4. 13)
and (4.14) with the more accurate expressions'

a=a, (1 —a, &,')'" . (4.19)

In Fig. 8 we show the theoretical curves ko/k and

ao/a together with the experimentally determined
ratios assuming the classical values k'p = 1, 16
and gp

——14.2. The agreement with experiment is
good. The larger deviations for ao/a are in part
due to the choice of gp

——14.2 which leads to a
value of I'O=ko/a0=0. 08. If ao is increased so
as to yield our assumed value' of I'p ——0.06, the
difference between theory and experiment is re-
duced but not eliminated. Further support for
our theoretical value of ao/a may be found in the
experimental results for the amplitude for the
specific heat divergence near the critical point.
If we define this amplitude above (+} and below
(-) the critical temperature by C„*/T*=A, ~t I

™
then the amplitudes A, are both proportional to
kg in the restricted cubic model. Thus, our

' —1=Bat . [1+hot +O(t)], (4.20}

P f-1.24[1 y t0.5+ O(f)] (4. aS)

Repeating the procedure described above we

Experimental '
values

Present
theory

Restricted cubic
model b

4He
'He

A+/A+ A /A
4.15 4.02

10.17 5.07

A/A~
4.23
7.04

A~/A™~

3.03
4.64

~Reference 32. We have used the values obtained for
Xe for the classical values A,.

b Beference 30.

TABLE QI. Quantum-mechanical corrections for the
specific heat divergence amplitude at the critical point.
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arrive at QM corrected expressions of the form

0 1 c—' —I=B()(1—d'gT,*) ' t ' [I+bo(l-agT,*)"t"
= 1.43. Making the standard replacements we
obtain the following expression for P* when QM
corrections are important:

+ b, t + O(t)] (4. 22) g) 3, )c
o) (5.3)

x fo. 5+ O(f)],

where

02T ybi= B (1 Tg)0. 32 ~ (4. 24)

V. SOLID PHASE PROPERTIES

The bqto'68 term in Eq. (4.22) changes sign with

&0 and represents one of the previously discussed
correction terms (a2T,*) to the "rectilinear diam-
eter". Our analysis thus implies that no correc-
tions-to-scaling terms appear as a consequence
of QM effects and the amplitude ratio b,/y, is un-
affected by QM corrections. The correction am-
plitudes themselves do, however, undergo signifi-
cant change due to QM effects and as Eqs. (4. 22)
and (4.23} show these amplitudes should increase
as we go toward more classical fluids. In this
connection it is worth noting that in the case of
yo this behavior is oPposite to the predicted (and
observed) behavior of I'0. Confirmation of these
trends in the correction amplitudes and evidence
of the (1-aqT )) ' factor would provide a signifi-
cant additional test of the theory.

In Fig. 9(a) we show Eq. (5.2), which gives a
good representation of the Ar, Kr, and Xe data,
together with Eq. (5.3) and selected experimental
values of &* for He and He. We can see that
Eq. (5.2) provides a rather good description of
the QM effects on the behavior of P* vs T~.

Another quantity which shows significant X de-
pendence is the change in volume upon melting.
Again, using argon as our classical fluid, we
can write for the reduced change in volume

6V*=D*y(T*—T*)u (5.4)

20-

l5- 7.5—

CL
lo-

where &V* is the difference in molar volumes for
the fluid and solid D~ =0.0658, T&*——0.494, and
d=0. 527. The corresponding equation, including
QM corrections is

In this section we apply our theory to the prop-
erties of the rare gases along the solid-liquid
melting curve and to the dynamical properties of
the solid phase at high temperature. Crawford
has given an excellent review of this topic and we
shall make use of his collection and parametriza-
tion of experimental data in our analysis.

l4-

0 l2

&~j l0-

2.5—

I

0 05 I.O

A. Thermodynamic properties along the melting curve 8-

We represent the melting pressure data by the
empirical modified Simon equation ' which may be
written in the form

0 0,5
I

1.5 2 2.5

P =A(T - TD)' -B . (5.1)

Ag(Tw Tg)c (5.2)

where A.*=11.24, B*=3.54, To ——0.25, and c

Choosing argon as our classical standard and
using the parameters listed in Table I we may
write a reduced melting equation for the classical
6-12 fluid as

FIG. 9. (a) Reduced pressure versus reduced temper-
ature along the solid-liquid melting line. The classical
curve is obtained from Eq. (5.2), the 4He curve from Eq.
(5.3), the curve for 3He lies above that of 4He, but is in-
distinguishable from He on this scale. Experimental
points (&= He, = 3He) are from Ref. 26. (b) Charge in
reduced molar volume upon melting. The classical
curve is obtained from Eq. (5.4), the 4He curve from Eq.
(5.5). The curve for 3He is indistinguishable from 4He

on this scale.
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(5.5)

Figure 9(b) shows Eqs. (5.4) and (5.5) for He
and He together with the experimental results.
These curves together with those of Fig. 9(a)
show that the present theory provides a qualitative
account for QM effects along the melting curve.
The rather too large value of 5/o is the principal
reason for the depression of the computed P* and
elevation of &V* with respect to the experimental
results.

100-

80-

4)60-
CD

40-

20-

0
10

~ x ~

l4 l6
V(cm~)

4He

I

IS

B. Debye temperature at melting

To determine the applicability of our theory to
dynamic quantities we analyze the QM corrections
to the Debye temperature at the melting point
(8„)of He and He. Since many different approx-
imations to V(r) may yield similar thermodynamic
behavior, an analysis of 8„, which depends on the
second derivative of V(r), provides a significant
additional test of our approximations. For our
classical model we use the result of Domb et
gl. 3 '3~ for the value of 8 for a classical solid in
the limit of high temperature (T 2 8~/5). In our
notation we have

1'4 fd V)'i
8 (5.6}

/2 (g)3 1 -13 0')6 1/2
8-=0 ~ 895

I I V*4(3 s?e ~a] V* V* a)

(5.7)

where V*= V/10. 88 and V is the molar volume.
In Fig. 10 we show Eqs. (5.6) and (5.7) for 3He

and He together with some experimental re
suits. ' 3 The theory is in qualitative agreement
with experiment at the smaller molar volumes.
Our expressions for o/o and i/e are presumably
more reliable in this region due to the higher
melting temperatures. An additional aspect of
our results is that, in spite of the large increase
in 8„due to QM effects, the ratios of 8„ for 'He
to that of He obtained from Eq. (5.7), at the
same molar volume, are very close to the classi-
cal value of (3)'~ =1.155. In particular, for
molar volumes ranging from 10.5 to 14 cm we
find that the ratios of Debye temperatures range
from 1.21 to 1.32, whereas the experimental re-
sults have a ratio =1.22. This behavior is also

where we have assumed an fcc lattice with near-
est-neighbor interactions and a two-body potential
given by Eq. (2. 1). By making the replacement
c -i and e-5 we obtain the following QM corrected
expression for 8:

FIG. 10. Variation of Debye temperature with molar
volume along the melting curve. The solid curves are
the classical results obtained from Eq. (5.6). The dash-
ed curves are obtained from Eq. (5.7) and include quan-
tum corrections. Experimental values (&=4He, ~ = BHe)
are taken from Befs. 36, 37, An~ 38.

consistent with that observed by Ahlers for the
same ratio taken at 1"=0.

VI. SUMMARY AND CONCLUSIONS

By utilizing the theory of corresponding states
together with Feynman's method of including QM
effects via a temperature-dependent effective
potential, we have been able to provide an excel-
lent qualitative, and frequently quantitative,
account of the influence of QM effects on the
thermal properties of I ennard- Jones fluids. In
particular the theory is able to account for the
following:

(a} QM corrections to the second virial coeffi-
cient.

(b) The dependence of the critical-point location
(T„V„P,) on the quantum parameter X.

(c) The change in shape of the liquid-gas and
solid-liquid coexistence curves as X increases.

(d) The decrease in the slope of the rectilinear
diameter as X increases.

(e) The dependence of critical point amplitudes
on A. .

(f) The quantum-mechanical enhancement of the
Debye temperature near the solid melting point.
In addition, the theory predicts the X dependence
of the correction-to-scaling amplitudes near the
liquid-gas critical point, with all of these ampli-
tudes expected to be larger for classical liquids
and to decrease as X increases.

In spite of all these successes there remains an
essential difficulty with our approach, namely,
the absence of a mathematically well-defined pro-
cedure for computing an effective potential when
there is a strong hard-core-type singularity at
the origin of the two-body potential. We have
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used physical arguments to circumvent this prob-
lem and the results obtained provide apostexio~i
evidence that our approach contains a large ele-
ment of truth. There are doubtless many other
ways of defining e/e and v/g which would give
even better agreement with experiment than we
have achieved. We have frankly not made an
effort to search for optimum expressions [except
for the choice of "5" in Eq. (2. 8) j, since our
philosophy was to rely as much as possible on
physical arguments and avoid curve fitting. The

success of our approach indicates that an effective
temperature -dependent potential schick includes
QM effects does exist, and efforts toward extend-
ing Feynman's theory to include singular poten-
tials would be well rewarded.
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APPENDIX A: DERIVATION OF EFFECTIVE POTENTIAL APPROXIMATION

The N-particle partition function, in the absence of exchange effects, is given by the path integral ex-
pression"

t Bh

2= —, d"&( )0I exp- —
' m QR', dt+Q V(R, -R,)dt ID"R(t), (Al)

where the+, runs over all particles, V(R, -R,) is the assumed two-particle potential, and p =1/kT. As-
suming a potential of the form given by Eq. (2.1) and introducing the dimensionless quantities

X=R/o,

V(R( —R~)/E = U(X( —X~) = U,.~,

t = o(m/. )'t",
I=I/(m«')'t',

P=e/kT .

Equation (Al) may be written as

(A2)

&x&0)
S=— d~Xxl

"Bh

exp- ~(~g J Q ~x,
)~

dr++ U„dv)D "x(v)
0 $f

(A3)

Introducing the weight function

t Xg(0)

"X;&0)

the "average" position

exp] —= Q )X, /'d&)l

I
BK

exp/ —=
J Q fx, f'dT ID"X

2K (), ' j

~85
X( ——= ) X;(7')d&,

@~0

and f,&

——(U,
&

—U, &), where U,
&

——U(X, —X&), we canwrite Eq. (A3) as

p ~
r x(0) 1 '8))

Z= —
(

d"X(0) exp ——Q U() ~
W(X() exp —= Q (U(~- U())dT DX (&) ~¹'~ 2 ]f ) ~~(0) 25 "0 ij

(A4)

where D is the denominator in the expression for W. We now let J,d"X(0)- f d "Xand redefine the path
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integral in Eq. (A4) to be evaluated with X held constant and with an integration over the end points X(0).
The path integral term in Eq. (A4) is of the form (e~), where (g)~ f WgD"X and

dr.1
25

Using the result'7 that

(eE) P e(E&

we can get an upper limit on the free energy by using the approximation

Z a —, dXD exp
I

——g U{& I
e ~1 ' = {' P — '& (,&

x! . V

(A5)

Using the definition of (g) it is easy to see that (g) involves the sum of two-body path integrals of the form

W( g
——

I
Bh &8 pY

f, ,d7 expl - — (IX, I'+ IX, I')dr DX,DX,
&o

' ( 2@ "o

~Oh

(lx( I'+ IX, I')Dx,Dx,

(A6)

where the paths are to be taken with X( and Xo .fixed and we integrate over starting points X(0).
The change of variables

y=Xg -Xp,
z =Xg+Xg,

reduces W& o to the one-body path integral evaluated by Feynman. ' Substituting the result in Eq. (A5)
yields an approximate expression for & given by

dr, ' ' ' dr„exp —
2 +V(lr(-r&l) I

.
if

(A7)

Equation (A7) is of the same form as the partition function for a purely classical system with the interac-
tion between particles now being given by the effective potential V(r) rather than the bare potential V(r).

APPENDIX B: DERIVATION OF EQUATIONS (2.3) AND (2.4)

Expanding V(r)/e in a power series in Ir
I

—ro(ro =2'~ o) yields

«r)~» = I+-,'ff( Ir I

- «)'+-o' « lr I- ro)'+I'I ~(lr I- ro)' .

Inserting (81) in Eq. (2. 2) results in integrals of the form

(Bl)

a '/' 2
~ ~ n -el {e-e' &I 3 (B2)

For &o even it is convenient to write (B2) in Cartesian coordinates, choosing r to lie along the z axis we
obtain

3/2 4O
z2+ s2+ s2)g/2 N(g +y +(g

r (BS)

For n even, integrals of the above form may be evaluated exactly. For n odd it is more convenient to re-
write (B2) in spherical coordinates. Again taking r along the z axis and performing the angular integra-
tion results in integrals of the form

(o ~ /(( & o 2x"'(e '* "' -e "'"' )dx (B4)
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For &r» 1 and n = 1 or 3 integrals like (B4}contain terms proportional to r', r, r ', and e " . We ig-
nore terms proportional to e " and expand those terms of order r ' as

1 1 1 t —, (-,)'
'Y 1 f 0 +'f'p tp I, to Ko j

Using this expansion together with the higher powers of r obtained in (B3) and (B4) yields an expression
for V(r} of the form

l'(~) =c, —c,(~ —~o)+ —,c,(r —r, )1 - 2 ~ ~ (B6)

where the constants Co, C&, and C2 depend on E, L, I, r0, and ug . The location of the minimum of
(86) is set equal to 2' 'a while the value at the minimum is set equal to i/c. The resulting expressions
are given in Eqs. (2. 3) and (2.4).
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