
PH Y SICA L REVIEW A VOLUME 23, NUMBER 3 MARCH 1981
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We consider a ring of tightly torsion-coupled, overdamped pendulums subject to an external torque and coupled to

a thermal reservoir. At low temperatures the dynamics of this system, over a wide range of forces, is governed by

thermally activated kink-antikink pairs, their subsequent separation through the external force, and eventual

recombination by collision with other kinks. We calculate the thermal activation rate of kink-antikink pairs using an

approach first developed by Brinkman. This theory requires a detailed investigation of the multidimensional saddle,

which has to be crossed, if the system is to make a thermally activated transition. The propagation velocity of the

driven kinks is calculated. We use these results to derive the mean angular pendulum velocity as a function of. the

applied torque. Comparison is made with earlier work.

I. INTRODUCTION

In this paper we consider the thermal activation
of large-amplitude excitations of a chain of parti-
cles separated from each other in the x direction,
and subject to displacement in an orthogonal di-
rection e. 'The particles are in a periodic poten-
tial V,(1 -cos8) and under the action of an exter-
nal driving force potential -Ee; We assume that
the coupling between two adjacent particles is
strong enough. , so that neighboring particles re-
main close to each other in the 8 direction. If the
motion of the particles is heavily damped, the
equation of motion for this system is

'ag 8 g
y —= —Vosine+F+g, +g,at Bx

where y is the damping constant and & is a ther-
mal random force with g)= 0 and strength

(g(x, t)i(x', t ))=2yurf(f t)f(x -x -). (1.2)

The underdamped limit of Eg. (1.1}, including the
inertial terms omitted here, has been studied ex-
tensively in dislocation theory. A typical low-
temperature configuration of the displacement
field 8(x, t) is shown in Fig. 1. Following the dis-
location literature' we call a local maximum of
the potential V,(1 —cos8) E8 a Peie-rls hill, and a
local minimum a Peierls valley. The Peierls
valleys exist only for ~EI& V, . This is the field
range in which we are interested. At low temper-
atures, transitions over Peierls hills are far
apart, and most of the chain will lie in the Peierls
valleys. Transitions connecting the segments of
the chain lying in different Peierls valleys will be
called kinks, if their first spatial derivative is
positive, and antikinks, if their first spatial deri-
vative is negative. One can make a further distinc-
tion between geometrical and thermal kinks. ' If
the field 8(x, t) is pinned at x = 0 and L in differ-
ent Peierls valleys the chain must necessarily

span the Peierls hills between 8(0} and 8(L) and a
number of kinks must be present even at zero
temperature. The number of these geometric
kinks is determined solely by the geometric ar-
rangement of the pinning points. Qn the other
hand, if the pinning points 8(0) and 8(L) are in the
same Peierls valley or if one assumes periodic
boundary conditions 8(x, t)=8(x+L, t), as we will
in this paper, kinks are only present as a result of
thermal activation. 'These thermal kinks are cre-
ated in pairs involving a kink and an antikink,".. . analogous to the formation of electron-hole
pairs in intrinsic semiconductors. "' In contrast to
the geometrical kinks, the density of the thermal
kinks depends strongly on the temperature, as
shown in Ref. 1;.

The aim of this paper is to present a detailed
calculation of the nucleation rate of kink-antikink
pairs in the overdamped and forced sine-Gordon
chain. Our results have been reported in Ref. 2.
In connection with the theory of kinks in disloca-
tions, repeated attempts have been made to calcu-
late this important quantity. The work in this field
has been reviewed and extended in Ref. 1, and we
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FIG. 1. Typical low-temperature configuration of the
displacement field 8(x, t) at a given instant of time. Long
segments of the chain lying in a Peierls valley (thin solid
lines) are connected by kinks and antikinks which span
the Peierls hills (thin broken lines).
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refer to this paper for further references.
The problem which has to be solved is the fol-

lowing. Consider a length of the chain lying initi-
ally in a Peierls valley. A thermal fluctuation can
throw a piece of the chain into the next valley,
favored by the applied force E. If the segment is
too small, then the attraction between the newly
formed kink and antikink outweighs the driving
force E and the incipient nucleus collapses. If,
however, the segment is long enough, then the
driving force F predominates and the nucleus ex-
pands. Thus there is a critical nucleus, i.e., a
configuration belonging to a saddle point of the en-
ergy surface. This saddle point has to be crossed
for the thermal activation of a kink-antikink pair.
Reference 1 attacked this p'roblem by two ap-
proaches: One was based on Kramers's theory'
for the rate of thermally activated transitions over
a one-dimensional barrier, -thus ignoring the
many-dimensional nature of the saddle point. The
other approach followed the theory outlined by
Vineyard, 4 who takes into account the many de-
grees of freedom, but assumes that the transition
rate can be found from an analysis of the barrier-
crossing rate in a thermal equilibrium problem.
This overestimates the transition rate. Brink-
man, ' Landauer and Swanson, ' and Langer, ' (here-
after abbreviated as BLSL}, were able to combine
the Kramers and Vineyard approaches and to
formulate a theory treating the thermally activated
crossing over a many-dimensional saddle point.
We will apply the BLSL approach to the nucleation
rate of kink-antikink pairs.

In recent years the statistical mechanics of soli-
tons has found new interest, "' unrelated to pre-
vious results in the theory of kinks in dislocations.
This development was stimulated by an applica-
tion of the transfer-operator technique" to sys-
tems exhibiting solitons. " This transfer-opera-
tor technique combined with a low-order Bogoliu-
bov-Green-Kirkwood-Yvon (BBGKY) hierachy ap-
proximation" "has been used to find the average
rate at which 8 advances with time. We will
evaluate the same quantity and compare our re-
sults with Refs. 12-14 and with computer simula-
tions of -the sine-Gordon chain. " In contrast to the
approach via the BBGKY hierachy the BLSL theory
provides a nonperturbative answer.

Our paper is organized in the following way. In
Sec. II we discuss the critical nucleus, i.e., the
saddle-point configuration. In Sec. III, we inves-
tigate the energy surface near the saddle. In Sec.
IV, we use the BLSL approach to calculate the rate
of formation of kink-antikink pairs. In Sec. V, we
evaluate the drift velocity of the kinks in the pres-
ence of an applied field, and investigate the stea-
dy-state motion of the chain. In Sec. VI, we dis-

cuss our results and compare them with previous
work.

II. ACTIVATION ENERGY BARRIER FOR KINK-
ANTIKINK PAIRS

The variation of the energy functional

E(8)= dx V+ ——K&8'
2 ex (2.1)

governs the deterministic time evolution of the
displacement field 8(x, t):

& 8 5E(8)
6e (2.2)

Here,

V= V,(1-cos8) -E8, (2.3)

includes the Peierls energy V,(1 -cos8) and the
external driving potential -Fg. The potential V

has stationary points for
~

F
~

~ V, given by

8,„=2nm+ arcsin(E/V, },
8„„=(2n+ 1)v+ arcsin(E/V, ) .

(2.4a)

(2.4b)

In the states 8,„the chain lies uniformly in one of
the Peierls valleys (potential minima) and is sta-
ble (index s}against small perturbations. In the
states 8„„the chain lies uniformly along a Peierls
hill and is unstable (index u) against small pertur-
bations. 'The energy density of the chain lying in a
Peierls valley and on a Peierls hill, respectively,
are given by

V, „=E(8,„)/L = V,(l —cos8„„)-E8,„,
V„„=E(8„„)/L= Vo(l -cos8„„)-F8„„.

(2.5a)

(2.5b)

'The chain in the Peierls valley n+ & has a poten-
tial energy which is 2mEI lower than a chain in the
valley n. 'The state 8,„is only a metastable st:ate.
The fluctuation assisted transition of the chain
from one valley to the next one will be most likely
to occur through a time sequence of configurations
requiring the minimum intermediate elevation in
energy. 'Therefore, we have to search for a sad-
dle point in the energy surface E(8) through which
the chain configuration can pass. '~"'"
A saddle point requires the following conditions:

(1) It is a local extremum of the energy sur-
face. 'The first variation of the energy must van-
ish at the point 8„(x) in function space 6E/58 j~~
= 0. The saddle-point configuration 8„(x) (criti-
cal nucleus) is, therefore, a stationary (time-in-
dependent) solution of the equation of motion (2.2).

(2) The energy E(8) increases or remains con-
stant in all but one direction as one moves away
from E(8„), i.e., the second variation ' O/E5~8~ ~

is nonnegative in aQ but one direction.
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The stationary points of th6 energy surface are
given by the solutions of

6E 8)= —V, sing+ E+ xd'8/dx'= 0. (2.6)

Multiplying Eq. (2.6) with dg/dx and integrating
yields

q ldg I'

2 (dx)
(2.7)

dg 'I.2

E(8)= W x —
I

-U . .
dx&

(2.8)

where U, is an integration constant. 'The total en-
ergy of a stationary solution is found by inserting
Eq. (2.7} into Eq. (2.1) which gives

turning point and departs to infinity. 'The critical
nucleus will be a configuration which deviates on-
ly in a localized region from the uniform state 8,.
It is, therefore, a solution with initial energy U
= —V, ~ 'This energy yields a trajectory which des-
cribes the exponential departure of the particle
from the local maximum U = —V„ followed by the
motion to the right until the turning point at 8= 8,
+ &8 is reached. The particle then again returns
asymptotically to the local maximum at 0,. The
corresponding stationary solution of Eq. (2.6) is
the saddle-point configuration or critical nucleus
8„(x}(Fig. 3). This configuration departs from the
stationary uniform state e„at x = + ~, with an ex-
ponential decay length

It is convenient to calculate the excess energy of
the nonuniform configurations

$(E)=(K/V ) '(cosgg)

=(a/V )~'[1-(E/V )'] ~4 (2.10)

EE(g)=E(8}-E(8)

~ &dgl'
dx 'I —I-U -V

kdx )
(2.9)

$(E) increases monotonically with E from its
equilibrium value $, = $(0)= (»/V, )~' and diverges
as E approaches Vo The excess energy of the
critical nucleus is given by

with respect'to the energy E(8,) of a uniform sta-
tionary state defined in Eqs. (2.4a) and (2.5a).
For simplicity we drop from now on the index n on

8~ „, Vs „and Vu. ~

Equation (2.6) describes the motion of a classi-
cal particle with mass m= g, ™ ~~x, in a po-
tential U=-V, V given by Eq. (2.3). Equation
(2.7) states the law of conservation of energy for
this motion. The potential U is shown in Fig. 2.
For -V„&U,& -V„with V„and V, given by Eqs.
(2.5a) and (2.5b), the particle undergoes anhar-
monic oscillations" around 8„. For U, & -V, a
particle coming from the left eventually reaches a

/Vp

'E»='E(8»)= »l
" dx,(dx (2.11)

+ (1 —cos&8») . (2.12)

Equation (2.12) can be integrated by separation of
variables, so that formally the saddle-point con-
figuration is given by

f d~g» ~Ibex )
. [tang, (sin~g»-~8»)+ (1 —cos'8»)]~2 II t )

(2.13)

as follows from Eq. (2.9) with U, = —V,.
In special cases, we can derive an analytical ex-

pression for t'he saddle-point configuration 8„(x).
For convenience, we introduce the deviation of the
displacement ~8»(x) = 8»(x) -8, away from the sta-
tionary uniform state 8,. Equation (2.6) becomes

"
I

= tan8, (sin'8» —~g»)
(d48~ r2

2 kdx )

/
-8- /

/
/

/
-lO— /

/

-{2—
I I

e,-2~ e,-2»
I

e,
I

e„

FIG. 2. Potential U=-V=-Vp(1-cos8)+ I"8 for E/Vp
=0.5 (solid line) and the limiting values E/Vp =0 and
E/V0=1(broken lines). For ~F) & V& a particle with en-
ergy Up in the interval (-V„, -V ) exhibits nonlinear os-
ciBations around 8„. The critical nucleus corresponds
to the trajectory of a particle started at 8, with energy
Up =-V . The maximum deviation from 8~ iri this tra-
jectory is &8~.

e,
5fp I—

X

FIG. 3. Large-amplitude nucleus (LAN) for E/Vp
=10 . The flat top of the LAN has a width 2'~ )plog
(4&+IVp), where (p= (K/Vp)
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For E close to V, we can expand the right-hand
side (rhs) of Eq. (2.12}, or the denominator of Eq.
(2.13), in powers of 48„. Such an expansion is pos-
sible because in this limit 8, and 8„come close to
each other and the maximal excursion 48 of the
saddle-point configuration is small compared to 2m

and is of the order of 8„—8,. Neglecting powers
higher than the third order in 48„, we find a small-
amplitude nucleus, hereafter called (Ref. 2) SAN,

1
SAN( } s I h2( /2$)

with amplitude b, 8 = 3V 2 [(V, -F)/V, ]~'. This
amplitude decreases to zero at E = V, and the
width 4$ = 4$,[2(V, F)/V-o] ~' diverges as F ap-
proaches V, .

We will show that for small fields the critical
nucleus consists of a kink,

a8 =4arctan[exp(x/(, )], (2.15)

and an antikink separated by a distance folog( Vo/

F), with a maximum displacement &8 =2m
—(4vF/V, )~'. The kink and antikink solutions are
found from Eq. (2.13) at F= 0. The distance be-
tween the kink and antikink is determined by the
flat top of this large-amplitude nucleus (LAN}. To
find the shape of the LAN near the maximum dis-
placement &8„, we expand in Q= &8 -48. For
small fields Eq. (2.12) yields

&E~(F)= (3/5)ED[2(VD -F)/Vo]'i . (2.19)

Because the local minima of the potential V [Eq.
(2.3)] disappear at F= Vo, the activation energy
&E„(F)also goes to zero at F=V, . For the LAN
we can find 4E„(F) in the following way. As we
approach equilibrium the activation energy bar-
rier for a kink-antikink pair approaches the sum
of the rest energy of a kink and an antikink. With
Eqs. (2.15) and (2.18) we find,

AE„(0)= 2E„E,= 8(gV, )
~' . (2.20)

The energy is stationary at 8„with respect to
small changes in the configuration. Therefore,

- the energy changes to first order in dE, only be-
cause the potential V which the saddle-point con-
figuration 8~ sees changes. For very small E the
important contribution comes from the change of
the flat top part of the configuration 8„near &8
= 68 . Thus by considering Eq. (2.1), we find

d&E~= -dES",

where

(2.21)

Because Q~» $0 the contribution of Q~ to x~ can be
neglected.

With these results, we can now calculate the en-
ergy barrier, . &E„defined by Eq. (2.11), required
for crossing the saddle point. With Eq. (2.14), we
find in the limit of the SAN',

2C(~) =(~v ) '*" (2.16) W= 8„(x)dx—= 2v(2xq) .
~ OO

(2.22)

x~ =—$,(log4$~ —log/, )

=——((,/2) log(4wF/Vo) . (2.18)

At E= 0 this equation describes the exponential
tails of the kink and antikink solutions. For E+ 0
the first term describes the behavior near the
turning point 8= 8,+ &8 in Fig. 2. Requiring Q
= 0 at x = 0 (i.e. , 48(0)= ~8„},we find from Eq.
(2.16),.= ~. log&2[(e/e. )+ (~A.)'8'

+ 2(0/0. )+ I], (2.17)

where g, = 2(4wF/V, }~' is the angle at which the
linear and quadratic term of the right-hand side of
Eq. (2.16) are of the same magnitude. For Q& Q,
only the quadratic term, which governs the expo-
nential behavior of the kink solutions, is impor-
tant. To find the width of the flat top of the LAN,
we have to extend the above integration to an angle
Q~» Q„but keeping Q~«2v, so that the quadratic
term in Eq. (2.16) is still accurate This ca.n be
done because P, is very small for very small F.
'The flat top of the LAN, therefore, has an exten-
sion 2x~ with x~ given by

In Eqs. (2.21) and (2.22), we have used the fact
that the largest part of the LAN is the flat top
whose width is given by Eq. (2.18). The energy of
the LAN is found by integrating Eq. (2.21), with
the use of Eq. (2.18) and Eq. (2.20). This yields

nE„(F)= 2E,+ 2m)0F log(4vF/V, ) . (2.23)

To find &E„(F)in the whole range 0(F( V„we
have integrated Eq. (2.11}numerically. The result
is shown in Fig. 4. The resolution of the numeri-
cal integration is too coarse to show the singulari-
ty in the derivative at F = 0 predicted by Eq. (2.23).

III. THE SADDLE

En the previous section, we discussed the sta-
tionary solutions a8(x) = 8(x) —8, which corres-
pond to local extrema of the energy surface [Eq.
(2.1)]. We will now investigate the stability of
these solutions. We add small perturbations
58(x, t) to 8(x) and linearize the time-evolution
equation (2.2}with respect to these perturbations.
Because the unperturbed solutions 8(x) are time
independent, the perturbations can be assumed to
have the form 58(x, t)=58„(x)exp(-kt). This leads
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dic boundary conditions}. The spatially uniform
states 8„8„generate the spatially uniform poten-
tial&p

=I and& = —1, found by putting ~8=0 and
66= 8„—e„respectively, in Eq. (3.2b). There-
fore, the perturbations can be assumed to have
the form 56(x, t) = 58, expi(q x —~t) W.ith q
= (2v/L)pz, we find using Eqs. (3.1) and (3.2),

X'„=I'+ (g/y)(2w/L)'m', (3.6)

00 0.2 0.4 0.6
F/Vo

0.8 I.Q

FIG. 4. Activation energy barrier as a function of the
field. The curve shovrn is universal, i.e., independent
of y, Vo, f(.

to the eigenvalue problem

L(e(x))58„(x)= (X/r)5g, (x),
where the linear operator L(8(x)}is given by

(3 1)

B(8(x))= [cosine(x) —tan8, sinhg(x)] (3.2b)

of the Schrodinger operator, Eq. (3.2a), is gener-
ated by the stationary solution 48(x) = 6(x) —6,.
Here I'= V, cosg, /y and 8, and $' are determined
by Egs. (2.4a) and (2.10), respectively. The oper-
ator L is self-adjoint in the scalar product g&

~
g)

=a ' Jdx P*(x)P(x). The spacing a between neigh-
boring pendulums has been taken into the defini-
tion of the scalar product to make it dimension-
less. Because L is self-adjoint, it has a com-
plete set of eigenfunctions f„w ihch are normal-
ized such that (g„~ P„)= 5 . We can now expand
the perturbation 58(x, t) in terms of the eigenfunc-
tions

58(x, t)=gn ~tj' &, n =(0 t~g) (3.3)

and obtain for the energy in the neighborhood of a
local extremum

E(e(x)+ 58(x))=E(e(x))+ (5ei I.5e)

=E(e(x))+
m

(3.4)

to second order of the perturbation 58. 'The

change from 58(x) to the q„coordinates corre-
sponds to a unitary transformation, therefore,

(58)'dx = gq' .1

m

(3.5)

Consider now a ring chain of length L (i.e. , perio-

L(e(x)) = - ]'d'/dx'+ ft(e(x)) . (3.2a)

The potential

for the state 8, and

1"„=—I'+ (x/y)(2m/L)'m', (3.7)

d' I' 3 )(" (x+ 1 ,=I
dx' 'i cosh'(x/2$) ). '

I,r (3.8)

Exactly the same eigenvalue problem has been
found in the study of the stability of dipole do-
mains in a bulk semiconductor current instabili-
ty." One finds localized modes for A.,"= -5/4I',
&f= 0 and &,"=3/4I', and nonlocalized eigenfunc-
tions for ~~ l . The eigenvalue ~=0 corresponds
to the mode 58„,= [88„(x+x,)/Bx, ]„„which re-
stores the broken translational symmetry (Gold-
stone mode). The eigenmodes are discussed in
Appendix A.

To find the spectrum of the critical nucleus over
the whole range of I, we have evaluated the spec-
trum of L(8„(x)}numerically. The result is shown
in Fig. 5. At equilibrium E=O, the spectrum is
that of two kinks infinitely apart, the eigenvalues
show a twofold degeneracy. 'The solution 8N cor-
responds to a saddle in the energy surface. 'The

energy decreases in the direction of the unstable
localized eigenmode 58„,with a curvature ay/2XO
&0 and increases in the direction of &8„„, n ~ 2
with curvatures ay/2 &f determining the width of
the pass at the saddle. In the direction 58~, the
saddle is flat. Note that the saddle becomes very
flat in the direction 58~p both for small fields and
for I' close to Vp respectively. In these limits
&p" tends to zero.

The amplitude gp of the unstable mode ~p"& 0
describes the expansion or contraction of the
nucleus. The critical nucleus can be regarded as

for the state 8„. The state 8, is, therefore, stable
against small perturbations. The long wavelength
perturbations decay with relaxation rate l" ~ 0.
Note, that 1" tends to zero as F approaches Vp and
the system exhibits a soft mode at E= V, ." At
this field the local extrema of the potential V, Eq.
(2.3), vanish. The state 8„, in contrast, is un-
stable against long wavelength modes q

Now consider the critical nucleus 8„(x). In the
case of the SAN [see Eq. (2.14)] we have to expand
A formally in &8, to linear order (to find the sol-
ution, we originally had to expand to second order
in &8). This leads to the eigenvalue problem
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IV. THE BLSL APPROACH

BP 1 5j(g)—+- dx =0,
et a 58 (4.1)

where

In this section we will derive an expression for
the nucleation rate using the BLSL approach. ' '
Equations (1.1) and (1.2) are equivalent to the
(functional) Fokker-Planck equation

-liO

I I I I

0 0.2 0.4 0.6 0.8
F/ Vo

I

I.O

a kink-antikink pair separated by a distance d„&,.
A positive value for g, pushes the kink-antikink
pair farther apart, and a negative value brings the
pair closer together. If the separation d of the
pair is large, then the driving force will supply an

energy -E&d through an increase in their separa-
tion by &d. Figure 6 shows a qualitative sketch of
the energy &E(d) associated with a kink-antikink
pair. After the kink and antikink move away from
each other they will eventually recombine with
other kinks. 'The location of the recombination
events depends not only on the separation of the
original pair but also on the coordinates of the
other kinks involved in the recombination.

FIG. 5. Eigenvalues of the perturbations of the critical
nucleus. In the whole field range 0& E& Vo we find three
localized modes; an unstable mode with eigenvalue 10 & 0
corresponding to expansion or contraction of the nucleus,
a translation mode with eigenvalue X=0, and a localized
mode Af. For X) I' the eigenmodes of the nucleus are
nonlocalized. The curves shown are universal.
(v, /q} [i (z/v, }2]'~'.

1 t'5E 5P
q(e) =

l
——P—+ kT

ya ll50 5g
(4.2}

P(e(x)}De(x)= 1,
valley

(4.3)

where Dg(x) denotes a functional integration. The
equilibrium distribution is given by P(8) = X
x exp[-E(8)/kTj, where E(8) is given by Eq. (2.1)
and X is a normalization factor. Using the quad-
ratic approximation, Eq. (3.4), near 8(x) = H„we
find for the local equilibrium distribution

P„,((qj) =—exp l-

which upon normalization according to Eq. (4.3)
yields

(4 4)

is the probability current, and P(8(x)) is the pro-
bability distribution.

At low temperatures large segments of the chain
lie in the local minima (Peierls valley) of the po-
tential V, Eq. (2.3), i.e., atd=O in Fig. 6. The
original BLSL derivations point out that for 4E„
» kT, we can expect serious departures from
equilibrium to occur only in the vicinity of the
saddle point. Thus P(8) has the form of an equili-
brium distribution, within a single Peierls valley.
It is taken to be normalized so that' '

1 === ay%.'
g2 ~ "~ 2g jgg8

(4.5)

LLI

&I

The BLSL approach makes the following ansatz for
the distribution function:

P(e(x)) =P(e(x)) em l; „
~ E(e) (4.6)

dcrit

FIG. 6. Qualitative sketch of the energy of a kink-anit-
kink pair separated by a distance d. In the Peirls valley
(A) the chain is uniform. Energy must be supplied to
pull the kink and antikink apart until a critical separation
d„« is reached given by the width of the critical nucleus
(B). In the range (C) the energy change is dominated by
the applied force, rather than by interaction of the orig-
inal partners. At 0 recombination with another kink
terminates the motion of one of the original partners.

(4.V)

i.e. , be independent of g(x). Elsewhere P(8(x)) is
found in the following way. '~ We introduce the
ansatz (4.6) into (4.4) and find that the current is

&(8)= -——lem—kT 5Pi E(g)i
ya 59) kT j (4.6)

where P(8(x)) is a correction to the local equilib-
rium distribution. As a result of Eqs. (4.3) and

(4.4) P(8(x)) must, near H„be given by

( ) g
(E(e,)}
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Now consider (4.8) at the saddle. We obtain

»8Pgnj)
ya eq„~ k7"

(4.9)

using the coordinate system given by the unitary
transformation of Eq. (3.3). To find the station-
ary distribution, Eq. (4.16), we must require that
the divergence of the current vanishes

(4.10)

'The only nonvanishing current component is the
flow across the saddle; j,((}7j)4 0 and j„((qj)= 0,
n& 0. Integration of (4.9) for n= 0 yields

kT fya[ Ao(}([ ~' 1 JV

ya'~ 2vkT Z, ~
g kT )' (4.13)

1
dq', =— (58„)'dx, (4.14)

but 58„=,= (d8„(x+ s)/ds ~,)ds and therefore,

where &E~=E„-E,is the activation energy bar-
rier discussed in Sec. II and shown in Fig. 4.

he total current across the saddle is found by
integrating (4.12) over all coordinates perpendic-
ular to g, . Special attention has to be given to the
Goldstone mode coordinate q, . The integral dq,
can be transformed into an integral over ds, the
effective lateral displacement of the nucleus. ' We
have, according to Eq. (3.5),

Because j„((}7j)= 0 for n& 0, P((}7j) must, accord-
ing to Eqs. (4.9) and (4.10), be a function of q,
alone. This is only the case if

j,((e}} tezp (- =Q aeq'„.), (4.12)

where I is a constant, which depends on the
boundary conditions imposed on P(q, ), far from
the saddle point.

In the literature of the thermally activated bar-
rier crossing" ' it is assumed that the local
equilibrium distributions, on their respective
sides of the saddle point, are connected by the
diffusively driven flux Eq. (4.12) over the saddle
point. In our situation, we must, however, re-
member that the crossing of the saddle point rep-
resents generation of a kink-antikink pair under
the action of an external force. If the applied
field is strong, the kink and antikink are immed-
iately driven apart, and the chain configuration is
driven away from the saddle. The kink and anti-
kink have a negligible chance of returning to their
original partners and recombining with these.
Thus, in our case, the diffusion over the saddle
point in the direction of positive }I, (d& d ., in Fig.
6) connects us to a sink. We can, therefore, treat
the diffusion over the saddle as if the distribution
function vanishes in the region of positive g„ i.e.,
in the region of separated kink-antikink pairs.
Thus, we will require that P(+ ~)= 0. In the direc-
tion of subcritical separation (i.e. , negative q, )
the normal BLSL picture, applies. The distribution
function will increase rapidly as we go toward
negative g„ to the local equilibrium value Eq.
(4.7). Thus P(-~) is given by Eq. (4.7). Integra-
tion of Eqs. (4.11) and (4.12) over dq, with these
boundary conditions yields

(4.15)

where I is the length of the chain. In Eq. (4.15),
we have made use of Eq. (2.11). Thus, we find
after integration of Eq. (4.12) over all perpendicu-
lar coordinates a total current per unit length of
the chain

kT((
i

y iX /ii Z
(y«g~ ) 2mkT j (Z, ( jpg

where Z„ is given by

(4.16)

(4.17)

Substituting the explicit expressions for Z„and
Z„we obtain

where

2

l
l g+ e( ge(( }('

0 2 m=3
(4.19)

All quantities, except Q have been determined in
Secs. II and III. In the SAN case Q can be evalua-
ted analytically. Using techniques provided by
Langer" and McCumber and Halperin, "we find
Q'= 60I' [see Appendix B, Eq. (B9)]. In the case
of the SAN, we thus find

j=(2,)..2(
(4.20)

where &Ez is given by Eq. (2.19). For smaller
fields, we have evaluated Q numerically as des-
cribed in Appendix B.

Let us now discuss the range of validity of our
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equations. To obtain Eq. (4.13), we required that
fluctuations taking the chain past the saddle point
result in kinks and antikinks moving rapidly away
from each other. This will be the case if the
kink-antikink pair can gain an energy large com-
pared to kT by moving away from each other. The
total energy gained by a kink-antikink pair,
through their separation is 2rlE, where l is the
distance moved before annihilation. 'This dis-
tance, in turn, is determined by the mean separa-
tion of kinks. Therefore, I is of the order of 1/
m„where mp is the density of kinks. Thus our
approach will be valid for fields E» mPT.

'The BLSL approach requires, quite generally,
that the activation energy barrier 4E„is large
compared to kT. 'This limits the validity of our
approach at large fields. We are, therefore, un-
able to describe the approach to the critical re-
gion" E= V„as can be done by the methods of
Befs. l2 and 13.

V. FORCED STEADY MOTION OF THE CHAIN

Be Be B28
y —+ uT —= —Pp sing+ E+ g

Bv Bg BZ
(5 1)

The traveling waves are the stationary (time-in-
dependent) solutions of this equation. They are,
therefore, found as solutions of

Once a pair is created, the motion of its consti-
tuents, the kink and the antikink, is determined by
the deterministic drift, and the, Quctuations be-
come unimportant. To investigate the motion of
these driven kinks, we return, therefore, to the
deterministic equation of motion Eq. (2.2). We
search, quite generally, for traveling waves 8(z)
which depend on x and t only in the combination
z =x+ut, where u is the propagation velocity in the
minus x direction. In a frame, moving with veloc-
ity u, Eq. (2.2) becomes

friction constant g is too high a particle starting
at 8, will simply settle into the next local mini-
mum of the potential U (at 8„-2w). If the friction
q is too low then the particle gains enough kinetic
energy to overrun the next potential hill and all the
following hills.

We have determined g, numerically by this pro-
cedure; for a given field E and friction g, we
start a particle at t= —~ on a potential hill of U at
8,. If the particle settles in the adjacent minimum
we have found an upper bound for g„ if it arrives
on the next potential hill (with nonzero velocity)
we have found a lower bound of q, . By varying g
in small steps, q, can be determined accurately.
We then repeat this calculation for different val-
ues of the field to find g, as a function of E. The
propagation velocity2'~ u(E) = —g, (E)/y is shown in
Fig. 7. For small fields u is linear in E and it
increases monotonically to a value u*/u, = 1.19 at
E Vp in accordance with Bef. 23. For damping
coefficients larger than g*='-1.19upp the motion of
the particle with mass m= &, Eq. (5.2), is over-
damped. For E= Vp there is a kink for every prop-
agation velocity u& u*. The limiting kink" with u
=. ~ shows no spatial variation and corresponds to
advancement by 2m of the uniform chain.

The low field mobility of the kinks can be cal-
culated analytically. Consider the single-particle
equivalent equation of motion Eq. (5.2). When the
particle travels from one peak of U (at 8,) to an
adjacent one (at 8, + 2m) it loses the potential en-
ergy 2nE. Because the particle is at rest at the
two peaks, the energy loss 2mE must be accounted
for by the damping. In the low friction limit 4

(u-0) the energy loss can be calculated from

1 q8d8, where both the limits and the function 8(t)
describe the undamped motion for q =E=0,

2F

2mE = — g8de . (5.3)

d~g dg-u)' —-V sine+E=0
dz2 dz

(5.2) l.2—

which describes the motion of a particle with
mass m= g in a potential U=-V (Fig. 2), with

damping g = -uy, and with time t replacing the co-
ordinate z. We need solutions 8z(z) which describe
a transition of the chain from one Peierls valley
to an adj acent one [i.e., lim, ,„8z(z ) = 8,+ 2v and

lim, 8z(z)= 8,]. That means that for a given
field F, a friction constant g= g, has to be found
such that the corresponding dynamical system,
Eq. (5.2), possesses a solution of the following
type: A particle starting at t- -~ from 8, (a lo-
cal maximum of U, see Fig. 2) settles at t-+ ~ at
an adjacent peak of U, which is 2mE lower. If the

I.O

0.8
O

1 0.6

0.4

0.2

00 0.2 0.4 0.6
F/Vp

0.8 I.O

FIG. 7. Propagation velocity of a kink as a function of
the field. In the variables N/No, P/Vo the curve shorn is
universal. No= (zVO) /y.
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With the velocity 8=(2Vp/m)'~P(1 —cose)'~' of the
undamped particle at F =0 we find ' 5

1/2
p. =u/E= —i-

4y Pp
(5.4)

8'58(z, r)
Z (5.5)

Because the kink is stationary in the moving frame
the perturbations have the form 68(z, r) = 58„(z)
x exp(- A. r). The stability of thekink 8z(z) is, there-
fore, determined by the eigenvalue problem

l( d' d
~
-Kd p +yud + Vp cosez(z)) 58„(z)=ykee„(z) .(5.6)

dz dz

- This eigenvalue problem is not Hermitian. The
localized eigenmodes which are carried along with
the driven kink can, however, be found as solu-
tions of a Hermitian eigenvalue problem. With the
transformation 68„(z)=e''"" ""g~(z), we find

K p
+ Vp cos8z(z) +—

Ij „(z)=Xyg„(z) .d 1 u2y

dz
(5.7}

Localized eigenfunctions of (5.7) are localized
eigenfunctionS of (5.6) as long as Z & Vp/y cos8, = I'.
In this case the eigenfunctions of (5.7) decay as
exp[-(I'y/x+ —,'u y j0 -Xy/x) ~z ~] for z -+~
and thus also 68„(z) decays exponentially at large .

z. The lowest eigenmode of (5.7) is, however,
the Goldstone mode pz p(z) =e &"&t'"~[der(z
+ zp)/dzp] p-p with eigenvalue X =0. Hence all
localized eigenfunctions have eigenvalues X ~ 0 and
all nonlocalized eigenfunctions have, for F & V&,
eigenvalues with Rek & Vp cos8,/y = I' & 0. For
F & Vo this proves that the driven kinks are stable
against small perturbations.

Vfe now have all the information that is needed to
calculate the average displacement change (Be/Bt)
of a chain in the presence of a field E. On a long
term scale the advance of 8(x, t) at some point x
is given by the numbers of kinks and antikinks
which pass this point (see Fig. 1). A kink passing
the point x to the right reduces 8 by 2m and an
antikink passing x to the right advances 8 by 2w.
In the presence of a field, we have a kink current
J„=-me and an antikink current J„„=un, where
m is the kink density and n is the antikink density,
respectively. Therefore,

Next, we will investigate the stability of, the driven
kinks. We add small perturbations 68(z, r) to the
kink solution ez. Linearizing Eq. (5.1) with re-
spect to 58(z, r) yields a time-evolution equation
for the perturbations

868(z, r) 868(z, r)
'y

8
' + yu

8
' = —Vpcosez58(z, r)

j -2uno= 0,2 (5.9)

where j is the nucleation rate derived in the pre-
vious section.

In this consideration, we have again neglected
the diffusive motion of the kinks. This is a good
approximation as long as the distance ED a kink
would diffuse during its lifetime r =(2ump), is
much smaller than the distance l„=ur =(2mp) '
it travels during this same time 7. Kith the
diffusion constant D = (p/2w)kT of the kinks pp we
find l p =(2Dr)' ~p. In the ohmic limit, u = pEand
the ratio 1p/l„=(2mpkT/vE)'t is small, if
E»2mpkT/v. This is the same condition which
we imposed on (4.13}and hence on (4.18}. Thus
(5.9) is valid for E» 2mpkT/v.

The statistical properties of the kink gas have
been investigated from a more microscopic view-
point in Ref. 27. There it is shown that (5.9) is
valid when (jL'/2u)»1, i.e., in the thermodynamic
limit considered here. Note also that Eq. (5.9)
predicts a steady-state density no which is inde-
pendent of the damping coefficient y. Both the nu-
cleation current j and the propagation velocity u of
the kinks are proportional to y ~. %'hen we mea-
sure j in units jp= (Vp/z)"'(Vp jy} then jjjp depends
only on r =tpT j(icVp}'~' and E/Vp. If u is measured
in units of up=(xVp)"'/y then u depends only on

E/Vp. Hence, according to Eq. (5.9), n, is pro-
portional to (jp/2up)' '=(Vpjx)' ' and depends only
on the scaled temperature 7 and the scaled field
E/Vp. Indeed, the steady-state density n, must be
independent of y because the stationary distribu-
tion of the functional Fokker-Planck equation,
Eqs. (4.1) and (4.2), is independent of y. This is
the case in the heavy damping limit only. Thus a
y independent steady-state density of kinks char-
acterizes the heavy damping limit.

With (5.9) the average angular particle velocity
becomes 4

&ae/at& = —2~(&Z„& -&Z„„&)=4vunp, (5.8)

where np ——(n) =(m) is the average kink (antikink)
density in a ring chain.

A steady-state density 2nD is maintained by a
balance of the annihilation (recombination} and the
nucleation of kink-antikink pairs. The recombina-
tion rate can be found by the argument that follows.
The probability that a kink encounters an antikink
in the time interval dt is given by the probability
that there is an antikink in the range 2udt swept
out by the relative motion within that time. Since
the density of antikinks is n, the probability is
2undt. The rate of recombination of m kinks per
unit length and time is, therefore, 2unm. The
balance for the steady-state densities becomes
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—= 2v(2uj}"'.(
eg
et (5.10)

VI. DISCUSSION

Our aim was the calculation of the nucleation
rate j of kink-antikink pairs given by Eqs. (4.18}-
(4.20). The motion of the kinks in presence of a
field is determined by the propagation velocity
u(F) shown in Fig. V. We have shown that the two
parameters j and u determine the average angular
velocity of the chain. Reference 27 demonstrates
also that the long term dynamical behavior of the
overdamped driven chain can be expressed as a
function solely of j and u, without additional use
of the other parameters of Eq. (1.1}. Similar
considerations show that the long term dynamical
behavior of the overdamped chain at equilibrium
is also determined by only two parameters, i.e.,
the diffusion constant (mobility) of the kinks and
the equilibrium kink density.

The average angular velocity of the chain has
also been calculated via a transfer-operator tech-
nique'o "and a BBGKY hierarchy approxima-
tion. ' ' In this work the ansatz

P({8,.})= P„({8,.))h({8,]), (6.1)

is introduced in the Fokker-Planck equation

The result for the SAN case based on Eqs. (5.10)
and (4.20) is plotted in Fig. 8(a) and the numerical
results for lower fields, based on Eqs. (5.10},
(4.18), and (4.19), are shown in Fig. 8(b). In the
variables (8)y/Vo the curves shown in Fig. 6 de-
pend only on 7 =kT/(Vog)"' and E/Vo, i.e., for a
fixed 7' and E/Vo the mean angular velocity is pro-
portional to y and increases with increasing amp-
litude of the sinusoidal potential V, . Our results
will be compared to earlier work in the next sec-
tion.

—= -divj, j= vP —DV'P ~

BP (6.2)
et

Here, v =-(I/y)gE is the many-dimensional ve-
locity vector, E = a[tV, (1- cos8, ) —E8, + (z/2a')
x (8, —8„,)'] is the potential energy of the discrete
chain, and i is the particle number. In Eq. (6.1)
P is the equilibrium distribution at /=0 and

h({8&)) accounts for the corrections required by
the fact that for I' & 0 the system is not in equi-
librium and exhibits transport. The flux of pro-
babi1. ity, in terms of k, is given by

j = (F/y)k({8,j)P„({8,))
—D[Vh({8P]P„({8,]) . (6.3)

h(8„. . . , 8„)= h, (8,)h, (8,) h, (8„). (6.4)

Can this reduced ansatz provide the. correct re-
sult? We have pointed out that nucleation is an
essential step in the sequence, hence current
must be carried over the saddle point. P„ is
small near the saddle, so VA has to be large.
This can, however, not be achieved with (6.4), be-
cause the derivative of the correction factor has
to be large along the saddle-point configuration
8„(x), i.e., Vh

~ ~,„&„& has to be large. With (6.4)
the derivative of h can only be large for configura-
tions which put many particles at the value of 8

In the parts of configuration space where P ({8,.])
is appreciable the first term on the rhs of Eq.
(6.3) carries the current. Thus the kinks repre-
sented by P can provide current flow via this
first term; but where P„ is small and current has
to be carried, the second term must do it.

In a BBGKY hierarchy the n particle distribution
function h„(8„8~,. . . , 8„) is expressed in terms
of the n+1, v+2, . . . , particle distribution function.
In order to solve the problem Refs. 12-14 reduce
the series of equations to an effective single parti-
cle problem, i.e., their correction factor h takes
the form

1.0-
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FIG. 8. Average particle velocity as a function of the applied force and scaled temperature T =kT/(KVO) =8kT/E~.
The curves shown are universal. (a) SAN results and (b) computational results for smaller values of E.
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where Bh,(8,.)/ B8,. is large. At small fields, how-
ever, to take one limit as an example, the sad-
dle-point configuration has most of its particles
near 8, and near 8, +2m. Bh, /B8,. cannot be large
there, otherwise we get far too much flux in the
vicinity of the spatially uniform states 0„
8, +2w, . . . , . If, instead, we try to make Bh/B8,.
large at 8,. = 8„, i.e., at the maximum of the poten-
tial V [Eq. (2.3)], then the saddle-point configura-
tion is not particularly favored compared, for ex-
ample, to one which places more particles at 0„.
An example of such a fluctuation would be one in
which the chain departs from g„over a limited
range, as in the case of the critical nucleus, but
reaches its maximum deviation from 8, near 8„.
Near equilibrium, Eq. (6.1) together with a con-
stant h in Eq. (6.4), correctly describe the den-
sity of solitons. With increasing field the density
of solitons increases. Once again the uncorrelated
correction factors of Eq. (6.4) cannot describe
this increase; a kink after all is a very specific
spatial configuration and not just an increase in
the relative number of particles for some ranges
of e. We also would like to point out that the
treatment of Ref. 12-14 only requires that the
divergence of the single-particle probability flux
with components J, = Jd8, ~ ~ ~ d8„j, vanishes.
Clearly divt =0 is a necessary condition but not a
sufficient one to yield divj =0.

At small fields Refs. 12-14 find an angular ve-
locity

2m"' ~ exp ——' —. 6.5

Our own theory of Secs. IV and V does not apply
to the low field limit. However, we can easily
find the current in this limit. Near equilibrium
for small fieids Eq. (5.8) becomes

(
Bg = 2z pE(2n„), (6.6)

where ]L(, is the zero field mobility given by Eq.
(5.4) and 2n„ is the total equilibrium soliton densi-
ty derived in Appendix C. We obtain

T-O.
A computer simulation" by Schnei'der and Stoll

is best fit by a preexponential factor (E, /kT)'.
However, the sample modeled by these authors
shows only a few activated kinks. The angular
chain velocity depends on the passage of the kinks
past some point g, along the chain, as given by
Eq. (5.8). In order to obtain reliable results for
the thermodynamic limit, one has to model much
larger systems containing many activated kinks
over times which are large compared to the char-
acteristic times of the soliton gas."" Therefore,
a study of such a short sample" cannot easily be
compared with Eqs. (6.5) or (6.8), attempting to
describe the thermodynamic limit.

A comparison of our results over the whole
range of fields shows that at low fields, the effec-
tive single-particle approach" "overestimates the
current as a result of the additional factor Eo/AT.
At larger fields we can directly compare the acti-
vation energies. The effective single-particle
activation energy shown in Fig. 10 of Ref. 13, is
higher than the activation energy which we find
(Fig. 4). Thus at higher fields our current will
be larger than the one calculated via the BBGKY
hierarchy. Comparing their result at 7'=0.63
(their lowest temperature) with our result for
v =0.6 we find a higher angular velocity for fields
larger than 0.1V,. Whereas our approach is valid
at low temperatures and strong coupling between
adjacent pendulums the BBQKY approach will, of
course, yield correct results in the high-tempera-
ture regime and weak-coupling limit when correla-
tions between neighboring particles become unim-
portant. In that case, the many-particle system
behaves much like the one-particle system.

Note added in Proof. H. Thomas, in correspon-
dence, has pointed out that Eq. (2.23) can be im-
proved by matching. the solution Eq. (2.17) to the
kink solution Eq. (2.15). We obtain

6 Vo& 84Vo i

,for the activation energy at low fields.

APPENDIX A: EIGENFUNCTIONS OF THE SAN

which in the units of Fig. 7 becomes

2 w3/' ~ exp —~ —, 6.8

and thus, for a given field E/Vo, depends only on
the temperature measured in units of (gVo)'~'ooEo.
The rhs of Eq; (6.5) has an extra preexponential
factor Eo/kT not contained in Eq. (6.8). A mobility
can be found by comparing Eq. (6.5) with (6.7),
yielding p, »«„= p(Eo/kT) which diverges as

Following Landau and Lifshitz and Morse and
Feshbach, "we can find the eigenfunctions of the
eigenvalue problem for the SAN [Eq. (3.8)]. The
unstable mode

&8,,( )=[',($/ )]" ch'( /2&), (Al)

with eigenvalue Ao = -5/41" describes the contrac-
tion and expansion of the nucleus (separation of the
kink-antikink pair). The exponential decay length
g is given by Eq. (2.10) and I' has been defined
after Eq, (3.2). The second eigenmode has eigen-
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value A., = 0 and describes the translation (Gold-
-stone mode) of the nucleus

,(, sinh(x/2])64, ,(x) = [,($/~)]' ', ,h.(„/2(), (A2)

and is the normalized derivative of the solution
In addition, we have a localized mode at ~2

=-'1 given by

( ) [,((/ ))2(, I —4sinh'(x/2&)
'4 cosh'(x/2$) (As)

6 (11+8k'+k )
36+49k + 14k + k

(A5}

APPENDIX B: DENSITY OF STATES

In this section, we will calculate the product of
the eigenvalues Eq. (4.19). In the SAN limit as
well as at equilibrium, we will use a method given
by McCumber and Halperin. " We will adopt the
notation of Ref. 17 and refer to this paper for a
more detailed description of the method. In the
SAN case, Eqs. (2.14) and (3.8), and for the equil-
ibrium kink Eq. (2.15}, the eigenvalue problem,
Eq. (3.1), is of the form

t' d'
, -2n(e")+ 2p sech'y

~

g", (y) =0
i dy' i

for the nonuniform states and

, -2iM(2'() 0*,(2) = 0

(Bl)

(B2)

for the uniform state 8,. Here P is a parameter
determining the strength of the potential and n(e)
is a linear function of the eigenvalue &. We will
later specify these parameters for the SAN case,
Eqs. (2.14) and (3.8), and for the equilibrium kink
Eq. (2.15). For a finite chain of length I, we
adopt antisymmetric boundary conditions

which describes the extension or contraction of the
width of the kink and antikink bound in the nucleus.
The scattering states A,, & j. are

68„,(x) =A(q)e""[4ik+ik' —(9+ 6k') tanh(x/2$)

—15ik tanh'(x/2$)+ 15 tanh'(x/2$)],

(A4)
where k = 2qg and A(q) is a normalization factor.
This yields for the difference in density of states"
between the nucleus I9„and the uniform state ~,:

where the Goldstone mode (GM) is excluded, the
limit L-~is given by

q'= lim a ~r(n, p)
~

.
6 ~0+

The function

[n —1+ (2n)~'[n+ (2n)~']
„"2[n —1+ (2n)~ ][n+ (2n)+ ] —2P '

(B5)

(B6)

depends only on the amplitude of the nonuniform
potential and 0'.

In the SAN case, we find by comparing Eq. (Bl)
and Eq. (3.8),

n = 2+ 2X/r, P = 6.
Evaluation of the product in Eq. (B6) yields

[1+ (2n)~ ][2+ (2n)~'][3+ (2n)~']
[I -(2n)~'][2-(2n)~'][3-(2n)'n] '

(av)

1 1&
Q

2 2ry

Evaluation of r(n, 1) yields

[1+(2n)"]
[1-(2n)") '

(B11)

(B12)

which approaches 4/(A/r) as (X/r) goes to zero.
Hence at equilibrium

q2 4p (als)
Outside these analytical limits, we proceed in

the following way. We define

(&q)'=
-'0 I'

&.

which is related to Q' by

(BI4)

The function r(n, 6) becomes -60/(&/r) in the li-
mit X/r —0. Hence in the SAN limit we find

Q'= 60I'. (B9)
The eigenvalues characterizing the perturbations

of the equilibrium kink are determined by the
Schrodinger equation

~
d' H

,+ I -2sech'i —
i

g(x)= r g(x), (B10)
20 & (2J

obtained by evaluating (3.1) and (3.2) for &8(x)
given by (2.15). Comparison with Eq. (B2) shows
that in this case

2 2 dP & &y2 dP
(as)

McCumber and Halperin" found that the product of
eigenvalues

Taking the logarithm of Eq. (B14) and introducing
the density of states p„ for the nucleus and p, for
the uniform state, we find

log(n, g)'= (p. -p„) log(~/r)dp. /r) . (B16)
1

To evaluate (B16), we have to calculate the density
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of states p„and p, . We consider the Hamiltonian
density

a= g'~ —
~
+RP,, fd)j))t'

(817)

belonging to the Schrodinger operator L (Eq. 3.2)
and apply the approximate quantization rule

p~= 2m'kn,

where p =(2'[(A/I') -R]]~' and nz =ff'/2p. This
yields a density of states for the critical nucleus,
after differentiation with respect to (X/I'),

1 dx
[(~/I') -R(e„(»))]"' (819)

and for the uniform stationary state 8, of a chain
of length L

0.2 0.4 0.6 0.8 I.O

Fl Vp

FIG. 9. Numerical evaluation of the product of the
eigenvalues of the uniform state divided by the product
of the eigenvalues of the nonlocalized eigenmodes of the
critical nucleus.

obtained by invoking the density of states p(q),
calculating Q2 via an equation similar to Eq. (816)
in q space. Here q is the wave vector of the non-
localized eigenfunctions (see Eq. A4). In the SAN

case, we use for the difference in density of
states Eq. (A5). For the equilibrium kink the cor-
responding quantity is given in Ref. 30.

APPENDIX C: EQUILIBRIUM SOLITON DENSITY

We have shown that in linear response the mean
angular particle velocity (8 8/st) is proportional to
the equilibrium kink and antikink densities. Seeger
and Schiller' find that the equilibrium density of
kinks is given by the quotient of the partition func-
tion of a chain with a kink divided by the partition
function of the kinkless chain. In our case, this
quotient is given by

dpi»d~» e~
~

~ Q yt (g)2
242 0n eq exp ——

' ~
8 2

uT '

dll,'de,' ~ ~ exp
~

—
2~TZ ~'„(n„')'jIII II j

(Cl)

where the &» are the eigenvalues of Eq. (810), and
&'„are the eigenvalues of the kinkless chain. E, is
the equilibrium kink energy Eq. (2.20). Integra-
tion over the q coordinates yields

e, =(I/L)(ee/IeeT) 'Q(f de, )exp (- ),
(C 2)

where Q is given by Eq. (813). The integral over
the Goldstone mode coordinate yields [compare
with Eq. (4.15)],

l

(C3)

L 1
2» g [(~/I") —1]~' ' (820)

and, therefore, the equilibrium kink density be-
comes

where we have used that R(e,)=1. Two states be-
long to each eigenvalue of the continuous spec-
trum. We have evaluated the rhs of Eq. (819}nu-
merically. The result, Eq. (816), is shown in
Fig. 9. At low fields (&Q)' must approach the re-
sult for a kink-antikink pair infinitely far apart.
Through Eq. (813) one finds log(AQ)'= 2 log4
—= 2.77. For large fields (dQ)' must approach the
result for the SA¹ From Eqs. (89) and (814) we
find log(AQ)'= log(~3 ~60)= log(56. 25)= 4.03. The
results of Fig. 9 together with the eigenvalues of
the localized eigenfunctions shown in Fig. 5 have
been used to calculate the thermal activation rate
j shown in Fig. 8(b).

The results in Eqs. (89}and (813) can also be

2 V0 E0 E0

The total soliton density (kinks and antikinks) in a
chain with periodic boundary conditions is twice
the kink density. Our derivation of the kink densi-
ty Eq. (C4) differs from that of Seeger and Schiller
only in the treatment of the translational degree of
freedom of the kinks. The result Eq. (C4) agrees
with that of Seeger and Schiller [Eq. (287) in Ref.
1] and also with the result given in Ref. 30 [Eq.
(335) and Table I]. Agreement with the results
derived from the transfer method hinges on the
careful evaluation of the eigenvalues of the trans-
fer operator. "
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