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The theoretical treatment of the optical frequency up-conversion process with stochastic pumping is presented.
This process consists of exchange of photons between two modes of different frequencies. It is assumed that the two
modes are coupled by a short memory stochastic function. Statistically averaged occupation numbers of both modes

were calculated exactly by means of the theory of multiplicative stochastic processes. The obtained nonperturbative
solution sums secular terms and is valid for arbitrary times. The oscillatory-damped nature of the exchange of
energy between two modes and the role of partial incoherence of the pump is discussed. It is shown that stochastic
coupling causes the equipartition of energy between two modes for sufficiently long times. Analogies between an up-

converter and a two-level atom driven by a single mode electromagnetic field are indicated. Optical Bloch equations
for an up-conversion process are derived.

I. INTRODUCTION

Optical frequency up-conversion process be-
longs to a group of nonlinear phenomena of great
practical importance' and has also very interest-
ing theoretical aspects. The process consists
in the generation of photons of the higher frequen-
cy , from photons of the lower frequency ~ by
means of a parametric interaction of a pump with a
nonlinear medium.

A quantum description of the conversion process
is given by Louisell. Signal and idler modes in-
teract with each other with assistance of the pump
mode. An interaction Hamiltonian is proportional
to gexp[-i(&o, —&ov)t]. Tucker and Wallss assumed

g to be a constant. Lu~ solved the problem for g
as an ordinary function of time. Crosignani et al. '
'assumed to the coupling function to be a stochastic
Gaussian process with a Lorentzian power spec-
trum, corresponding to a phase-diffusion model
of an amplitude-stabilized laser pump. Kryszew-
ski and Chrostowski' analyzed statistical proper-
ties of converted light with the pump amplitude as
a random function of time. They predicted an an-
tibunching effect —the negative Hanbury-Brown and

Twisseffect forthe signalmode. The theory of mul-
tiplicative stochastic processes was applied to the
frequency up-conversion process by Mielniczuk. '

In frequency-conversion experiments one deals
usually with strong, multimode, pulsed lasers
whose amplitude undergoes substantial fluctuations
often comparable to, if not stronger than, those of
a chaotic field. It is the purpose of this paper to
present analytic solutions for statistically aver-
aged occupation numbers of interacting modes in
the case when the partially incoherent pump is

randomly amplitude modulated.
The role of partial incoherence of a laser pump

in atomic transitions has been studied recently
by many authors. ' Influenced by them we were
able to find a formal similarity between a hvo-
level atom interacting with the electromagnetic
(EM) field and the frequency up-conversion sys-
tem. Such a correspondence enables us to in-
troduce a Bloch equation description to the para-
metric frequency conversion phenomena. The
paper is organized as follows. In Sec. II we ex-
plain all physical assumptions of the up-converter
with a stochastic coupling. In Sec. III for com-
pletness of our discussion we present a case of
a perfectly coherent pump. In Sec. IV we discuss
a case when a coupling function is a sum of a con-
stant and a white-noise process. In Sec. V we in-
dicate similarities bebveen the up-converter arid a
two-level atom driven by a single mode EM field.
In Sec. VI we generalize results of Sec. IV for a
case when the up-converter relaxes with the longi-
tudinal time T, and the transversal time T2. In
Sec. VII we compare results of Sec. IV with re-
sults of a case when the pump is a random sto-
chastic process described by the phase-diffusion
model. In Sec. VIG we present some concluding
remarks.

II. THE STOCHASTIC MODEL OF THE UP-
CONVERSION PROCESS

The frequency up-conversion process is modeled
by an exchange of photons between two optical
modes of different frequencies &o, and &os (&o, & to~)

(Fig. 1). These two modes are called the signal
mode (mode A) and the idler mode (mode B) The.
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[a, a'1=[b, b'l=l, [a,b]=0. (2.2)

The stochastic character of the function g(t) may
have two sources:

(i) fluctuations of classically treated amplitude
and phase of the pumping mode;

(ii) fluctuations of a nonlinear polarizability of

effective Hamiltonian describing that process has
the form

H =Sup, a'a+a& b'b

+Keg(t) exp[-i((y, -&u, )t]a~b+ H. c.), (2.1)

where a~ and a and b~ and 5 denote the creation and
anihilation operators for modes A. add B.

The first two terms of the Hamiltonian represent
free energies of mode A and B. The interaction
terms of the Hamiltonian (2.1}are schematically
depicted in Fig. 1. It is worth noticing that in the
frequency up-conversion process three electro-
magnetic modes are coupled. However, in a deri-
vation of the Hamiltonian (2.1) one uses the well-
known parametric approximation' that reduces the
problem to the two-mode interaction. The para-
metric approximation is well justified for a case
when the three following assumptions are fulfilled:

(i) An amplitude of a pump mode corresponding
to the frequency & =~, -~~ is much stronger than
amplitudes of other modes.

(ii} Radiative transitions depicted in Fig. 1 take
place from a real molecular or atomic level to a
virtual one.

(iii) The phase matching condition

kq+k =k

is fulfilled where k„k, and k denote the wave
vectors of a photon of the frequency ~„&„and
, respectively.

The assumption (i) allows us to treat the pumping
mode classically and to neglect the reaction of the
two other modes on it.

The creation and annihilation operators satisfy
the boson commutation rules

a medium in which the frequency up-conversion
occurs.

If stochasticity originates in the fluctuations of
the pump amplitude we may take it into account in
an additive way, writing

z,„,(t)=z, +z, (t),

where Z, (t} is a stochastic function:of time. Such
an assumption is well motivated by the signal-
plus-noise model of a lase r operating above thres-
hold. ' This model leads to the intensity fluctuations of
laser light contrary to the phase-diffusion model
applied in Sec. VII of our paper.

We assume that the coupling function g(t) fluctu-
ates around its time-independent mean value go

g(t) =g, +g, (t), (2.3)

and g&(t) is a stochastic stationary Gaussian pro-
cess for which

(g, (t}}=(gl*(t)) =o,
(g, (t)g,*(t+~)) = 2Db(~),

(g, (t)g, (t+ ~})= &g,*(t)g,*(t+~)}= 0,

(2.4)

where D~ 0 is the spectral density of the stochas-
tic process g(t). The symbol (~ ~ }denotes the sta-
tistical average over the random variables of the
stochastic process g(t). The process g(t) is a
limiting case of a band-limited white-noise pro-
cess with the correlation time much smaller than
other characteristic times involved. D scales in-
coherence of the pump. In the limit D 0 we get
the perfectly coherent pump. It is easy to show
that statistically averaged populations of modes
depend on g, only via ~g, ~

. Since we are interes-
ted in populations only, we assume that ~go( =go
~ 0, i.e. , g, is a real non-negative number.

Vfe assume that modes A and B are initially in-
dependent and described by the density operator

p(0) = p (0) ( 0) (0 t,
where

~ 0}„is the vacuum state of mode 4 and ps (0)
is an arbitrary density operator for mode B.
Mode A is generated during the frequency-conver-
sion process.

III. PERFECTLY COHERENT PUMP

Equations of motion for annihilation operators a
and 5 are2

(b)

FIG. 1. Frequency conversion of light. co, ~&, and

co& are frequencies of the signal, idler, and pump modes,
respectively; (a) illustrates the first part of the inter-
action Hamiltonian (2.1), and (b) the Hermitian con-
)ugate term.

—a(t) = i(o,a(t) ig, -exp[-—i((o, —(o,)t]b(t}

d
b(t) = —i(o,b(t) —ig, exp[i((u, —(o,)t]a(t) .d

This set of equations can be solved exactly

(3.1)

(3,2)
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a(t) = exp( i&-o, t) [a, cos(g, t) —ib, sin(g, t)],

b(t) =exp(-i&u~t)[-iao sin(got) + bo cos(got),

(3.3)

(3.4)

(at(t) a(t)) = No sin2(g, t),

(bt(t)b(t)) =N, cos'(g, t),

where

No = Tr[ps (0)b~(0)b(0)]

(3.6)

(3.6}

(3.7)

denotes the number of photons of mode B at the
initial moment t=0. Populations of modes are
depicted in Fig. 2.

It is easy to see that the total photon number
(a~(t)a(t) +b~(t)b(t)) is preserved during the fre-
quency-conversion process. The inversion 8',
i.e. , the difference of populations of modes, is

W= -N, cos(2got). (3.6)

The period of oscillations of the inversion 5'be-
tween modes A and B is

where a, and Q, are annihilation operators of modes
A and B at the initial moment t =0.

Taking into account initial conditions, we arrive
at the mean photon numbers of modes A and B in

the form

—2ig exp[ —i((o, (o,)t]abt—, (4.3)

—(a'b) = i((o, —(o,)a'b —ig exp[i((o, —(o, )t]W,

by the Hermitian conjugate of Eqs. (4.1) and (4. 2).
The system of these four equations cannot be

solved explicitly because of the stochastic nature
of the coupling function g(t). Fortunately we are
interested in ensemble average quantities bilinear
in creation and annihilation operators. However,
we still have to solve a closed system of four dif-
ferential equations for following quantities: (a'(t)
a(t)), (b (t)b(t)), (a'(t)b(t)), and (a(t)bt(t)), where
(" ) denotes from this moment the average over
the stochastic variables and subsequent quantum
mechanical one. The system of these four equa-
tions can be reduced to the closed system of three
equations by noting that the total photon number is
a constant of motion even in the case of the par-
tially coherent pump.

Equations of motion for operators 8'= atm- btb,
a~b and gb~ are of-the form

—W= 2ig-* exp[i(u —m )t]a b
d
dt

T =v/go

while the period of oscillation of each mode is
twice as large.

(3.9) (4 4)

d
—(ab') = i((o, —-(o,)ab'+ ig+ exp[ i(~. —-(g, )t]W.

1V. PARTIALLY COHERENT PUMP

In the case when g, is a stochastic function of
-time, Heisenberg equations of motion for the ann-
ihilation operators are

Introducing a transformation to the rotating
fraIIle

(4. 6)

a(t) = i(o,—a(t) i@-(t)exp—[ i((o, —(o, -)t]b(t), (4. 1)d
a = a exp(i~, t),

b = b exp(i+at),

(4. 6a)

(4. 6b)

—b(t) = -iv~b (t) —ig(t) exp[i(ur, —&o,)t]a(t). (4.2)
we obtain

Equations for creation operators can be obtained

dt
—W= 2ig5ta —2ig *a~b,~ ~ ~ (4. S}

cN&

No

1.0

0.5

mode A mode B
D=O —(a b) = igW, -d

dt

—(abt) =ig*W.
dt

(4. 6)

(4.9)

3 4
g t

5 6
These equations can be rewritten in a vector no-
tation

FIG. 2. Populations of signal mode A and idler mode
B for the case of the perfectly coherent pump. No is the
total photon number in both modes; go is the frequency
of population oscillations.

dt Mo+ + ggxMP + gg+xM

where

(4.10)
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0 -2ggp 2ggp IIW

y= a'5, Mp = —jgp 0

-igp 0

0

0 0 2 0 -2 0

M, = -1 0 0, M = 0 0 0

0 0 0 0 0 V

Applying theory of multiplicative stochastic
processes" "we obtain the system of the first-
order differential equations for ensemble averaged
vector (y) (see the Appendix}

d—(+(t)) =Mo(+) —DM,M, (+) —DM,M, (@). (4. 11)

The initial condition for the column vector (+(t)) is

p

FIG. 3. Bloch vector description of the up-conversion
process. The components of the vector s = fg, ,y, gg] are
the in-phase and out-of-phase component of the transit-
ion moment of the up-converter and the difference of
populations of the modes, respectively.

(e(0)) = (4.12)

, 0

Consequently we get

(atb + bta—) = -2D(atb + bta),
dt

(4.13)

(a~b ——bta) = aig, (W-) —2D(atb —bt a), (4.14)

phase components of the transition moment of the
up-converting system during its interaction with
the pump of the frequency ~, —ro, . Let us concen-
trate on the time evolution of the inversion go(t).
We notice that Eq. (4.18) decouples from Eqs.
(4. 19) and (4.20). Then the general form of the
solution for the inversion ge(t) is

—(W) = -4D(W) —aig, (atb —bta). (4.15)

co(t) = exp(-3Dt){A cos[(4g~ —D')' at]

+I3sin[(4g', -D')'~'t]]. (4.23)

Writing

(aV) = ~N (u+iv),

(W) = Novo,

(4.16)

(4.17)

From the initial condition (4. 12)

m(0) = -1 ~

From Eqs. (4.20) and (4.24) we have

(4. 24)

we get

I= -2DQ,

g = -2DQ + 2gpglq

m = -4Dze —2gpv,

with the initial condition

u'(0) + v (0) + m'(0) = 1.

(4. 18)

(4.19)

(4. 20)

(4.21)

d—W(t) =4D.
t go

Then from Eqs. (4.18)-(4.20) and (4.23)-(4.26)
we get

(4.as)

A=-1, B=D/(4g2 —D2)'~2 (4.28)

Using the fact that the total photon number is pre-
served we finally obtain expressions for popula-
tions

From Eqs. (4.18)-(4.20) we find that

u'(t) + v'(t) + av'(t) ~ exp( —2Dt) (4.22)
and

(a~(t)a(t)) = -'N, [1+ge(t)] (4.27)

for arbitrary times t ~ 0.
Defining m'= [u, v, m] we have a formal analog of

a Bloch vector'~ lying on the Bloch sphere (Fig. 3}.
We see that the Bloch sphere shrinks in an expon-
ential way as a function of time. During the evo-
lution, the Bloch vector f moves upwards and
downwards. The north pole orientation corres-
ponds to the maximal population of mode A.

The quantities u and e are in-phase and out-of-

(b~(t)b(t)) =N, —(at(t)a(t)). (4.as)

The solution given by Eqs. (4.27) and (4.28) is ex-
act and valid for arbitrary times.

The population of mode A is depicted in Fig. 4
for values D=O, D=0.1 gp and D=gp, respec-
tively. For the case 4g, —D & 0 we observe damp-
ing of the difference of populations with the damp-
ing rate equal to 3D. This implies that only one
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1,0

0.5

1.0-
(N

No
0,5

1.0-

0.5-

D=O

D= 0.1g

D=g

half of the power of mode A can be converted as-
ymptotically into mode B. Then in the steady
state, equipartition of energy between two modes
occurs, while in the coherent pump case a com-
plete power exchange between two modes occurs
periodically.

We observe that for the case 4g~-D )0 the
frequency of inversion oscillations 0= (4g,'—D )'I'
is smaller than the corresponding flopping fre-
quency Qp =2gp in the case of the perfectly coher-
ent pump. The frequency of energy oscillations
weakly depends on the spectral density D for small
values of D and becomes significantly modified for
D of the order of go (Fig. 5). This fact is the ori-
gin of the significant differences -between Figs.
4(b) and 4(c). For D =go there is no oscillation of
the inversion and the saturation limit is obtained
for times t of the order. of 1/g, . For the case
4g p D + 0 there is no energy oscillation .

V. TWO-LEVEL ATOM AND UP-CONVERTER
ANALOGY

oscillation frequency
3.0- ——damping rate

2.5 -.

2.0i'-

//
/

/
. /
//

//

l I

3 4

g t

FIG. 4. Mean photon number of signal mode A, gen-
erated during up-conversion process as a function of
time. Three cases correspond to the different values
of the spectral densityD of the incoherent part of the pump
mode. No denotes the initial photon number of idler
mode B; go is the expectation value of the stochastic
coupling g(t).

It is worth noting some analogies between a two-
level atom driven by a single-mode resonant elec-
tromagnetic field and an up-converter. Let us
denote by ) 1) and 2) a lower and a higher level of
the atom, respectively; is the frequency of the
incident field. The Hamiltonian of such a two-
level atom is '

H=zh&oo, +hhoexp(input) +iIAo~ exp( i&dt), -(5. 1)

where o, =
( 2)(2 ~

—~1)(1 ( denotes the difference of
populations of levels ~2) and ~1). o~ =

I 2) (1 I is the
raising operator changing the state of an electron
from the lower state

~
1) to the higher one

~ 2) and
causing simultaneous emission of a photon of the
frequency &0 = (E, —8,)/S. o =

~
1)(2~ is the lower-

ing operator, A. is a coupling constant proportional
to the transition moment between levels

~ 1) and

~2). Correspondence between the operators gov-
erning the evolution of both considered systems is
given in Fig. 6.

The difference of population operator W= a~a
—b~b plays the same role as the atomic operator
o3. The operator a~b, corresponding to the oper
ator o~, describes annihilation of the photon of
lower frequency mode B with the simultaneous cre-
ation of the photon of higher frequency mode A.

Iag
/

it I I I I t I I v I I I I

0 0.5 1.0
D {in g, units)

FIG. 5. Dependence of the frequency of energy oscil-
lations and the damping rate on the spectral density D
which scales incoherence of the pump. Squares on the
curves mark points D=O D=O 1 go and D=go. FIG. 6. Two-level atom and up-converter analogy.
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Beside it the pump photon is annihilated. The op-
erator ah~, corresponding to the atomic operator
e, is responsible for creation of the photon of low-
er frequency mode B with the simultaneous annihil-
ation of the photon of higher frequency mode A.
The commutation relation

[a'b, b'a] = a'a b'b-

resembles the commutation relation

[o', o] =o, .

The flopping frequency Qo =2go corresponds to
the Habi frequency' of the two-level atom. The
frequency (u, —&o~) is related to the characteristic
frequency & of the atom. The transformation

0 Q. 8 Q=Q 9)

atb atb =exp[i(&o, —or~)t]atb',

bta- bta = exp[i{&o, —&o, )t]b'a,

is similar to a transformation of atomic variables
to the frame rotating with the frequency . Such
an analogy between the frequency up-converter and
the two-level atom has some limitations.

It has been shown by Walls and Barakat" that the
trilinear interaction Hamiltonian of the form H
=g(ab'c~ +atbc), which describes parametric am-
plification or frequency up-conversion processes,
can also be used to study the problem of coherent
emission from a system of N two-level atoms in-
teracting with a single mode of radiation field.
The atomic angular momentum operators J,=Ho „
J'=Zo', and J- =Zo- can themselves be represen-
ted in terms of two operators a and b obeying the
boson commutation rules; J'=ah~, J =b~a, thus
making both cases formally identical. For large
N -~ eigenfunctions and eigenvalues for both cases.
are equal.

Making use of the parametric approximation we
reduced the problem to the two-mode interaction
which is tractable analytically contrary to the tri-
linear case. However clearly now that the N
atoms-converter analogy does not hold since the
classically treated pump mode is not depleted and

plays a quite different role in the interaction. In-
troducing a semiclassical description of the inter-
action between the atoms and the field we were
able to recover a formal similarity between the
up-converter and two-level atom instead, which
amounts on the mathematical ground to a simple
transformation of the c-number variables.

VI. DAMPED CONVERSION WITH PARTIALLY
INCOHERENT PUMP

Now by analogy with the two-level atom we in-
troduce two phenomenological relaxation times T,

and T~ to Eqs. (4.7)-(4.9). We obtain the system
of Bloch equations

u= (-2D —1/T )u, (e. 1)

(6.2)v = (-2D -1/T, )v + 2g,zu,

Ql = ( 4D-—1/Tg)K —2gov. (6.2)

(6.4)
The time evolution of the inversion gp is given by

zo(t) = exp( —& t)[—cos(a' t) + C sin(n't)], (6.5)

where the damping constant l" is defined by

1 (1 iiI' =SD+ —
]
—+—

~,2 (Tx T2]

the frequency of oscill.ation

1 (1f1'= 4g,'——
~

———+2D~'-. '
4iT, T. ).

and

C = (4D 1+1/T,)/0 .-

(6.6)

(6.7)

Relaxation times for the incoherent pump are dif-
ferent from those in the coherent case. The longi-
tudinal relaxation time T,' for the case De 0 is
given by

1 1—,=—+4D, (6.6)

while the transversal relaxation time T,'

1 1—,=—+ 2D.
T2 T2

(6.9)

The spectral density D affects both the longitudinal
and the transversal lifetimes but in a different way.

It is interesting to point out that the renormal-
ized damping constant 1" depends on both damping
rate 1/T, and 1/Tm via their sum (1/T, +1/Tm),

The decay times introduced in this manner can be
related to the quantities of physical interest —the
decay constants y, and y, of the amplitudes of the
modes. The transversal relaxation time Ta = (y,
+ y, }' describes the dephasing between the modes
due to noncoherent damping. The interpretation of
Tj is more complicated since in the damped case
the total number of photons is not preserved. The
evolution of the system is governed by four coupled
equations instead of three and the decay of energy
is in general not exponential. Only when y, = y,
=y does the decay have a simple exponential form
with 1/T, = 2y.

The equation responsible for the evolution of u(t)
decouples from the equations for v(t) and ao(t) even
in the case when the relaxation comes into play.
The generalized Torrey equation is of the form

(-2D —1/T, -X}[(-2D-1/T, -x}
&&( 4D —1/T-( -X)+4go]=0.
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while the shifted frequency of oscillations 0' de-
pends on damping rates via their difference (1/T,

I/—r, )
For the case when both modes have the same

noncoherent decay constants p, = p~ =y, i.e., T&
= T„no shift in frequency of oscillation between
the modes due to damping is present. The only
contribution results from the noncoherence of the
pump. The damping constant I of inversion has
now a terms 2y related to the noncoherent flow of
energy from the system. This damping enhances
the decay of inversion created by the noncoherent
pump.

version process is then given in the form

g(t) =g, exp[@(t)], (v. 1)

where the phase @(t) is a stochastic process. We
assume the following properties of the stochastic
process e(t) and its time derivative $(t)

(C (&)& =0,

(C (f)@(s)&= 21,&(t —s),

(7.2)

(7.3)

where p~ is a laser bandwidth.
Applying the theory of the multiplicative stochas-

tic processes" "we obtain Bloch equations for the
up-conversion process of the form

VII. UP-CONVERSION WITH A PHASE-DIFFUSED
PUMP

Q= -I ~Q,

v + 2g, se,

(v. 4)

(v. 8)
Let us analyze some frequency up-conversion

characteristics in thy case of the laser pump with
intensity stabilization. Such a light can be well
described by a phase-diffusion model' leading to
a Lorentzian line profile with a finite bandwidth.
The coupling function g(t) for the frequency con-

K = -2gpv ~ (v. 6)

Similarly as in the previous case of Eqs. (4.18)-
(4.20) the equation describing the evolution of the
function u decouples from the system of two equa-
tions for v and gg. The populations of modes are

(a~(t)a(t)) = ',N
~

1 —exp-(--,'lit)(cos[4g, —(-,'I'~) ] '~'f'I+ &. . . „,&, sin[[4g,' —(-,'I'~)']'~'&] ~, (7.7)
L4g 0

0 2 J )

(bt(t)b(t)) =N, —(at(t)a(t)). (7.8)

The solution of the system of Eqs. (7.4)-(7.6)
resembles very much the solution for the case of
stochastic modulation of the pump amplitude. In-
stead of the previously obtained damping rate 3D
we get for the case [4gom—(~I'~)']& 0 the damping
rate equal to I'~/2. The oscillation frequency is
shifted in a similar way to [4g20—(~21'~)'P I'.

The reason for this similarity lies in the role
played by incoherence parameters which appear
only as diagonal elements of appropriate matrices
[see, for example, Eqs. (4.18)-(4.20) and (7.4)-
(7.6)]. The solution (7.7) shows also a qualitative
agreement with approximate solution of Crosignani
et al. for the case of a broad-bandwidth laser,
i.e. , F~ && go.

herent coupling causes damping of populations of
the interacting modes. It is interesting to note
that asymptotically the exchange of photons be-
tween the modes becomes insignificant and photon
numbers in both modes become practically equal.
This equipartition effect observed for both sto-
chastic amplitud'e and phase modulations takes
place regardless of how small the pump incoher-
ence is. However the time needed for this to
happen may be longer than the actual interaction
time in which case this effect will not be ob-
served. Nevertheless, such a result has more
than a mere theoretical significance since it points
towards clear trends of the physical processes in-
volved.

VIII. CONCLUSION

We have analyzed the influence of incoherence of
the pump mode on mean photon numbers of the
signal and the idler mode in the up-conversion
process. By means of the theory of multiplicative
stochastic processes we obtained the nonperturba-
tive solution for populations. This solution is
valid for.arbitrary times.

Two stochastic models of the coupling corres-
ponding to two different physical situations were
compared. We observed that the partially inco-
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APPENDIX

To get Eq. (4.11}we have used the following in-
dentity~6:

t

(T exp(i dx[g(x)M, (x) +g*(x}M2(x)])

= exp[ D-M&(t)M2(t) -D M&(t)M~(t)j,

where M&(t), M2(t) are arbitrary time-dependent
matrices and g(t) denotes the white noise process
defined by Eq. (2.4). The symbol ( ~ ~ ~ ) in accor-
dance with a notation used previously denotes the
statistical average over the random variables of
the stochastic process g(t), T denotes the time
ordering.
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