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Ultraviolet dynamic renormalization group: Small-scale properties of a randomly stirred fluid
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A dynamic renormalization-group method is developed to study the ultraviolet properties of vdocity correlations
generated by the Navier-Stokes equation with a random stirring force with the correlator decreasing as k '(y & d) at
k~ao. It is shown that the elimination of modes from a shell near the infrared cut-off k0=1/L —+0 results in two
major effects: transition to a frame of reference moving with random velocity v~ (u~aL"' if y = d) and the
appearance of a negative dissipation in the Navier-Stokes equation proportional to k ~. All the divergent terms are
summed up into a kinematic effect of a transfer of small eddies by large ones and the dynamics is determined by
convergent series. Long-time, large-scale behavior of a fluid is identical with the one obtained by Martin and de
Qominicis, Lucke, and Fournier and Frisch. It is shown that the theory is asymptotically free in the ultraviolet
region for any e = d —y &0. The energy spectrum of a stirred fiuid is E(k) at'k "'/ln(kL)) for (d =y) and the
Kolmogorov spectrum without corrections never exists in the ultraviolet limit.

I. INTRODUCTION

The role of renormalization-group methods
in hydrodynamics is becoming more and more
important for it has been shown during the last
years that the Navier-Stokes equation for an
incompressible fluid under a Gaussian random
forcing f, which is defined by its correlator as

point or asymptotic freedom in the uv limit 4 —~.
This paper is devoted to the investigation of the

ultraviolet behavior of a randomly stirred fluid.
It is organized in the following manner. In Sec.
II, we discuss the Navier-Stokes equation with
the random forcing on the right-hand side of it.
We added to the. left-hand side of this equation,
the enrgy source

(f(k, (o) t'(k', (o' ))n —,5(R+k')5((o+co'), (y =d)
(l. l)

is capable of modeling long-time large-scale
properties of a turbulent fluid. '-

Dynamic re-
normalization-group methods, originally devel-
oped by Ma and Mazenko' for the theory of critical
phenomena, have been successfully applied by
Forster, Nelson, and Stephen for investigation
of Navier-Stokes equation for a randomly stirred
fluid yielding many new and interesting results. '
Their ideas were used by authors'-' who wanted to
study different problems of hydrodynamic turbu-
lence.

It is natural that many attempts have been made
to investigate ultraviolet properties of a randomly
stirred fluid, using the renormalization-group (RG).
methods, since one can expect scale-invariant
solutions in the l.imit A ~. These attempts
failed because the standard renormalization-group
procedure led to the growing of infinity dirnen-
sionless coupling parameters, which made it
impossible to use schemes based on perturbation
expansion. This situation is disturbing, for it
has been shown that perturbation expansion in
powers of y [see (1.1)] does not have an infinite
radius of convergence; it is divergent for any

y ~ d.'2 Thus y =d corresponds to the boundary
of convergence. As a result of these problems
in the ir region, one would expect stable fixed

—r,u" 'v(k, (o),

which appears (see Sec. III) after the first itera-
tion. It is our opinion that this term must be
written in the Navier-Stokes equation when a ran-

. dom force, having nonzero component in the limit
A 0, is added into the rhs of it.

In Sec. III, we apply the BG'method, devel. oped
by Forster, Nelson, and Stephen, ' to investigate
long-time large-scale properties of a fluid. It
is shown that the results of Hefs. 1-4 hold,
and the negative dissipation (1.2) does not affect
them whatsoever.

In Sec. IV, we develop ultraviolet renormaliz-
ation-group procedure. It is shown that the per-
turbation expansion contains infinite number of
divergent terms which, homever, can be summed
up as resulting in a pure kinematic effect of
transfer of small eddies by large ones. This
result was anticipated by Kadomtzev' and V. S.
L'vov, ' who was even able to indicate the type
of divergent terms which should yield this trans-
fer. It is also shown that elimination of modes
from a shell near the infrared cutoff ko- 0
results, in addition to this kinematic effect,
in the energy source (l. 2). The ~~ power is
universal external-forcing independent, while the
information about the force f(k, &o) in the limit
k —0 is hidden in the proportional. ity coefficient
Fo.
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After the diverging terms are removed by a
corresponding coordinate transformation the BG
method leads to a dimensionless coupling con-
stant decreasing to zero with each step of renor-
malization or, in other words, we show that the
theory is asymptotically free. The ~3 Kolmogorov
spectrum does not exist in Ne limit k'

It is interesting that the force (1.1), which yields
the ~3 result in the long-time large-scale regime,
leads to the energy spectrum

v, (k, &u) = G, (k, ur)f (k, &o) —~~iA.,G, (k, (o)P,„„(k)

1
—i&o -I',k'~' + v k'

0

The function P, „(k)is

(2.2)

x ~ q~Q v k —q, (g —Q, 2.1
qQ

where we define the unrenormalized propagator

P, „=P,(k)k„+P,„(k)k (2.3)

in the limit k . In Sec. VI, we discuss some
problems concerning the nature of intermittencies
in the inertial range.

II. EQUATIONS OF MOTION

We are interested in an incompressible fluid
under action of a Gaussian random force f(r, f).
It is tempting to describe this system by the
Navier-Stokes equation with the force f(r, t) on
the right-hand side of it, although va.lidity of a
naive addition of a force into the dynamic equation
of motion is not clear. We know, for example,
from a Zwanzig-Mori theory, ' that a random-
force appearance in an equation of motion usually
results from a loss of information ori:ginally con-
tained in a detailed microscopic description. The
second important outcome of a general theory'
is that random force is always connected to cor-
responding dissipative terms in the equations of
motion. This is necessary for the basic conser-
vation laws to survive elimination of part of the
degrees of freedom which is the essential approx-
imation of the theory. ' The simplest ilt.ustration
of this principle is the appearance of a viscous
dissipation simultaneously with the corresponding
random noise in a system, originally described
by deterministic equations, after all the degrees
of freedom related to the microscopic motions
are eliminated. It is important to stress that the
proportionality of the viscous term to k' does not
depend on the details of a small-scale property
of a fluid which are hidden in the viscosity coef-
ficj.ent po We shall show in this work that the long-
scale (k 0) components of an arbitrary random
force are responsible for the appearance of a
universal negative dissipation term in the Fourier-
transformed Navier-Stokes equation -I"p'~'V(k, up)

and all the details of a random stirring force are
contained in the constant factor p, .

Let us consider the Fourier-transformed Navier-
Stokes equation for the lth component of velocity
field v, (k, &o):

where P,z(k) is the transverse projection operator

In Eq. (2.1) we have adopted a standard conven-
tion by defining

(2.4)

In this work we shall devel. op a renormalization-
group procedure suitable for investigation of both
infrared and ultraviolet properties of a system
described by Eqs. (2.1) and (2.2). To perform
our program, we introduce an ul.traviolet cut off
hand infrared cut off k, =1/I —0 when the size
of the system L tends to infinity. Thus depending
on our aims the wave-vector integration in (2.4)
is to be carried out in either of the intervals
q& A. or q& k, -0. Proportionality constant X,
will be set equal to unity after all the calculations
are completed. The main difference between
equations of motion (2.1) and (2.2) and the Navier-
Stokes equation intensivel. y used in literature,
is the negative dissipation term +I',k'~', which
we added on the basis of our results. This term
will be justified in what follows.

One can, in principle, using the zeroth-order
solution of (2.1)

(2.5)

construct perturbation expansions in powers of
the nonlinear mode-mode coupling term propor-
tional to A, . This problem was formally solved in
a classic paper by Wyld, "although it is quite
hard to sum up the diagrammatic series derived
in Ref. 10 to obtain reliable conclusions from
(2.1). It is easier, however, to elucidate the
effect of the modes in a shell Ae-' & q & A,on the
dynamics of the remaining ones. This is what
the renormalization group does. One can ask a
different question: How do the modes in a shell
near the infrared cut off k, &q &k,e' (k, 0)
effect the remaining modes for k . To answer
this question we shall develop an approach which
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III. LONG-TIME LONG-DISTANCE BEHAVIOR
OF A RANDOMLY STIRRED FLUID

This problem was formulated and solved in a
paper by Forster, Nelson, and Stephen. ' They
have shown that in order to carry out the RG
program outlined above, one can use a diagram-
matic expansion developed in Ref. 10 with the
only difference that the integration over the in-
ternal momenta be carried out in a she11 Ae '

&q & A.. In this manner the intermediate values
(before rescaling) of the parameter can be derived
in the limit when external momentum k and fre-

0 orderth

orderIld

4 order Ib
th

(&)

i~a.
(~)

fb ~~
(a) (~)

a.~
~~v~g «)

ib ~
«3 («)

is similar to the usual infrared renormalization-
group treatment although it is not identical to i.t.
It was shown by Ma and Mazenko in the theory of
critical phenomena that tQe dynamic renormaliz-
ation group consists of two main steps. First,
we eliminate from (2.1) either the modes from
a shell A.e-' & q & A if we are interested in the
infrared properties, or modes from a region
kp + q + koe" if we want to study the ultraviolet
behavior of the system. This can be done by
substituting the zeroth-order solution (2.5) into
(2.1) with the subsequent averaging over the part
of the random force which acts in the shell
~-' & q & A. (ir case) or k, & q & k,e' (uv case).
This redefines all the coefficients of the remaining
modes which enter the reduced equation of motion.
The fluctuating terms which cannot be associated
with the coefficients of the Navier-Stokes equation
are added to a random noise f, (k, &g). This renor-
malizes the spectrum of the original random force
in Eq. (2.1). The last step of BG procedure con-
sists of rescaling space, time, and the remaining
velocities and forces in order to make the new set
of equations look as much as possible like the
original Navier-Stokes equation which is defined
on a somewhat larger space of variables v, (k, &o).

0,

1+N„'" l l-0
Vo

where N~ is the constant depending on the spacial
dimensionality. The fact that 8, does not vary
upon the small-scale elimination is clear, for the
second-order correction to the correlator, pro-
portional to k', is irrelevant in the limit 0- 0
for the model D(k) cc k '. The second step of the
ir RG treatment consists of time, space, and
velocity rescaling:

k'=ke', &u' =e "'(o, v'(f, (u) =0'(k', (o')(, (3.2)

where 0' is the velocity defined on the smaller
k space 0 & k & ~e-'. The recursion relations cor-

th order
(g)

Ild
2 order

(2)
th4 order

(~) (~)

75) 6)

1)
s

(g) ~ (gy)

26 ( g) (g)

gb
(&o)a~ f2'

(2i)

quency ~ tend to zero. After that, rescaling is
performed.

Wyld's diagrams up to the fourth order for the
proporgator and the velocity correlation function
U(k, (o)[5((o+(o')5(R+k")fJ(k, (o) =(v(k(o)v(k,'(a'))]
are shown in Figs. 1 and 2. The diagrams are
constructed of three elements: (a) a thin straight
line (propagator) - Go(k&w), (b) a point (vertex)-
proportional to iA.,P, „(k),and (c) a wavy line ",
the unrenormalized random-force correlator
(fPg&.„,) =D(k)5(k+ k')5(&o + &o')(5~ —k k8/k').

Proceeding exactly as was prescribed by Fors-
ter, Nelson, and Stephen, we ca1culate in the
second order of perturbation expansion (k-0 and
Ql «0).

I =DO

T'I =r 0

Xb
(e)

FIG. 1. Wyld's perturbation expansion of a propagator
which iS used in the ir renormalization-group procedure
(Ref. 6).

X6

FIG. 2. Diagrams for the correlation function V(k) to
fourth order (Ref. 10).
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responding to (3.1) and (3.2) are

dv(l) = v(l)(z —2++,~'),

df (l)

derive instead of (3.1) (y=d):
~2~ k4" &

1,=1..I1+M, I'0 )

Dr=DO y (3.10)

da——0
dL

dA. d-y—=A. +s —1 —--—
dl ~ 2

Deriving relations (3.3) we set

(3.3) Al ——Ao .

Vfe notice that in this case there is no k-indepen-
dent dimension1. ess coupli. ng parameter. The
effective coupling is now' k dependent and can be
made as sma11 as desired in the limit k- 0.
Recursion relations are

and

(= exp(~a (t) + d+y &

2 2

do. (l)
dl

(3.4) CtP—=I'(1)(z —z)
dL

dD—=0
dt

Equations (3.3) suggest that the actual expansion
parameter is not A,, we began with, but the dimen-
sionless parameter A.

' = X'D/v' and

dA,

dl
—=X(zz —1)

t = exp[zm e (l) + dl] .

(3.11)

—=—[4 —(d —y) —3NX'] .BA, A.

2

Solving (3.5) we find that at the fixed point

t'4 —(d - y)
t~

'"
3Ã~ j

and

(3.5)

(3.5)

The only fixed point corresponding to z =~3 is
marginal and the energy spectrum (3.8) holds
although the marginality of the fixed point raises
doubts about its stability.

IV, ULTRAVIOLET RENORMALIZATIONNROUP
PROCEDURE

a=~3 when d=y . (3.7)

It is interesting to notice that both v and T are
finite in the limit I . This is a somewhat un-
expected result since we could assume on intuitive
grounds that the viscous term would be irrelevant
in the limit k-0 in comparison with the negative
dissipation fx k2~'. The energy spectrum corres-
ponding to this fixed point can be calculated
readily'

E(k)=k'-' t U(k, ~)d~~k-"' (y=d). (3.8)
«00

It is clear from our development that this result
was obtained for a region where

v,k' » I',k'" (3.9)
I.

or in the limit I'0-0 .
Fourier, Nelson, and Stephen performed their

calculations for the model in which p, =0.' It
can be shown that in this case the results (3.3)-
(3.5) stay intact and that the effective viscosity
becomes k dependent: v(k) ~k 4~' so that v(k)k'
~x: k . This in turN justifies the dissipation term
proportional to k2 3 which we introduced from the
begining.

In the opposite case, v, —0 or p, —~, which
corresponds to infinite Reynolds numbers R we

In this section, we will. be interested in the u1.tra-
violet properties of a system described by Eqs.
(2.1) and (2.2). Let us assess the influence which
modes from a shell near the infrared cut off have
on the dynamics of the remaining modes with
k ~. First of a11, we shall show that one cannot
adopt Wyld's perturbation expansion without al-
ternations which are already evident in the second
order.

The graphic representation of the equation of
motion (2.1) is given in Fig. 3, where a heavy

sa ~+
(o)

(b)

(c)

FIG. 3. (a) Equation of motion and (b) and (c) deriva-
tion of the correction to propagator.
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(o)

(&) (3) (o)

(b)

, q
(f») ~tr)

(1o) (~f)

FIG. 5. Principle subset G, of diagrams for the re-
normalized propagator G.

(c)

FIG. 4. (a) Modified equation of motion (b), expansion
of the propagator in the uv renormalization-group pro-
cedure, and (c) series for the renormalized force.

line denotes v, (k, &) and the slashed heavy line
corresponds to modes Ao + k + koe', which must
be eliminated. The symbol X stands for a bare
random force f. We are interested in a case
v 0, or in other words, I' A'~'»v, k every-
where in A space. Expanding the third term on
the rhs of the graphic equation in Fig. 3(a), we
obtain the only diagram providing correction
to propagator. The procedure is shown on Figs.
3(b) and 3(c). It is worth mentioning that there
were four corresponding graphs in the second
order of perturbation expansion in the ir renor-
malization-group treatment outlined above (see
also Ref. 10). This holds for higher orders of
the series: That is, all geometric elements of
Wyld's diagrammatic expansion present in our
ultraviolet renormalization-group procedure,
but with different proportionality coefficjents.

Repeating the arguments described in Wyld 's

paper, "we can express an equation of motion
in terms of the renormalized propagator and
random force. This equation is represented
in Fig. 4 where the open arrow stands for the
renormalized Green's function and the thick cross
denotes a renormalized random force. Diagram-
matic expansion of the propagator and of a random
force are given in Figs. 4(b) and 4(c), respective-
ly. To sum up the series for G [Fig. 4(b)], let
us notice that each branching of a lower l.eg of the
graphic term of Fig. 3(b) leads to a factor k- ~
while any branching of a shashed leg is propor-
tional to k, —0. We shall see that the main
contribution to a diagrammatic expansion stems
from the expansion of a lower leg (k- ~) of the
nonlinear term represented by Fig. 3(b), although
we shall take into account the other diagrams in
an exPlicit zgay.

Let us introduce function G„which is the sum
of the subset of the diagrams for the propagator,
represented in Fig. 5. In what follows, we shall
analyze the function G, in great detail. We.begin
investigation of the series for G, by evaluating
the second-order correction to the propagator,
keeping in mind that all the internal momenta
integrations are to be carried out over a shell
k, &q&A,e', while external k- . We write an-
alytic expression I, corresponding to diagram

2m J» [0'+ (I',q'~' —v,q')'][ f((o —0—) + v, l k —ql'-I', l &- ql '~'J (4.1)

Simple integration over 0 yields (v, 0):

O'IP(k, l) &',k'D,I'(k„I)
I k»&» ( $47 I ka&3)~

(4.2)

Investigating the ultraviolet properties of a turbu-
lent fluid we need information about the asymptotic
behavior of the random force in the limits 0
We postulate that D(q) decreases when k- ~ as

where D(q)~q"", y~ d (k~ k, ; ko-0~1/L) . (4. 5)

and

&2»oe D )
l

U'(k &)
~

I
(q aX'L"'

0 p 2/3 0
ko

koe
M, I=r'(k, f) It D(q) -(I -0) .

Ao

(4.3)

(4.4)

It is our belief that the asymptotics (4.5) repre-
sents the situation somewhat close to reality
though we leave discussion of this point to the
following sections. Substituting (4.5) into (4.3)
and (4.4) we see that U'(k, l) oL'~' is divergent
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in the limit L-~. At the same time result (4.4)
for Z'2(k0l) does not cause any trouble since, if
d'=y, it is cut-off independent. Another obser-
vation following from formula (4.2) is that in
the limit k- ~,

U'(k. f) „,~~„Z'(k„f)„, (4. 5}

and we can anticipate on the basis of general
considerations that the actual expansion parameter
is k dependent, similar to one derived in the
previous section, which grows to infinity when

For example, evaluatihg the contribution
of the first from the top diagram of the fourth
order represented in Fig. 5, we obtain for
[U(k,f) = U]:

2yR 302, . 4 ~6
I =G(k &o)I = + " k/ — k/

2 0 s 1 FS F4 FS0 0 0

(4.7}
in the limit k

Combining (4. 6) and (4.7), we learn that the
expansion of the propagator consists of all powers
of both large parameter U oL2/3- and small
parameter A., and, in addition, all powers of

It is important, however, to mention
that as we see from (4.6) and (4.7), contributions
not containing powers of U2 are proportional to

3 in all orders of the perturbation series, for

As we shall see, those are the terms which
determine ultraviolet behavior of a turbulent
fluid while all the divergent contributions pro-
portional to the powers'of I,' ' are irrelevant and
can be summed up to a convergent expression.

To illustrate the main ideas of our method,
let us single out the most divergent terms in

each order n of the diagrammatic-expansion of
Fig. 5 which are proportional to k "U'". We de-
note the sum of these terms as G, d . Through
construction, which is easily understood from
Fig. 5, we have

6, 4 0060(k, (O)

~ (2n -1)!!k'"U' (k. , f)(-1)"-'

(4.9)

Introducing a Gaussian random velocity field v~
of the large eddies we have so far eliminated

2 )
U =(v') jt g' exp~ —,)d'v~ .2U')

G, can be written as

(4.10)

they can be written in an explicit form:

geffgPP 3gk2g
I000 62-x(k (O)

o o ~ k2/ (22) 1)0 l
( 2 F k2/2)22

(4.3)

1
p k2/3

0
(4.11)

where the average is taken over all v~ according to perscription (4.10). It is clear that (4.9) and (4.11)
are identical.

The next step is to try to generalize (4.11}to include all the divergent terms of the perturbation series
into a mere frequency shift as we managed to do deriving (4.11). We made a guess that

(4.12)

Equivalence between expression (4.12) and diagrammatic expansion Fig. 5 was checked by an empirical
study of the diagrams, which we have carried out up to and including some of the eighth order diagrams.
Namely, one can check after a simple but bulky calculation that both (4.12}and expansion of Fig. 5 are
identical and equal to:

6 = 6 ~' k "U 2-X k 6 (k a))[1+10k U 6 (k 00)+105k O'G4(k (o)+1260k U 6 (k (g)+ ](222 —1}!!
(4.13)

+X40k460(k, (o)[10+280 k U'6, (k, (o)]+ ~ ~ ~

Writing expression (4. 13}we set: constant M2/= 1 for the sake of simplicity and introduced dimensionless
coupl. ing parameter

Mo"
3/210
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We are working now on the proof of the expression (4.12) to all orders of perturbation expansion but, at
the present stage, the exact coincidence of (4.12) and of the diagrammatic series of Fig. 5 with (4.13)
achieved in few first orders makes us to accept that

1
-i e + k v~ -I',A'~' — d„'"k'"l'"G~'

A, w +k ~ v~
(4. 14)

where coefficients d, =-1, d, =9 are calculated,
while all the others have yet to be found. We would
like to reiterate once more that expression (4.14)
is an exact sum of the diagrams of Fig. 5 to aB
orders of )P"U'" and to zeroth order of small
parameter X, or, in other words, in the limit
x,-0.

Formula (4.14) teaches us that the main effect
of the large-scale eliminations we performed
is the transition to a frame of reference moving
with the random velocity of large eddies v~. 'This

result can be visualized easily if it is realized that
the small eddies we are interested in are confined
within the large ones in a manner in which the
parts of a rigid body are. Thus, elimination of
the modes describing the largest-scale motions
in a system should necessarily amount to transi-
tion into a moving frame of reference associated
with the large eddies we have gotten rid of. We
conclude that the strong interaction corresponding
to a coupling constant proportional to L'~' in the
perturbation theory results exclusively in the
kinematic effect described by formulas (4. 12) and

(4.14), provided the diagrams, not included in
the subset G, (Fig. 5), do not change this result.
Vfe shall take them into account in an explicit
way in what follows.

The first diagrams we did not take into account
in G, appear in fourth order of perturbation ex-
pansion. They can be classified in two groups.
Group 1 included diagrams 5, 8, and 9 of Fig.
4, while graphs 6, 10, and 11 are combined in the
second subdiViSio. It is easy to check that none
of the diagrams 6, 10 or 11 of Fig. 4 contain
divergent terms O(L'~') since all are proportional

I

to A' '. Ne are interested here in the role of the
divergent terms and for the time being, let us
disregard contributions from these graphs. Con-
sider now, for example, diagram 5 of Fig. 4.
It is estimated that (see the Appendix) its con-
tribution I4 is

I~ 8A,OM2lI~, (4.15)

where I, stems from the only graph of second
order evaluated above [see Eqs. (4.2) and (4.6)].
Using (4.15) we can sum up another subset of
graphs which includes aL/ fourth-order contribu-
tions not taken into account so far, and some
from the higher orders.

A procedure is presented in Fig. 6 with the
obvious results:

G = G, —+4 P.OM2l (G, —Go) + 0 (A ) . (4.16)

GO =(0 +k ' Vt (4.17)

and write the expression for the Green's function
which follows from (4. 12, 4.14, and 4. 16):

Evaluating expression (4.16) we took into account
aD ten diagrams of fourth order (diagrams 5, 8,
and 9), each of which is =~8@VI,EI, . Factor ~4 in
(4.16) is the result of an approximate calculation,
but it is clea, r that its exact va, lue is & 1 (see the

Appendix) .
The next steP of our ultraviolet renormalization-

group procedure consists of such coordinate trans-
formation gvhich brings us back to the laboratory
nonmoving frame of reference We us.e the
Galilean transformation"

1-~PM, 1 (4.18)

Assuming from the begining that Xo is small,
and neglecting terms proportional to A., which
are justified in the limit A-~, we derive readily
that t0 + ~ ~ \

1
-i(o(1 + ~~@M,/) —k'~ P, (I + ~~@II21)

(4.19)

Analyzing (4.19) we write the intermediate fre-

.fp.'~, c(~ - g )

FIG. 6. Besummation based on fourth-order graphs
not included into the principl. e subset 6,.
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quency 0, and p, as and derive, keeping the coeff ic ient in front of -i~
in (4.19) equal to unity:

and

0/ = ol (1 + ~4XpI2/),

Z'& ——Z', (1 +~QV2l), (4.20.)

~ ()) p Ot(l ) + 2/3l

Z(t) = Z, p(1 —~XPS,l)e""", (4.as)

4=&p .

The second of the formulas in (4.20) justifies the
negative dissipation term eI'pk' j' we have added
into the equation of motion (2.1) from the begin-
ning. Physical meaning of this term is clear:
The energy is pumped into a system in the region
k, = 1/L-0. The stable steady state can exist
only if this energy is dissipated in the viscous
range where the term vpk is dominant. Elimin-
ating the modes from the shell near kp we intro-
duce the universal energy source 1"ok'/'v(k, ill)
which compenstates the influence of the part of
the energy-supplying modes we have gotten rid of.
Without this negative dissipation, the energy
balance would be destroyed which, of course,
is forbidden. It is remarkable, however, that
the large-scale elimination results in appearance
of a universal term proportional to k'~3 while the
information about the structure of the stirring
force in the region k-0 is hidden in the propor-
tionality coefficient pp. It is tempting to state
that I'13=& .

We shall evaluate now the intermediate force
correlation function. The only rel.evant diagrams

-are given in Fig. 7. Simple integration yields
after the coordinate transformation (4.17):

D =D ' 1 -X2"~ l'I 21'ok I'ok
I 0 0'"f2

] ( 2 +p2k4/3)2 ~2 +p2k4/3)
L 0 0

(4.21)
or

ff — eo ll

and consequently

e 3O'(l)-(~+5)
D(f) =D, (1 + ", ~PS,E) (4.24)

Choosing

g=exP~ — —
2

i++@If
l2)l

( se'(f) d+y
2 2

(4.25)

we derive the differential. recursion rel.ations

da—=0
dl

—=~ -~2+1+ —7&2~,
dA. ( d —y
dl 2 )

(4.28)

—=1 (-e+~- P)
dl

where we have set the dimensionality dependent
factor in front of the nonlinear terms P in (4.24).
equal to unity. This factor does not enter further
consideration. An equation for the dimensionless
coupling parameter A,

„

u)»2
A,~= F

is obtained readily

DI = Do(1 —A pf2l) (4.20 ) &&'
—~X,(d-y-11K;) . (4.27)

Y=ke ' &ll'=ale o ', v~=v'( . (4.22)

Assuming that Xp is small. , we introduce the
function

in the limit &-. The last step of the procedure
consists, as usually, of rescalinp'.

Since we are interested exclusively in the cases
y & d, we conclude that the theory described by
Eq. (2.1) is asymptotically free in the ultraviolet
region. I et us first take d=y. In this case, A.

slowly tends to zero when l —~ as 1/l. We find
from Eq. (4.25) that

l2 (i) =a(t)+~ ~~,t
z= ~+0 (1 I

3 (1) 3 (4.28)

Using (4.25 and 4.28), we calculate the energy
spectrum:

in(kL, )
(4.29)

FIG. 7. Second-order correction to the force correla-
tor.

If e =d —y & 0 the effective coupling parameter
X, -O exponentially with /. The value for z can be
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extracted from (4.26) if we impose the natural,
in our opinion, condition

A. -const at l-~ .
This yieMs

2
g ——+—

3 3

DI ——Do,

Vg =Vo

Aq
——Ao .

(5.1)

The energy spectrum in this case is

Z, (k)~k-""'" (4.30)

After rescaling, we obtain the linear recursion
relations

I'(k) ~ kt'tt (4.31)

and the renormalized constant p becomes k de-
pendent:

dD——0
dl

—= v(-z +2),dv

dl (5.2)
It can be checked readily that this fact does not
influence the main steps of our ultraviolet re-
normalization-group procedure. We can, in

principle, begin with an equation of motion sim-
ilar to (2. 1) but with the k dependent negative
dissipation which, in this case, is proportional
to k /~II I/3 As long as we keep g constant, all
the results derived above hold, and the divergent
terms can be removed by a proper coordinate
transformation exactly as we did above, since the
only necessary property of the system we need for
it is

P, „(k)=(I/a)P, „(ak).

Relations (4.30) and (4.31) should be taken with

great caution. It can be seen from (4.4) that

M2 is finite only when y ~d. This is most essen-
tial for our theory, for it is based on the fact that
divergent terms result in a mere kinematic effect
while the energy cascade is determined by con-
vergent expressions. This means that D(k)
cannot be described by power y & d. One can
imagine the somewhat more realistic situation
when fluid is stirred by a force bounded in k space
[D(k) = 5(k —k,), for example]. If this trial force
generates the force having nonzero components
in the entire spectral range it must be propor-
tional to k-'.

V. ASYMPTOTIC FREEDOM IN A VISCOUS RANGE
t'I'Ok2&((v k2 AT k )

In this case, formulas similar to (4.12), (4.18)
(4.21) and (4.20'), but with vok instead of 1. k
can be derived readily with use of the procedure
introduced above. This alternation of the dissi-
pative term in the formulas produces very large
changes in our conct. usions in the' limit k —~
We can see that

—=I (-e+x)
dl

dZ -3 d -yl-e+I+
dl 2 . 2 ]

The differential equation for the effective dimen-
sionless coupling parameter X (3.5):

—=- X -2+dX 1 — (d —y)&

dl 2 2
(5.3)

confirms asymptotic freedom in the viscous range.

VI. SUMMARY AND CONCLUSIONS

'This work is based on the statement that form-
ula (4.12) represents the correct dependence of
the propagator upon. large parameter U'=(v2~).
Expression (4.12) was checked by the direct cal-
culations which involved eval. uation of the dia-
grams, including 15 graphs of the sixth order
and god gygphs of the eighth order. In principle,
one cannot rule out the possibility that Eq. (4.12)
fails in some very high orders of the perturbation
series, but it seems quite unl. ikely after we have
checked the exactness of (4.12) up to and includ-
ing the eighth order of perturbation expansion.

As was mentioned above, the main result of the
large-scale elimination is the transition to frame
of reference moving in the physical space with the
random velocity v~. Transition back to a nonmov-
ing frame of reference which involved random
Galilean transformation removed aB the divergent
terms. It was shown that dynamics is determined
by finite contributions. These results were anti-
cipated a long time ago by Kraichnan, ""who
wrote that the large-scale effect on the small ones
consists of the formation of a random "field which
convects all the structures without distortion in
every realization and therefore has no effect at
all on energy transfer. In other words, energy
transfer is invariant to random Galilean trans-
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formation of a statisticaBy homogenious turbu-
lence. " In his later work Kratchnan developed a
formal perturbation expansion which did not con-
tain contain convective terms. '4 This expan-
sion, based on random Qa1.ilean transfor-
mation (RGT) must be related to the one intro-
duced in the present work.

One of the results obtained in this work was the
appearance of negative dissipation in the Navier-
Stokes equation under random stirring. In a way,
this'broadens the range of the scales which can
be described within a framework of macroscopic
hydrodynamics. We know that the existence of '

the microscale is manifested by the viscous term
in the Navier-Stokes equation and the microscopic
motion of fluid molecules can be treated in terms
of the small-scale, small-time random force.
It is clear from our development that the large-
scale random motion can be taken care of by
introducing negative dissipation a k . Moreover,
it is our conviction that the large-seal. e random
motion of atmosphere and ocean be treated in a
sufficient way only if this negative dissipation
term, which serves as a measure of our ignorance
of what is going on the largest scale, is taken
into account. It is quite probable that the nega-
tive-viscosity phenomena experimentally observed
in fluids under certain conditions can be explained
in terms of this contribution to the equation of
motion.

The role of this negative dissipation is important
for it introduces a new dimensionless parameter
into the theory which is not equivalent to the
Reynolds number we are al.l used to. From
definition (4. 4} and dimensionality considerations,
we conclude that

and we see that our ultraviolet renormalization-
group procedure brings parameter%. into the
dynamic equation of motion. It is easy to form a
dimensionless parameter, not including v, -0:

(5.2)

which can serve as a basis for constriction of
perturbation expansion when the Reynolds number

is inconvenient. If & is finite, which represents
the real experimental situation, we derive readily
from (4.4) and (4.5} that y ~ d.

The most important outcome of our theory is
the logarithmic correction (4.29) to the Kolmo-
gorov spectrum. It follows from (4.2V) that the

X —41 expression Z(k) ~ k ' ' does not exist in
the l.imit k ~. The very fact that K-41 corres-
ponds to the boundary of convergence in the k-0
limit serves as indication that the logarithmic
correction (4.29) persists in the entire k space.
As we see from (4.2V) this addition to the K-41
is responsible for the non-Gaussian statistic of
the velocity field v(k, u) which is excited by a
Gaussian random force f(k, &g). It is clear that
this in turn manifests the intermittent nature of
fully developed turbulence initiated by the stirring
force with the correlator (1.1).

However, we must ask the following question":
Does the expression (4.29) describe intermitten-
cies generated by the models (2.1) and (1.1) in an

, accurate way? Our procedure is approximate
and we should review it to discuss this important
problem. Elimination of modes from a shell
ko + k + kp8 yielded corrections to propagator
G, (k, &u) and force f(k, &g) which have been calcula-
ted in the limit A»koe'. The renormalized func-
tions G& and f& have then been substituted into the
equation of motion and the next step of the proce-
dure consisted of elimination of the modes from
an adjacent shell Aoe' ~ q ~ koe". It is clear that
among those modes were few with momenta k = q,
with k belonging to a shell eliminated at a previous
step. In other words, we have been treating
interactions between scales of similar size in an
approximate manner, while taking into account
interactions between modes of sharply different
wave vectors in an accurate way. It is clear that
this approximation is uncontrollable within the
framework of dynamic renormalization-group
methods, and it is hard to judge whether those
interactions contribute to intermittencies leading
to the finite-power corrections to the K-41 re-
sult. It is to be emphasized that exactly the same
problem arises in the regular infrared RG tech-
nique which is based on asymptotic (k- 0, a&- 0)
expressions for propagator and force. ' It is to
be stressed, however, that if there exists a finite
correction to power it must be derived in both
k-0 and k-~ limits. The problem (2.1) and

(1.1) does not have a length scale and thus the
energy spectrum of randomly stirred fluid must
have A-0 and k-~ asymptotics different by not
more than logarithmic factor. Keeping this in
mind the finite correction to, seems to be un-
likely because even interactions between different
scales, as we learned from Refs. 1 and 2, lead
to expression K-41 corresponding to a boundary
of convergence.

We would like to conclude this paper by discus-
sion of the assumption about statistical indepen-
dence of the velocity fields v(k, &o) and v~. As we
stated above, field v~ describes the motion of the
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largest scale of the problem and thus can be
treated as decoupled from v(k, w) when k-~.
However, calculating the energy spectrum, we
dealt with the integral

E()t) n)p I U~ p Id(d
( GO|

)
(6.4)

where - &~ &~. It is clear that in the region
u-0 one should be careful treating

(v(k, (u))-„=V(&,(u), (6.5)

which was used in performing coordinate trans-
formation (4. 17) in the renormalized propagator
[(4.14) and (4.16)], because the time scales of
v~ and v(k, a&) become of the same order. In this
region of frequencies Eq. (6.5) does not hold and
this can lead to additional corrections to the en-
ergy spectrum provided this frequency interval is

wide enough to contribute to the integral (6.4).
These corrections can, in principle, lead to inter-
mittent behavior in the inertial range spectra
although at the present stage, we have no grounds
to accept or to reject this statement.
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APPENDIX

In this appendix we are mainly interested in the evaluation of some integrals involved in derivation of
relation (4. 15). We begin with the calculation of the integral (4. 1) in the limit v, -0. The 0 integration
is readily done with the result

q-'d'q
Il ~0

I 2/3s . v/3 ~ 2/3 Tp 1&Dp:1
2q (-i(o —q' —

I k —q I

which yields (4.2).
An analytic expression corresponding to the fourth-order diagram5 of Fig. 4 is

, dQ d02
d ~id f2&i tr2

[ i(&o —0—,) —I k —q, I'"](-iQ, —q', ")'[(&,—&,)'+ I q, —q, I "'](0', + q,"')

(A 1)

(A2)

In writing (Al) and (A2), we set D(q)=q in accordance with the asymptotic behavior of the random-
force correlator (4.5) in the limit q-0. Constant I', =1 is taken for the sake of beauty. The frequency
integration in (A2) yields

I ~ x4 t
— q,'d'q, d'q, q, 'q, "

' J 41', —j, l
"',"'(- — ',"—Ik —q, I "')( ',"+,"'+

I q, —q, I
"')' ' (AS)

It can be readily checked that region q, «q, -0 does not contribute to the integral (AS). It is a good ap-
proximation to evaluate (AS) in the limit q, «q, 0. The result is

(A4)
d qid q2qi q

16 . q,
' '(—i&@ —q', ' —Ik -q, l"') '

I

A comparison of (A4) with (A2) proves formula (4.15) if one takes into account the definition of M, which
follows from formula (4.4).
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