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The pressure of a classical simple fluid of particles interacting with square-well potentials is computed by a method
combining the use of a parametric integral equation with first-order perturbation theory. This method leads to a
simple expression for the pressure of the fluid. In contrast to the usual choice, the reference part of the potential
energy is taken to be a square well itself. The results are in good agreement with pressure values from molecular

dynamics and are relatively insensitive to the choice of the reference-well depth, provided that that well is shallow.
Based on these findings, fine-meshed tables giving (reduced) pressure, internal energy, and Helmholtz free energy are
constructed for ranges in reduced density and temperature of n ~ &0.85, 1.4 & T~ &4.0. These tables should provide
reliable estimates of the thermodynamic variables for a square-well gas at any (n *, T~) within the given ranges; they
also help to lay the basis for comparative studies of the applicability of perturbation theory to the square-well gas.

I. INTRODUCTION

This paper presents a study of a perturbation
technique' for the calculation of thermodynamic
functions for a square-well fluid in equilibrium.
In particular, the method uses a parametric inte-
gral equation' to compute the radial distribution
function' for a reference system; this result is
then combined with a perturbing potential to com-
pute the pressure for a low-temperature square-
well fluid. Comparisons with results from mo-
lecular dynamics' enable us to study different
separations of the potential energy into reference
part and perturbation, and on this basis to con-
struct tables of thermodynamic values. This ap-
proach, which has previously been applied in es-
sence to a Lennard-Jones fluid, ', has an advan-
tage in requiring relatively little computer time,
as compared with that required for numerical
simulations such as molecular dynamics, and at
low temperatures and high densities is more ac-
curate than the use of the integral equation di-
rectly. The tables obtained in the present work
provide another setting in. which this particular
approach may be tested against numerical- simu-
lation techniques, the results of which are often
considered as standard.

Comparison of these tables with analogous ones
from other perturbation techniques, with evalua-
tion based on agreement with numerical-simula-
tion results, may ultimately prove instructive.
For example, a given potential energy function can
be split into a reference part and a perturbation
in different ways; studies of the relative success,
in matching numerical- simulation results, of
various different splittings may eventually im
prove our understanding of the conditions under
which perturbation theories are successful. A

comparative analysis of different splittings of

the Lennard-Jones potential has been made, ' and
such an analysis of the square well, may prove
useful al.so.' Thermodynamic tables could assist
in this endeavor.

The most familiar decomposition of the square-
well potential uses the hard core as the reference
potential and the attractive part as the perturba-
tion, ' However, we show that good values of pres-
sure can be obtained by using, as the reference
part, a square well of lesser depth than the given
one. Moreover, changing the relative depths of
these wells is found to affect the pressure values
only weakly (as one would hope), as long as the
reference well is kept relatively shallow. These
results suggest that, with a proper choice of rela-
tive well depths, this approach can lead to reli-
able thermodynamic tables for the square-well
gas. We present tables for reduced pressure,
internal energy, and Helmholtz free energy, and

we compare interpolations based on the internal
energy table to values obtained from molecular
dynamics.

II. DECOMPOSITION OF THE POTENTIAL

We take as our system N particles in a volume
P which interact such that the potential energy of
the system is a sum of pair interaction energies
of the form

r&d

P(r) = —e, d ~ r c l.5d

0, ~ &1.5d

where Q is the pair potential energy, r is the
particle separation distance, & is the well depth,
and d is the diameter of the hard-sphere core.
The system pair potential function is separated
into the sum of a reference potential (Q„) and a
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perturbing potential (Q~) so that We note the thermodynamic relationship

PQ = —1/T*,

0,

for &&1

PP„= -1/T', for 1 x - 1.5' (5)

0, for x &1.5 .

Thus we see that the reference potential is also
a square well of the same form, but of less depth
than the system well when we take T'&T*.

We take the reference potential to be

x&d

P (x) = -o.e, d& x&1.5d

0, x &1.5d

where u, the relative depth of the reference-
potential well, falls in the range 0& ~ &1. We
introduce the quantities

x =r/d,

T*=kTja,
T' = T*/a. ,

P =1/kT,

where k is Boltzmann's constant and T is the ab-
solute temperature. We then have

(3n ] (T*&

from which it follows that'

3 * BE,*I
an+ j,„' (10)

and Pade-approximant forms at the four tempera-
tures (now taken as T' values) were reported in
Ref. 9 for U*, also. Thus pressure values for
the actual system can easily be computed from
the equations

One can thus obtain the desired pressure values
from the P„*values and the I'~ values given, in
terms of g„(x), by Eq. (8).

However, radial distribution functions and Pade-
approximant forms for pressure have been ob-
tained previously, ' by use of a parametric inte-
gral equation, for a square-well gas at the four
reduced temperatures of 3.3333, 6.11, 10.0, and
20.0. Moreover, comparison of Eq. (8) with the
square-well formula' for internal energy,

4'*U*(n*, T*)= 1 — „g(x)x2dx,
1

shows that

E,*(n*,T*)= (c.—1) —
~ ~

[1—U„*(n*,T')]
T'l

III. PRESSURE COMPUTATIONS USING DIFFERENT
REFERENCE-WELL DEPTHS

The direct perturbation-theory approach to
calculating pressure begins with obtaining the
radial distribution function and the pressure val-
ues for the reference system. Then the Helm-
holtz free energy (E) of the given system is given,
from first-order perturbation theory, by

PP 00

E=E„+E,=E„+ g„(r)y,(r )4v/d~, (6)
0

where g„ is the reference system's radial distribu-
tion function. We introduce the dimensionless
quantities

n*=Nd'/V,

P*=PV/NkT,

E*= 2E/3Nk T,
U* = 2U/3Nk T,

(7)

4wn* n —1)E*=E*+E~=E*+ I g (x)x'dx.r P r 3T* J1

where p is the pressure and U is the internal ener-
gy. Equation (6) can then be written as

(1+a,n*+ a,n*'+ a,n*')
(1+a~n*+ a,n* + a6n*s) '

(1+b,n*+ b,n*'+ b n*')
r

=
(1+b,n*+b n~m+b, n*') '

(12)

where T*/T' can be substituted for u, and the
Pade-approximant coefficients are given in Ref. 9
for each choice of T'.

In these calculations there are two fundamental
sources of error: (1) the approximate integral
equation used to compute the reference radial
distribution functions, and (2) the perturbation
equation [Eq. (6)j, which ignores terms beyond
first order. The parametric integral equation,
for a parameter depending only upon the tempera-
ture, works best for shallow potential wells. How-
ever, the more shallow the reference-potential
well, the greater is the perturbation and presum-
ably, the greater the contribution of the higher-
order terms in the perturbation series. By vary-
ing the reference temperature T' it is possible
to study the effect of varying the perturbation
strength. If the system pressure depends strongly
upon T', then clearly the method is not useful.
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However, if the pressure. is not strongly depen-
dent upon T', it is at least an indication that the
approximations introduce only small errors.

We have chosen to study the isotherms T*=2.0
(gas), T*=1.4 (slightly above the critical tem-peraturee),

T*= 1.0 (liquid- vapor), and T*=0.7
(liquid-vapor). The results of the calculation of
P* as a function of n* are shown in Figs. 1-4 and
are compared with simulation results estimated
from the calculations4 of Alder, Young, and Mark.
It may be seen that P* does depend somewhat upon
the separation of the potential (value of T'), but
that there is relatively good agreement between
results obtained using T'=20, 10, 6.11, and the
simulation values. Presumably, the values for
T' = 3.33 are not as good because the integral
equation (as used) becomes less reliable for lower
values of T'.

Using Eqs. (12), values of P* are computed,
over a range in T*, at each of several densities
at which Alder, Young, and Mark have reported
values; these P* vs T* graphs are obtained for
each of the four T' choices available. Figures
5-8 show that there is good agreement with mo-
lecular-dynamics results when T' is chosen as
6.11. Since this choice for T' lies in the range
for which P* results are, as desired, relatively
insensitive to the value of T', we set the reference
temperature at 6.11 for the rest of the computa-
tions.

IV. COMPUTATIONS FOR THE THERMODYNAMIC
TABLES

We construct tables of P*, U*, and F*, since
other thermodynamic functions are easily obtained
from these three. Values are given at intervals
of 0.05 in n* and 0.2 in T*, in order to permit

5.0—
T"= 1.4

30-

I.O

I

0.2
I

0.6
l

0.8

FIG. 2. The pressure (P ) is plotted as a function of
density (g*) for a temperature (T*) of 1,4. The solid
curves represent perturbation results using T' values
of 3.3333, 6.11, 10.0, and 20.0 (top curve to bottom
curve). The points are molecular-dynamics results
estimated from the data of Alder, Young, and Mark.

First we calculate P* for n*=0.20, 0.25, 0.30,.. . , 0.85, for each of the temperatures T*=1.4,
1.6, 1.8, . . . , 4.0. These computations are done
as described in Sec. III, with T'=6.11 in Eqs.
(12).

B. Calculation of P~ and U* at n* ~& 0.20

For the lower densities n*=0.001, 0.05, 0.10,
0.15, and 0.20, and at each temperature T* listed

reliable interpolations within the chosen ranges
of n*& 0.85, 1.4& T~ &4.0. The overall procedure
for developing the tables can be summarized as
follows.

A. Calculation ofP* at n* ~~0.20

5.0
T = 2.0

5.0— = 1.0

5.0-

1.0

1.0

0.2 0.4 0.6 0.2
I

0.4 0.6
I

0.8

FIG. 1. The pressure (P ) is plotted as a function of
density (g ) for a temperature (T ) of 2.0. The solid
curves represent perturbation results using T' values of
3.3333, 6.11, 10.0, and 20.0 (top curve to bottom curve).
The points are molecular-dynamics results estimated
from the data, of Alder, Young, and Mark,

FIG. 3. The pressure (P*) is plotted as a function of
density (n*) for a temperature (T*) of 1.0. The solid
curves represent perturbation results using T' values
of 3.3333, 6.11, 10.0, and 20.0 (top curve to bottom
curve). The points are molecular-dynamics results
estimated from the data of Alder, Young, and Mark.
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FIG. 4. The pressure (P*) is plotted as a function of
density (g*) for a temperature {T*)of 0.7. The solid
curves represent perturbation results using T' values
of 3.3333, 6.11, 10.0, and 20.0 {top curve to bottom
curve). The points are molecular-dynamics results
estimated from the data of Alder, Young, and Mark.

in Sec. IV A, we solve the Percus-Yevick equation
for the radial distribution function g(x) and from it
obtain P* and U*. At low densities, integral-
equation techniques give more reliable values
than perturbation theory, and the Percus- Yevick
method is a simple technique to employ. At the
common density n*=0.20, the P* values from
Sec. IV A are all within +0,03 of the Percus- Yevick
results, and all but two (at T*= 1.4 and 1.6) are
within +0.01 of them.

C. Calculation of F~ at n~ = 0.001

Based upon an arbitrary base value E,* chosen
for the state (n*=0.001, T*=20.0), we calculate
E*(0.001, T*) for each of the temperatures T*
listed in Sec. IVA. The method is to integrate

dJ" += ~dn+-I —~dT+
u *l &u*&
3n*& &T+&

FIG. 6. The pressure (P*) is plotted as a function of
temperature (T*) for a density (n*) of 0.4714. The solid
curve represents results from the present method, and
the points are molecular-dynamics results from Alder,
Young, and Mark.

along the line n*= 0.001. Along this line, g(x) is
very nearly equal to e ~~, which, when substituted
into Eg. (11), leads to the simple approximate
equation,

9T+

Thus the E* values are obtained from

(14)

D. Calculation of I'* at n* & 0.001

The method' now is to apply Eq. (9) to isotherms
at each of the temperatures T* listed in Sec. IV A,
resulting in

p»

2.0- 4.0-

l.O— 3.0-

0.0-
n = 0.2828

I

2.0
I I I

4.0
FIG. 5. The pressure (P*) is plotted as a function of

temperature (T*) for a density (n*) of 0.2828. The solid
curve represents results from the present method, and
the points are molecular-dynamics results from Alder,
Young, and Mark.
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FIG. 7. The pressure (P*) is plotted as a function of
temperature ('l'*) for a density (n*) of 0.7071. The solid
curve represents results from the present method, and
the points are molecular-dynamics results from Alder,
Young, and Mark.
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FIG. 8. The pressure (P*) is plotted as a function of

temperature (T*) for density (n*) of 0.8319. The solid
curve represents results from the present method, and
the points are molecular-dynamics results from Alder,
Young, and Mark.

"* (2 *&
Z*(n*, r*)= Z*(0.001,r")+

i idn*. (15), ~ 3n*)

P*=1+cin*+cn*'+c3n*'. (16)

For the higher densities, the P* values of Sec.
IV A are interpolated by use of the (3, 3) Pade-ap-
proximant form,

In these integrations, the values used for P* are
obtained in two different ways. The Percus-Yevick
results of Sec. IVB form the basis of the P* data
in the lower density range (n*(0.20): the values
used are interpolated, assuming the form
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The reason for not using perturbation-theory
values for P* throughout the integration is that
Percus- Yevick values are more reliable at low
densities. It is particularly important to use ac-
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FIG. 9. The internal energy (U*) is plotted as a func-
tion of temperature (T*) for a density (n*) of 0.2828.
The solid curve represents results from the present
method, and the points are molecular-dynamics results
from Alder, Young, and Mark.
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FIG. 10. The internal energy (U*) is plotted as a
function of temperature (T *) for a density (n*) of
0.4714. The solid curve represents results from the
present method, and the points are molecular-dynamics
results from Alder, Young, and Mark.

(18)

The U* values at n*=0.20 obtained in this proce-
dure agree with those calculated in Sec. IVB to
within +0.01.

The resulting tables for P*, U*, and E* are
given as Tables I, II, and III. At the overlap den-

sity n*=0.20, Percus- Yevick results are given.

V. FURTHER COMPARISONS WITH MOLECULAR
DYNAMICS RESULTS, AND CONCLUSIONS

We can now make additional comparisons with

the results of Alder, Young, and Mark. Using

0.0
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-2.0 0 = 0.7071

I

2.0
I

5.0
I

4.0

FIG. 11. The internal energy {U*)is plotted as a
function of temperature (T*) for a density {n*)of
0.7071. The solid curve represents results from the
present method, and the points are molecular-dynamics
results from Alder, Young, and Mark.

curate P* values in the low-density region since
they are divided, in Eq. (15), by small values of
n*. As mentioned at the end of Sec. IV B, the two
sets of P* values join smoothly at n*=0.20.

E. Calculation of U* at n* ~~0.20

Finally the remaining U~ values are computed
from Eq. (9), as applied to a line along which n*
is constant'.

I

2.0
I I I I

4o
FIG. 12. The internal energy (U*) is plotted as a

function of temperature (T*) for a density (n*) of
0.8319. The solid curve represents results from the
present method, and the points are molecular-dynamics
results from Alder, Young, and Mark.

(3, 3) Pads approximants based on our table for U*,

we interpolate to obtain U* values at those same
densities as were used to compare P* values.
Figures 9-12 show the comparisons for U*. In
summary, the agreement of the present method's
results with those of molecular dynamics is found
to be very good for U* at all four densities tried
and for P* at the lower"ones, and agreement is
fairly good for P~ at the higher densities.

It is well known that integral equations give
reliable results at low densities, whereas per-
turbation theories tend to work well at high den-
sities. At least as early as 1969, the idea of in-
corporating the relative strengths of these two
approaches into a single theory was advanced. "
This paper has reported on one method of making
such a combination, as applied to the construction
of fine-meshed thermodynamic tables for a
square-well gas. Since only one parameter (T')
was adjusted to maximize agreement with mo-
lecular dynamics results, and since the results
obtained here are not highly dependent even on
that one specification, the overall agreement as
indicated in the figures suggests that this method
is reliable for the given system of interest. The
resulting tables, therefore, permit trustworthy
values of the thermodynamic functions to be calcu-
lated for the square-well gas described by Eq.
(1), in the (n*, T*) range given by (n*& 0.85,
1.4 & T*&4.0). Moreover, in any comparative
analysis of decompositions of the square-well
potential, these tables may be taken as adequately
describing the thermodynamic implications of
using, as discussed in this paper, a shallow
square well as the reference potential.
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