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We study chaotic systems generated by deterministic or probablistic mappings. We introduce the density function

which is an eigenfunction of a probability-preserving kernel E. We are able to show that all eigenvalues of K have

magnitude less than or equal to 1 and that the only magnitude-one eigenvalues are the Nth roots of unity. We have

also calculated the corresponding eigenfunctions associated with these magnitude-one eigenvalues: These

eigenfunctions can be expanded in terms of N positive functions having disjoint support. We then concentrate on a
one-dimensional system, and study the behavior and mechanism for various chaotic transitions. We find that the

mechanism associated with the 2 to 1 {ormore generally, 2N to N j transition is different from those associated with

other chaotic transitions. We then determine the conditions for these transitions, and express them in a universal

form. We confirm the Huberman-Rudnick scaling in the large 2" to 2" ' chaotic-transition region, and determine

the prefactor at these transitions. In addition, we establish a simple relation between the Lyapunov exponent and the

folding of the distribution functions. We have also studied the chaotic regions of this system numerically.

I. INTRODUCTION

The problem of chaotic behavior in deterministic
nonlinear systems has received considerable at-
tention in recent years. ' ' In particular one-dim-
ensional maps have been extensively studied as
there is increasing evidence that under certain
circumstances complicated systems have an un-
derlying one-dimensional structure. For a recent
review of one-dimensional maps s'ee the article
by May. ' The features of interest are the se-
quences of bifurcations leading to 2" cycles of the
basic periods and the subsequent chaotic behavior
which has a similar bifurcation structure. All
sequences of bifurcations occur as some parame-
ter is changed. Smaller and smaller changes of
the parameter lead to limit cycles with larger n.
Finally an accumulation point is reached and for
values of the parameter beyond that point the pro-
cess is inverted, except that the behavior is now
characterized by cycling between regions instead
of isolated points. These sequences of bifurcations
are characterized by a remarkable scaling proper-
ty discovered by Feigenbaum. ' He discusses the
scaling for the isolated fixed points. Huberman
and Rudnick' point out that the same scaling behav-
ior applies in the chaotic region as well. The ori-
ginal purpose of this investigation was to investi-
gate what changes in the theory result if the map-
ping is allowed to be slightly probabilistic. Some
information on this point is discussed by Crutch-
field and Huberman. 4 The theory we developed
turned out to provide us with some new insights
into the deterministic one-dimensional map, and
consequently part of this paper discusses those
developments.

It seems appropriate to study some of the prop-
erties of stochastic maps, and eventually to be

II. GENERAL THEORY

We consider the maps of the unit interval onto
itself by a probability-conserving mapping,

1

4(») = &(» y)4 (y)dy,
0

where

1

A(», y)d»= 1
0

and

K(», y) & 0. (2.3)

more precise about the sources and size of the
stochasticity as related to some experimental con-
figuration. In this paper we set up a formalism
for discussing the equilibrium-density distribution
and the approach to equilibrium. In the next sec-
tion we will describe the formalism and demon-
strate certain general properties of a wide class
of models. Then in the third section we will re-
strict ourselves to a deterministic one-dimension-
al map and we will exhibit a number of simple
features of such maps. We discuss the transitions
between 2" cycles and 2" ' cycles and then the new
behavior that occurs in the three to one transition.
In the large 2" to 2" ' chaotic-transition region, we
confirm the Huberman-Rudnick scaling' and are
able to determine the prefactor associated with
these chaotic tra'nsitions. Same other simple
sealing properties are discussed as well. A sim-
ple expression for the divergence of neighboring
points (Lyapunov exponents) is given in Sec. IV.
The numerical method used is discussed briefly
in Appendix A.
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For a technical reason, basically aimed at ruling
out general unitary kernels associated with area-
preserving mappings, we also need the operator
E to have an additional property. known to math-
ematicians as quasicompact. Equation (2.2) im-
mediately gives

l1
I,(x)K(x, y)dx = ql-(y) .

0
(2.8)

By integrating Eq. (2.8) and using Eq. (2.2) we see
that if g+1,

x fax= x dx ~ (2.4) 1
R(x)dx = O.

0

x„„=~„(1-x„)
which gives for E,

K(x, y) = 5[x —Xy(1 —y)].

(2.5)

(2 8)

One way to introduce probabilistic behavior is to
assume that at each iteration X is chosen according
to a probability distribution P(X). Then we would

have for K,
4

K(x, y) = dXP(X)5[x - Xy(l —y)].
0

A simple version of this is to take E to be the sum
of two terms

K(x, y) =~[x- X,y(I -y)]

+ (1-p)~[x - qy(1- y)]. (2.'I)

Note that this mechanism for adding probabilistic
behavior is different from the one studied in Ref.
4. To study the solutions to Eq. (2.1), we will
imagine finding the eigenvalues and eigenfunctions
of E. We suppose that E is reasonably well be-
haved, although operators such as the one in Eq.
(2.6), are acceptable provided we allow 5-function
distributions. The stable periodic cycles cor-
respond to 5-function eigenfunctions. The eigen-
function problem for K involves finding both left
and right eigenfunctions

A surprising amount of information can be ob-
tained from the conditions (2.2) and (2.3). In par-
ticular we will show that the equilibrium distribu-
tion is characterized by N (N=1, 2, 3... , ) disjoint
regions all having the same area. The operator
K maps cyclically the function characterizing one
of these regions into the function for another re-
gion. These statements (with some qualifications}
are independent of the dimensionality of the sys-
tem. Note that the operator in (2.1) can corre-
spond to a set of differential equations with no
tine-dependent parameters or to a set with peri-
odic parameters. The mapping would then be for
a fixed time interval. For our numerical examples
we will use

Next take the absolute value of Eq. (2.8) to obtain

)" K(x» IR(» Idy - I~ I IR(x}I.
0

We now have the following results:

Lemma 1: All eigenvalues q of E satisfy

IqI -1.

(2.10)

This implies D(x) =0, and consequently

Kpo= $0.
Lemma 3: If P is an eigenfunction of K with

eigenvalue Iq I
=1, and if there is no degeneracy

for the eigenvalue 1, we have
(a) There is an integer N such that q =1. This

says that all eigenvalues of absolute value 1 are
Nth roots of unity.

(b) There are N nonnegative functions yl with
disjoint support such that

x/+1& g —1y 2~ p N 1

XN+y Xy ~

(c)

4.(x) = Q X,(x) .

This result follows immediately from integrating
Eq. (2.10) over x.

Lemma 2: If R(x) is a right eigenfunction of K
with eigenvalue IqI =1, then @,(x)-=IR(x}I is an
eigenfunction with eigenvalue 1.

Proof. From Eq. (2.10) and the fact that Iq I
=1

we have

1

D(x) = K(x, y)y, (y)dy y, (x) O.
0

Integrating D(x) over x and using Eq. (2.2}, we
have

1
D x dg=o.

0

1

~
K(x, y)R(y}dy=qR(x)

0
(2 8) (d) There are N eigenfunctions of K having eigen-

values with absolute value 1. Define 0. =e
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They are (in addition to $0) with

(t},(x) = Q (}'"X,(x) .

Note that this implies that the support of ((}},sep-
arates into N disjoint regions and that within each
region p,(x)/

~ p,(x)
~

is a constant phase. Also
each Nth root of unity is represented once and only
once.

Proof. Suppose

Since K is real, p* and q* satisfy a similar e(lua-
tion. From Lemma 1 we have

with

Notice that (t} and (t}0 have the same region of sup-
port We consider the ratio (t}(x)/(t},(x) which is
obviously a phase e"'"' and define the ratio to be 1
where $0(x) = 0 (the region where $,= 0 is irrele-
vant). We introduce the expression

Since the integrand is nonnegative, if K(x, y) a 0,
then

or

(2.is)

(2.11)

We will demonstrate that the support of ((} (or (t}0)

is made up of disjoint regions and that in each re-
gion P and (Ie}0 differ by a constant phase (different
for each region).

g)efinition of region. Consider only the points in
the support of (I}}0. Points x„x, (or y„y,) are in

the same region if any of the following conditions
is satisfied: (a) y, and y, are in the same region
if there exists an x such that K(x, y, ) a0, and

K(x, y, ) u 0. (b) x, and x, are in the same region if
there exists a y such that K(x„y)o 0 and K(x„y)
a0. (c) x, and x, are in the -same region if there
exists an x, such that (x„x,) are in a region and

(x„x,) are in a region. Similarly for y.
From E(l. (2.11) it is clear that ((}}(y)/(3I}0(y)has

the same phase in a region, and that the phase in
regions related by K(x, y) 4 0 is

Clearly if there is any finite width to the mapping,
then the neighborhood must return after a finite
number of iterations provided that the space is
finite. This is true in any number of dimensions.
As the width of K gets narrower, larger N values
are permitted, but the maximum N is related to
the width of K. This establishes part (a) of the
Lemma.

We define y& to be $, on the jth region, i.e.,
x(= jth region

Xl

~

~

~ ~ ~

~ ~

0, otherwise

since K connects $0 in the jth region to ((}}0 in the
( j+1)th region, we have

as desired; parts (b) and (c) then follow. Knowing

yI, we can verify easily that (t},(x) is indeed the
eigenfunction of K with eigenvalue q= exp(i2~l/N):

KP(= pe"KX}}

We now consider an infinitesimal neighborhood in
the support of (t} containing a point x. We now fol-
low this neighborhood under iterations of K. If it
returns after N iterations to partially overlap the
original neighborhood, the phase must be restored
to its original value and by using E(l. (2.12) N
times,

gk lx

=0 0

—~ &2' &l&~

This completes the proof of Lemma 3. For an
alternate proof of part (b), see Appendix B.

We wish to comment about the special case in
which the width of E is zero. This case includes
the iterations of difference equations of the form
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x~„=f(x~}
with

Since the mapping is from a point of zero width to
another point of zero width, the iteration of a point
may never return to itself. However, in the cha-
otic region a small neighborhood will return and
cover the original neighborhood after a sufficient
number of iterations. If we assume that the phase
of the function Q(x) is piecewise continuous, then
it is possible to establish Lemma 3 even with a 5-
function K. We shall modify our definition of re-
gions by assuming that there are small neighbor-
hoods which lie entirely inside these regions. Fin-
ally we can show that if the eigenvalue equal to one
is degenerate then there will be disjoint groups
mapping onto themselves, but not onto members
of other groups and there will be one such group
for each eigenvalue equal to unity. For a general
mathematical discussion of some of the above
ideas, see Ref. 6.

%'e have computed some eigenvalues and eigen-
functions of K. An example of an eight cycle is
shown in Fig. 1 for the K of Eq. (2.6}. In later
sections we will show more examples of the dis-
tribution function, paying particular attention to
transition regions. An important feature of Fig.
1 is the narrowness of most of the regions (they
all have equal area under the curve}. In an exper-
imental setting it would be difficult to distinguish
a chaotic eight cycle from an eight cycle with 5-

40"

function supports. They will both have an under-
lying periodicity which will give similar results
in experiments such as the one Feigenbaum' dis-
cusses.

The effect of adding some randomness to the sys-
tem is illustrated in Figs. 2 and 3. In Fig. 2 we
added a very small extra term to the K that gave
Fig. l. In the notation of Eq. (2.7) we chose p=
0.95, X, =3.571, and X„=3.5, the latter value cor-
responding to periodic cycles. The small amount
of random behavior changed the eight-cycle re-
gions of Fig. 1 into the two-cycle regions of Fig.
2. Chaos also results if two periodic maps are
added together. We choose two A.'s, each of them
corresponding to a periodic two cycle and added
the maps according to Eq. (2.7). The resulting
chaotic behavior is shown in Fig. 3.

We wish to mention here the general behavior of
the eigenfunctions. If E is bounded and piecewise
continuous, the eigenfunction Q will at least be
piecewise continuous. For a deterministic system
x„„=f(x„), K(x, y) is given by

X(», y) = 5[x f(y)]—
The eigenfunction is either a sum of 5 functions or
an ill-behaved funct'ion P. In the latter case, if
the maximum of f(x) is quadratic, @ will in gen-
eral consist of an infinite number. of square-root
singularities of the form c,./( ~x —x, ~)~'. The func-
tion P is integrable, but not continuous, nor
bounded. However, the phase of P is usually con-
tinuous. In our figures we have cut off the highest
of the peaks that survive the numerical approxima-

x 20"

IO

00 0.25 0.50
X

0.75 1.00

FIG. 1. A chaotic eight cycle, K given by (2.6) with
X=3.571. Note that due to numerical errors introduced
in approximating a 6 function all of the couplings are
only approximate.

FIG. 2. A small second term has been added to the%
of Fig. 1 to simulate noise. X is given by (2.7) with

i 3 571 ~ A, 2=3.5, and P =0.95.
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50-

20"

IO"

0 0.2 0.4 0.6 0.8 I.O

FIG. 3. K given by (2.7) with P =0.5, X& =3.2, A, 2=3.13
=3.136.

tion so that more detail can be seen. Since we only
have finite resolution, the Q that we observed is
the average of P over finite bins. This will smooth
out both the 5 functions and the square-root sing-
ularities. Hence, we cannot distinguish numeri-
cally whether the system is periodic with a large
period or is aperiodic.

We now discuss the approach of a distribution
to the equilibr ium distribution. Imagine expanding
K in terms of its eigenfunctions to obtain

III. TRANSITIONS IN THE CHAOTIC REGION

As we increase the parameter A. in a typical de-
terministic system such as Eq. (2.5) beyond a
critical X„we find that there are many disjoint
chaotic regions. As A, increases, the disjoint re-
gions start to merge and finally become one re-
gion. ' In addition to the gross features described
above, higher-order cycles and chaotic processes
also appear and disappear at intermediate values
of X. These finer structures can be described
separately. In the following we shall describe the
mechanisms that lead to the merging of disjoint
chaotic regions.

In Sec. II we demonstrated that the presence of
K disjoint regions is related to the existence of
eigenstates with eigenvalues g obeying q"= 1.
These disjoint regions are linked to each other
under the operation of E. As we vary X, the dis-
joint regions may combine. This happens in two
natural ways. In the first case (see Figs. 4 and 5)
as A. changes the boundaries of the disjoint regions
(here B and C of Fig. 4) move toward each other
and finally B and C become the same point. Define
region I to be the line segment I= (A, B) and region
II = (C, D). Since all points in region I map into II
and vice versa their intersection point (B C) must-
be an unstable fixed point.

In the second way of merging, the disjoint re-
gions never overlap. However, as A. reaches the
transition value, the density Q(x) in the gaps starts
to develop a nonvanishing value. An example of
this is shown in Figs. 6-8. Thus we could achieve
a single region by filling in the gaps between the

im(y [y )

The Nth iterates of K on an arbitrary initial dis-
tribution is given by

(„) I g (P„l

It is evident that the eigenvalues having magnitudes
nearest to unity are dominant in determining the
approach to equilibrium. As some parameter in
K is changed, the eigenvalues change and at a bi-
furcation the number of eigenvalues of modulus
unity changes. For instance, at the transition
from a four cycle to a two cycle, two of the eigen-
values change from +i to complex numbers with
magnitude less than one. For the K of Eq. (2.6)
it is possible to discuss a scaling behavior of the
eigenvalues at a transition. We do this in Sec. V.
In the next section we discuss the changes the dis-
tribution function undergoes during a transition.

P

FIG. 4. A chaotic two cycle just before the transition
to a single region. K given by (2.6) with A. =3.67.
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at CB and we have only one region as shown in
Fig. 5. The requirement that f (P) is a fixed point
determines the transition value of A.. Thus we
have

(3.l)
In terms of E(x)=f'(x) we can reexpress this as

E'(P) = E'(P) ~ E(P) . (3.2)

As we shall see this equation applies for both
transition mechanisms.

W'e can generalize our method to study the 2" to
2"-' chaotic regions merging processes. If we con-
sider f"(x) with %=2" ', then the 2"-2" ' transition
in f is a 2-1 transition in f . Defining

E(x) =f'"(x)=-f""'(x) (3.3)
I

CB

FIG. 5. Just past the transition from 2 to 1, A, =3.679.

originally separated regions. As we shall see,
both mechanisms are realized for Eq. (2.5). We
present an example of each mechanism:

2" to 2" ' merging. We first consider the
2-1 merging. We can extend our result trivially
to cover the more general 2" to 2"-' case. In the
transition from two chaotic regions. to a single
chaotic region, we encounter the first mechanism
discussed above. Denote the position of the max-
imum of f(x) by P. The peak position is mapped
in subsequent interactions as follows:

f: P-point D-point A-point C

-point B-interior of CD.

The points are shown in Fig. 4. It is important
that P lies in the interior of AB and that point B
folds into the interior of AP during the mapping.
We can easily see that region AB is mapped into
CD and vice versa. In the gap BC there are two
special points E, E (see Fig. 4). E is an unstable
fixed point lying inside the gap BC and E is the
otherpoint such that f(E)= C. During an iteration,
points inside the line segment BE are mapped into
the interior of CD and are removed from the gap
BC. Under repeated iterations all points in the
gap are gradually moved into the segment BE and
then removed from the gap. It is easy to see that
points to the left of point A and to the right of
point B are also mapped into regions AB and CD
after repeated iterations. As we increase the
coupling constant A., points B and C move toward
F. At the transition coupling X„points B, C, and
F all coincide and the two regions become linked.
For A. &A.„regions AB and CD become overlapped

TABLE L Parameter Q for 2" -2" chaotic transi-
tion for the iteration x,i= Xx O, -xg.

Transition parameter A„

1
2
3
4

6
7

3.678 573 510428 322
3.592 572 184106979
3.574 804938 759 208
3.570 985940 341 615
3,570 168472 496 377
3.569 993388 559 135
3,569 955 891325 221

we find that the condition for 2" to 2" ' transition
can also be written as Eq. (3.2) with E(x) given by
(3.3). The set of X„for 2"-2" ' transition based
on the simple iteration equation x „=M (I —x )
is listed in Table I.

Z. 3 to 1 chaotic transition. Next, we consider
the 3-1 transition. Refer to Figs. 6 and 9 and de-
fine three regions: I is (A, B), II is (C,D), and
III is (F, G). It is easy to see, that the mechanism
described above cannot work. In Fig. 6 we find
that the three regions are mapped into each other
according to I-II- III- I. Let us assume (falsely)
that the first mechanism does occur. As these
three regions start to overlap in a manner similar
to that shown in Figs. 4 and 5, their intersections
I 0 II, II 0 III, GIA I must map into each other to
form a three cycle. Since regions I and IG do not
intersect, this scheme is not possible. Hence,
only the second mechanism described in Figs.
6-9, is allowed.

In a typical three-region chaotic map, Fig. 6,
the boundary points and the peak position x= P are
mapped according to

f: P-G-A-C-F-B-D-H,
where H is inside EG. For a singly peaked f(x),
folding can only occur around the peak x= P. In
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AB C P DE

X

FG

FIG. 6. Chaotic three cycle A, =3.856. FIG. 8. Past transition to single region A, =3.858.

terms of regions, we find that region I is mapped
onto region II, region II after folding is mapped
onto region III, and region III is mapped back onto
region I.

There are two mechanisms for removing points
from the gaps BC and DF. The first mechanism
is through folding and mapping: Point C is folded
onto point E (i.e., E also maps onto F, see Fig.
9) and the segment DE is thus mapped into the in-
terior of EG. The line segment DE serves as a
"drain" to the gap BC through which the points in
the gap may escape. The remaining points in BC
are mapped into EF. Upon a further iteration, EF

mays into BF, which contains both the gaps BC,
DF, and region II. Of course, all points which
map into II are removed from the gaps forever.
This serves as an alternative "sink" for removing
points from the gaps.

Ag A. changes, we may encounter the situation
where D and E coincide. Then, the drain DE is
sealed, but the other drain still works. Hence,
we still have two gaps and three separate regions.
However, as X increases further, the locations of
D and E are interchanged. The sink now becomes
a source, and points in reg'ion II can map into the
gape via the opening at ED (see Fig. 9). Of course,
we still have the other drain to remove points from
the gaps. The combined effect gives rise to a fin-
ite distribution in the gaps which represents the
equilibrium distribution between the source and
the sink just as in the case of a flooded basement.
Since the seepage is controlled by the size of the
gate, we expect that the value of P inside the gaps
increases continuously from zero with the increas-

III
I I I

FH G

I I I

A B C
I I

EO

m
I I

HF G

AB CP D

X

FG

FIG. 7. At transition to single region A, =3.857.

FIG. 9. (a) The ordering of the points discussed in the
text for a chaotic three cycle. (b) The new order after
the transition to a one cycle.
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X= 3.856800 652 477 765. .. .
8. Universal behavio~. %'e now discuss the un-

iversality of the 2" to 2" ' transitions. In Table I,
we see that as n-~, X„approaches the infinite
two-cycle bifurcation point X„=3.569945 671 . ..
from above. In fact, X„satisfies the asymptotic
behavior

A
X„=X„+—„ (3.6)

with

A=0.494454 ...
and

ing seepage. Figures 6—8 give actual graphical
representations of P in the neighborhood of a 3-1
transition.

Now, let us determine the condition for the 3-1
chaotic transition. As we have mentioned earlier,
the 3-1 transition occurs when points D and .F,

coincide. Since D is f (P), and since point E maps
into E=f4(P-), the condition for D and E to coin-
cide is for f(D) =f(E)= E. This then implies

(3.4)

Note that the points B,D, I' form an unstable three
cycle at the transition. In terms of F(x) =f'(x-),
we can rewrite the above equation as the universal
equation

(3.5)

Even though the 2-1 and 3-1 chaotic transitions
arise from different mechanisms, they obey the
same universal equation. The only difference is
in the definition of F: E is f' for the 2-1 transi-
tion, and is f' for the 3-1 transition. +Pe can
generalize the above result to an arbitrary transi-
tion. For f = Xx(1 —x), the 3-1 chaotic transition
occurs at

we arrive at an invariant function G(y) at large N.
This invariant function G is a linear combination
of the invariant functions g and h introduced by
Feigenbaum. 2 Note that G(0) = G(1)=0, and G(1/2)
= 1. The invariant function G(y) is shown in Fig.
10.

IV. FOLDING AND THE LYAPUNOV EXPONENT

A useful measure of the degree of mixing of a
dynamical system is provided by the Lyapunov ex-
ponent. For a one-dimensional chaotic system,
the Lyapunov exponent is simply related to the
folding phenomena. We consider a simple one-
dimensional mapping

x„„=f(x„). (4.1)

The chaotic region is characterized by the fact
that the separation of two neighboring points (x„,y„)
will increase exponentially as we iterate (4.1) a
large number of times. For an infinitismal separ-
ation, we refer to the average logarithmic in-
crement defined by

1
p,

—= lim-
n~+ I™(p in ~f (&l)I)'

„o jo +0 ~0 n n($o
(4.2)

as the Lyapunov exponent. The exponent p, is pos-
itive (p. &0) in the chaotic region. Let us start
from a small neighborhood. After many iterations,
the neighborhood will enlarge and eventually cover
a compact space. Further iterations will map this
compact space into itself. It is known that there
exists a density function P(x) such that P(x)dx
provides the probability measure for finding an
arbitrary point inside the region dx after many
iterations of Eq. (4.1). The probability function
P(x) is invariant under the iteration and hence is
the eigenfunction with unit eigenvalue of the linear
equation

5=4.669201 609 . . .
is a universal constant introduced by Feigenbaum. '
For n & 6, the agreement between the asymptotic
formula and the true transition value is better
than one part in 10'. This asymptotic behavior
follows from the renormalization group structure
of the higher-order iterations as studied by Feig-
enbaum. ' Indeed, if we consider the behavior of
F(x) =f' (x) at the 2N-N— transition in the neighbor-
hood of x=P and express the result in terms of
the scaled variables

I ~

0.8

0.6

04

0.2

x-F'(P)" F(P)-&2(P) '

F(x) —F'(P) (3 7)
0.2 Q.4 Q.6 Q.8

Y

FIG. 10. The universal function G(y).
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where

Kzy ydy= x, (4.3)
Fold

P E
(a)

B

Z(», y) =- a[x -f (y)]. (4.4)

%'e have learned from Lemma 3 of Sec. II that the
support of Q may consist of N disjoint regions.
The iteration of K(x, y) [or (4.1)] will map points
from one region to another, and bring the point
back to the original region after N iterations.
Thus, if we consider the iteration defined by

I

x„„=Z(x„), (4.5)

with

&(x)=-f"(x)-=f(f" '(x)}, (4 8)

we encounter iterations which map a region back
onto itself. Since the Lyapunov exponent p, associ-
ated with f is related to the exponent i1„associated
with F via 4

P =~@Pry
=1 (4.7)

we only need to consider F and p,„involving simp-
ler mappings. A typical distribution function is
shown in Fig. 11. Let AB be a region which maps
into itself under F. The end point B is mapped
onto point A, end point A and an interior point D
are both mapped onto E [E(A)= F(D) = E], and point
P is mapped ontg point B. This mapping may be
achieved by folding PD on PA and then stretching
BP to the original length AB (see Fig. 12). For
more complicated mappings, it may be necessary
to fold the line segment more than once. All the

&p

(c)
B

FIG. 12. Mapping involved in a chaotic one region:
(a) Folding of AB about point P gives (b). Stretching BP
completes the mapping shown in (c).

with

4DB 4AE t

4AP (41)EB &

.~ PD (@2}EB &

(4 8)

(4.10) .

(4.11)

points in segment AE come from BD and the map-
ping is 1 to 1. We shall call this segment AE as
nonoverlapping. The points in segment EB come
from both AP and PD and the mapping is 2 to 1.
We call this segment EB as overlapping.

We denote the density functiori Q within segments
AP, PD, and DB as p»(x), Q»(x), and QDB(x),
respectively, obeying

y(x), for x~(AP)
0, x outside (AP) (4.8)

etc. Then, we have

~EB (41)EB (~2)EB' (4.12)

Equations (4.10}and (4.11) may be taken as the
definitions of Q, and $2. In the following, we shall
express the Lyapunov exponent as a function of
Q, P„and P2. The Q, and Q2 for the Q of Fig. 11
are shown in Figs. 13 and 14.

It is more convenient to denote the separation of
two neighboring points as Q(x)dx rather than as
dx. To understand the definition of m using $,
consider a particular point x, and its neighborhood
dh, . Map it a sufficient number of times N such
that it returns to its original neighborhood. If the
new length is dg„ the magnification is

dx, ~"
~&y(x, )dx, y(x, )dx, y(x, )dx,

dx, &p(x, )dx, g(x2)dx2
' '

p(xE)dxB
~ ~ ~

I

P E
I

D

FIG. 13.. Qlustration of overlapping. Density function
Q(x) for X=3.75.

\

The enlargement and reduction due to the extra
factor $(x} cancels and we have the same overall
magnification factor. The advantage of introducing
this modified magnification factor is that the mag-
nification factor is always one in the nonoverlap-
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with

P, (x)dx = y(y, )dy, ,

P, (x)dx = y(y, )dy, .
(4.16)

(4.17)

The magnification factors due to the mappings

y, -x and y, -x are no longer one, and are given

by

y(x)dx y(x)
lb, )dy, I,( x)'

(4.18)

y(x)dx y(x)
4b.)dy. 4.(x)

' (4.19)

The geometrical average of the magnification fac-
tor m approaches

I I

P E D

X

FIG. 1,3. Density function P~ (see text).

ping region due to the conservation of the prob-
ability under the mapping x= E(y), giving

nz =- lim] m(y, } (

and the Lyapunov exponent becomes

(4.20)

y(x)dx = y(y)dy (4.12)

or

y(x)dx
4b}dy

(4.14)

However, in the overlapping region, x can com, e
from two or more different points, such as y,
and y2~

(4.15)

To compute the limiting average magnification, we
note that the weighting factor at any point y is pro-
portional to its density P(y)dy. Thus, we can re-
place Z, in (4.20) by an integral over P(y)dy and

n by fdyg(y), giving

f„~dy y(y} lnm(y)

f„,dy 4(y)

In the numerator of the above equation, we can
separate the y integration into three regions: Re-
gion DB which maps into the nonoverlapping region
(AE) of x gives no contribution since 1nm=0. The
other y's are separated into y, and y, regions (AP
and PD), and they both map into the overlapping
region (EB) of x. The Lyapunov exponent becomes

f dyl e(yi»~(yi) + fdy, eb.)l~(y.)
f„,dy 4(y)

The expression has a nicer form when expressed
in terms of x. Using

4'(yk)dyk 4 k(x}dx

I l

P E D m(yk)=, (4=1,2)y(x)
x

FIG. 14. Density function P2 (see text). we finally obtain
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J Ch(C, (h)lh
( )+C,(h)lh

( )(
4(x) 4(x)&

f dx y(x)

)'4, (x) I $(x) 4.(x), 4(x)

f dx y(x)
(4.21)

The expression in the last large parenthesis of the
numerator of (4.21) has the form of an entropy as-
sociated with the mixing of two independent sta-
tistical systems. We can generalize Eq. (4.21)
trivially to include the folding of three or more re-
gions.

For the folding of two regions, we introduce an
overlapping factor ~ by

&y, (x) y(x) y, (x) y(x)& 1
l&e() y() e() y())!n2 '

It is easy to see that r= 0 if either P, /P or (t), /(t) is
zero, and r has a maximum, r = 1, at (t), /(t)

j. flNX
= (t), /()) = —,. In terms of r and P, we have

m~, the Lyapunov exponent p, ~, and the average
overlapping factor R~ are

m~ = 1.9872,

, c = linc= 0.6867,

and

u(&.) =2 "u, . (4.28)

Using the asymptotic formula Eq. (3.6}, we obtain

Rg = 0.9907,

respectively. The large magnification (m= 2) and
overlapping factor (R = 1}are not surprising. Nu-
merically, the universal function G(y} is very close
to the quadratic function f(y) = 4y(1 —y). The eigen-
function corresponding to the latter mapping is g
= I/[x(I -x) j . The iteration of f(y) gives rise to
the maximal magnification and overlapping factor
m=2, p. =ln2, and R=.1, exactly.

Knowing the Lyapunov exponent p, ~ for G(y), we
can compute the Lyapunov exponent p, (X) for the
original f(x) at the 2N-N transition point for large
N. In particular, for the 2"-2" ' transition at
large n, we have

dx y(x)~(x)ln2 dx y(x) .
EB AB

(4.23) (h.
—h )' (4.29)

To compute i(,„(or p, ), we need detailed informa-
tion about (t)„(t)„and (t) as functions of x. How-
ever, we can set a rather good upper bound on p.„
if we know the integrals of P, and ((), in the over-
lapping regions. Let

with

t = = 0.449 806 967.
ln5

Hence, we have

(4.30)

M, —= ChC, (h), lM, = f ChC (h),
EB &B

(4.24) t
i(, (X„)= 0.6867l (4.31)

dx y(x).
AB

we then define a mean. overlapping factor as

(4.26)

The (X —X„) power dependence has been recently
obtained by Huberman and Rudnick. ' We are also
able to determine the prefactor in addition to the
power dependence at these transition points.

((Mal+Ma) R I 2n (4.27)

For the particular coupling leading to the distribu-
tion functions of Figs. 9-11, we obtain p. = 0.36
and the upper bound would give p, ~ 0.42.

%'e have studied numerically the magnification
factor and the Lyapunov exponent for the universal
function G defined via Eq. (3.7) by sampling 300000
iterations under G. The average magnification

M~ M~+M~ M~ M~+M~ln + ln
Mi+M~ Mi Mi+M~ M~

( )

One can show that

V. BEHAVIOR OF EIGENVALUES
NEAR THE CHAOTIC TRANSITIONS

We learned from Sec. II that there are two eigen-
values )7=+ 1 with l)7 l

=1 in the chaotic two-region.
On the other hand, there is only one eigenvalue
)7=1 with lq l

= 1 in the chaotic one region. Thus,
when the. system makes a 2 to 1 chaotic transition,
the q= -1 eigenvalue becomes an eigenvalue of
l~l &1~

In the chaotic two region, the eigenfunction (t),
of q=1 is real and positive. The support of @,
contains two separate regions I and II as in Fig. 4.
The eigenfunction P, associated with q= -1 also
has the same support. We may choose (((), as
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in region I
in region II. (5.1)

However, as one enters the chaotic one region,
the previous two regions I and II overlap (see Fig.
5}. To the first approximation, P, in the overlap-
ping region may be viewed as the sum of Q, 's in I
and II, while P, in the overlapping region is the
difference. The interference of P's in the overlap-
ping region is responsible for reducing lg l

to less
than 1. To understand qualitatively how q behaves
near the transition, we consider the expression

dxdy«x, y)p. (y)l( („)+ („)ilJ &a(x) e(y) ~'

= (2+ 2q) dx, (5.2)
I g(x) I

'
Q x

which implies

f dxdy«x y)eo(y}l
( )+ ( ) I

I'e(x) A(y) &'

0 Oyl (53)
I(g (x)l'
e.(x)

In deriving (5.V), we have also approximated
lp(x) '/$0(x) in the denominator of Eq. (5.3) by

Equation (5.V) indicates that I+q is propor-
tional to the integrated density of P, in the over-
lapping region. Note that the size of the overlap-
ping region 5 is proportional to 5X=-X —X, and that
P,(x) is dominated by square-root singularities
1/( lx —x, l)~', in the overlapping region. Hence,
we have

dx

1+/
0,

(5.8)

for x in the overlapping region. One can show that
the only important region of integration in the lhs
of Eq. (5.2) is for x in the overlapping region.
With x in the overlapping region (OR), we may
have a crude estimate of 1+g as,

0(l}fo„dxfdye(x, y)y, (y)

fdx y, (x)

0(l) fo„dx P,(x)
fdxP, ( x)

In (5.2) and (5.3), we have made use of the fact
that q and P are real. When X is smaller than the
transition eigenvalue X„ the regions I and II are
disjoint. In this case, we have

t4(x) @(y) '
0K(x, y)l

( )+ ( )
(5.4)

and hence

1+g=0, X& A, . (5.5)

(
g(x) y(x) I' 0(1)
P.(x) P.(y) i

(5 6)

cj

or~
C4

+

I

-I.O 0
(x-x, ) {io')

FIG. 15. (1+g)2 as a function of A, -A, ~ near the 2 to 1
chaotic transition A, =3.6786.

When X&X, regions I and II overlap and the left-
hand side (lhs) of Eq. (5.2) no longer vanishes. We
find that

The constant of proportionality depends on the de-
tailed structure of @,(x) and on the rate of change
of the overlapping region. However, we know that
in the vicinity of X= X„(1+@)'is zero for X& X,
and increases linearly with $ for X~ Xy In Fig.
15, we plot (1+@)'as a function of A.. The transi-
tion and the linear dependence in X are indeed ver-
ified numerically.

We may generalize the method to study the
change of eigenvalue g near a 3-1 chaotic transi-
tion. In the chaotic three region, the eigenvalues
with lq l

= 1 are 1, qo
—= —,'(-1+WSi), and go*. The

$0(q = 1) state contains three separate pieces I, II,
and III as shown in Fig. 6. The qo (or qo*) state is
obtained from $0 by assigning three different phases
1, qo, bio (l,q,*,q, ) to regions I, II, and III. In the
chaotic one region, only the eigenvalue g =1 re-
mains to be of magnitude 1. The other two eigen-
values g, g* now have magnitude less than one
(i.e. , lq l& 1). We can also study the rate of lq l

approaching one near the transition region g =&&.
In analogy to Eq. (5.3), we. have

fdxdy«xs y)4'0(y)
( ) 90

( ).
e() .e(y) '

oq-qo
I @(x)I

'
e.( )

(5.9)
For X& X„we are in the chaotic three region and
both sides of Eq. (5.9} vanish identically. For X

& X, we are in the single chaotic region. As we
have shown in Sec. IV, the gaps between regions
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I and II and regions II and III develop nonvanishing
The magnitude of $, in the gaps is proportion-

al to the incoming flux (source) via the gate DE.
The magnitude of the source is given by

Source = JI dx P,(x) ~ 4 5X (5.10)

%'e then have the estimate

0,1, fdx f,dye(x, y) (f,(y)

=0(1)f d3 y (y) fdx4 (x} 451. (5.11)
IaP

Near q= q„we can rewrite the lhs of (5.11) as

2-q+q-q, @*=i-qq++ ~q, -q~'

/~/)+ /&, &/ (i [~/) .
(5.12)

Ignoring terms second order in smal1ness, we
have

with 5k=- X —A, Thus, P,(x) in the gap region is
also proportional to M5X. Now, we look at the
numerator on the right-hand side (rhs) of Eq. (5.9).
The important contribution to the numerator comes
from the integration region where y is in the gap
region BE. The requirement of K(x, y)o 0 implies
that x is in the gaps or in region II. Then, the
phase correlation factor is

4(x) „,4(y) ''
0(1)

y, (x) ' P,(y)

&R, = a,Rj+ b, R2,

L E = a L, + 8,5,L, (A2)

At the nth step we have,

where the x„were a prescribed set of points on
(0, 1). K is then expanded in this basis set. The
problem that arises is that a large matrix is
needed (on the order of 1000 x 1000) for reasonable
accuracy. The reason for this is essentially that
discussed in Sec. II; that is, the width of K con-
trols the number of bifurcations that are possible.
A better choice of basis functions might alleviate
this problem somewhat. Fortunately, most of the
elements of K are zero, in fact, the number of
nonzero elements is about twice the linear dimen-
sion of K.

We are now faced with finding the eigenvalues
and eigenvectors of a large sparse matrix. Since
we are only interested in the largest eigenvalues
it is appropriate to use an iterative technique. To
find the equilibrium-density distribution straight-
forward iteration of the discretized version of Eq.
(Ai) works fairly well, the only complication be-
ing in sorting out P, from the other eigenvectors
with eigenvalues of modulus l. Our pictures of g,
used this method.

The eigenvalue (and associated eigenvector)
problem is more complicated. We used a version
of the Lanczos method. See, for example, Wilkin-
son' for a complete description. The idea is to
start from an arbitrary left state L, and an ar-
bitrary right state R, and iterate:

(5.is)

as before. We have studied (1- ~q ~)' as a function
of X numerically and indeed observed the above de-
pendence.
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APPENDIX A: NUMERICAL METHOD

To find the eigenvalues and eigenfunctions of the
operator lf given in Eq. (2.7) we used a relatively
straightforward, but possibly inefficient method.
Basis functions for the space were chosen to be

(A1)0, otherwise

+Rn an n+ 5nRn+& + sn~n fl-1 y

L„K=a„L„+s„,x&„,xL„„+~„L,~ (A3)

The newly generated R„„is chosen to be orthogonal
to all previous generated L„; similarly for L. We
choose (L„~B„)=1. This completely determines
the coefficients a„and b„. S„ is just a sign + 1. In
this scheme it is easily seen that a tridiagonal
matrix for E is generated. We typically used a
30' 30 matrix. ActuaQy it is important to use
several sizes say 26-30 and only the stable eigen-
values are relevant. That is, new eigenvalues
are introduced at each stage and they typically
change as the matrix size is increased. The eigen-
vectors can easily be calculated this way, but we
have not actually done that. The absolute accuracy
of predicting transitions was of the order of sever-
al percent, but the relative accuracy is much bet-
ter. This enables us to compute the scaling of
eigenvalues near transitions quite accurately.
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APPENDIX B: ALTERNATIVE PROOF OF LEMMA 3

In this appendix we present an alternative proof
of Lemma 3 that is valid for any number of dimen-
sions. We start with a proposition that is proved
in Ref. 6. It states that under. fairly general con-
ditions an operator satisfying Eqs. (2.2) and (2.3)
has a cyclic peripheral spectrum. That is to say
that if there are N eigenvalues with absolute value
one, those eigenvalues are all of the Nth roots of
unity. If there is a degeneracy the spectrum must
be divided into classes satisfying the above con-
dition. We will assume that there is no degenera-
cy. Thus we are given

&X)= Xg,i (B7)

and the X& serve as a basis for expansion of the
eigenfunctions having modulus 1.

Proof. Construct

X,=—
l
1+ e"1+.. . + e "»-i

l y, ,
1

proved.
We now prove the important theorem which says

that the support of the eigenfunctions consist of
disjoint regions and the phases of each eigenfunc-
tion are constant within those regions.

Theorem. There exist N nonnegative functions
X~(x) having disjoint support such that

such that

Kp)= (@~@I,

with

2g j/N
0 (al)

=1 ll+Q)e i+(d e 2+. ~ .

=1
X, =—ll+&o'e'8&+(o e'82+. . . ly, ,

From Lemma 2 we know that we can choose

y,(x)=e ~'*'y, (x), q=l, . . . , N-I. (B2)

We further choose the phases such that at a par-
ticular point x = a with $0(a) 0 0,

8I(a) =0, j=1,. . . , N —1.
We first prove a Lemma: If, for 6', satisfying
Eqs. (2.2) and (2.3) there exist g„.. . , g», such
that

1
X» |=N 11+~ e '+

It is trivial to verify from Eqs. (Bl) and (B2) that
without the absolute value signs, the X, satisfy Eq.
(B4). From the above Lemma we see that they
satisfy Eq. (B7}. We further note that at x=a
where 8~(a) =0,

X (a}=y,~O,

X,(a)=O, q~O.

and

x, g yg dg= g+i x (a4)
(This follows from the fact that the sum of the Nth
roots of unity is zero. ) Next construct

c.( )=-c.( ),
then

(a5)

$0 = (Xo+ Xg+ ~ ~ ~ + X» |)I

1 14= (x.+—x, + —„.x.+",~l
(B8)

Proof. Taking the absolute value of Eq. (B4), we
obtain

l(xo+ a Xx+

K x~g g g dg~~ )+i x (B6)
etc. These functions satisfy

Integrating Eq. (B6) gives the cyclic set of inequal-
ities

) x dx+~ )~i x dx ~

Because of the cylic nature the equality sign must
hold, which implies Eq. (B5), except perhaps on
a set qf measured zero. Thus the Lemma is

so we conclude that

&~=C~&~ ~

Now at x=a we have

j=0, 1, . . . ,N-1.
Thus

C,=1, q=0, . . . , N-1.
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Taking the absolute value of Eqs. (B8) we obtain

xo+ &x+ ~ ~ ~ + x~ i = 0'o —
I &y I ~

Because the coefficients or~ point in different dir-

ections in the complex plane, the functions X& must
have disjoint support. Finally the construction of

$& demonstrate the constancy of their phases(&o ~~)

in the kth region.
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