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The optical Hanle effect (light-shift-induced zero-field level crossing} has been investigated theoretically and
experimentally. In the case of a J = 0-+1—+0 three-level system and of a J = 0—+1 two-level system, the resonance
line shape has been obtained using a nonlinear-response-function method. Approximate expressions, valid under the
conditions for the observation of light shifts, are obtained and compared with exact calculations as well as with the
corresponding expression for the magnetic Hanle effect. As concerns the weak laser beam which produces the
coherent excitation of atomic substates, we have calculated the linear response in the limiting case of
monochromatic and of broad-band excitation. The experimental investigation has been performed for the Ba

0

resonance line using two cw dye lasers at 2 = 553S A and an atomic beam. The absorption- and dispersion-shaped
level crossing resonances have been observed, for narrow- and broad-band excitation, by varying the power of the
strong nonresonant laser beam. Vfe have checked that the line shapes are only dependent upon the reduced variable

Pl Ib (P~: beam power; 6: frequency detuning). Using the theoretical expressions, we have tried to fit the
experimental curves. Provided that the Gaussian distribution of the beams is taken into account, we have obtained a
good agreement between theory and experiment for the whole set of experimental data.

I. INTRODUCTION

Zero-field level-crossing resonances have been
obtained for the first time by Hanle in 1924
through the observation of the magnetic depolari-
zation of the fluorescence light induced by a con-
veniently polarized source. ' With broad-band
excitation and magnetic-field scanning, the Hanle
effect has been extensively studied and applied to
lifetimes and relaxation rate measurements for
atomic and molecular species. ' The use of laser
sources for the coherent excitation of the Zeeman
sublevels has recently led to the observation of
strongly modified level-crossing curves. The
modifications are related either to the high power
density (nonlinear effects), to the monochroma-
ticity, or to both characteristics of laser light. '4

A second kind of zero-field level-crossing effect
has been demonstrated in 1926 by Hanle: A static
electric field and the quadratic Stark effect re-
places the static magnetic field and the Zeeman
effect to lift the magnetic substates degeneracy. '
The fundamental point to observe the resonance
is to shift it least one of the sublevels by an ex-
ternally applied and adjustable effect. It 'has been
recently proposed to use for this purpose the ac
Stark effect produced by a nonresonant and power-
ful laser beam (light shift). ' The experimental
evidence for this "optical Hanle effect" has been
obtained in 1979 for the resonance line of barium
(J =0-J =1 two-level system)

I et us consider a collection of atoms with two
levels b (J =1, upper level) and c (J =0, lower

level) excited by a light source with coherent o'

polarization (linear polarization perpendicular
to the quantization axis Oz) so that a Hertzian
coherence p„~ is created in the excited state b.
This coherence exhibits a resonant behavior ver-
sus the energy distance ~„, between the sub-
levels b, and b . This level-crossing resonance
is usually observed through the polarization char-
acteristics of the fluorescence light by applying
a static magnetic field along Oz and varying the
strength of the field (magnetic Hanle effect)
[Fig. 1(a)]. The resonance curve is centered at
zero magnetic field (zero-field level crossing)
and its width is proportional to the reciprocal
of the lifetime of the upper state. An analogous
effect is obtained in a three-level system a(J =0)—5—c when a circularly polarized and intense
laser field is applied, slightly off resonant rela-
tive to the a —b transition [Fig. 1(b)]. The oscil-
lating optical electric-field shifts the b, sublevel
by an amount aE,,„=S =- P', /5, (optical light

, shift), ' 2P~ is the Rabi nutation frequency for the
a transition, and 5, is the frequency de-

tuning. The energy difference ~&„can be tuned
by varying the power I'I of the nonresonant laser
(&2 &~).

The ac Stark shift can also be produced by a
second light field slightly detuned from the b —c
transition itself (two-level system} [Fig. 1(c}].
The main difference with the previous case is the
shift of the lower level which is important in the
case of monochromatic excitation. Indeed, the
case of monochromatic excitation (monochromatic
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and then for the two-level case; narrow-band
excitation as well as broad-band excitation are
considered and a comparison is made with the
magnetic Hanle effect in both cases. The experi-
mental investigation of the effect is presented in
Sec. ID; particular attention is paid to the experi-
mental divergences from the ideal experiment.
The final part of the section is devoted to the
quantitative comparison between experimental
results and theory.

H. THEORY OF THE OPTICAI. HANI. E EFFECT

Let us consider first the geometrical and po-
larization characteristics of the system (Fig. 2).
The atomic beam (Ox direction) is illuminated
at right angle by two laser beams counterpropa-
gating along Oz (quantization axis). The weak
field I, is resonant and linearly polarized and
the strong field E, is nonresonant and circularly
polarized. The interaction of the weak field with
the atoms Ic(J =0}—&(J =I) transition] induces
some fluorescence light which is detected in the
Oy direction. The intensity of the fluorescence
emitted from level b(& = I) depends upon the
density matrix p of the atomic sample in the fol-
lowing way:

FIG. 1. Level scheme and laser polarizations for the
observation of zero-field level crossing. (a) Magnetic
Hanle effect, (b) optical Hanle effect (three-level sys-
tem), (c) optical Hanle effect (bvo-level system).

laser beam for fluorescence excitation+atomic
beam) produces additional features in the level-
crossing curve due to the fact that the excitation
beam becomes more or less nonresonant when
the shift of the levels occurs. The way through
which the latter effect appears, differs for the
different cases illustrated in Fig. I. In the above
discussion, we have considered the analog of the
magnetic Hanle effect, i.e., a circu1ar polariza-
tion for the strong field which produces the ac
Stark shift ("Faraday*' geometry}; the use of linear
polarization at 45 from one another for the weak
excitation beam and for the strong beam ("Kerr"
geometry) would give rise to the analog of the
electric Hanle effect. '6 The expressions Fara-
day geometry and Kerr geometry refer to the
possibility to observe, for the transmission of the
weak beam, the optical Faraday effect or the op-
tical Kerr effect induced by the strong beam in a
vapor using the particular polarization setting. o'0

The theory of the optical Hanle effect is de-
veloped in Sec. II, first for the three-level case,
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FIG. 2. Geometrical arrangement for the observation
of the optical Hanle effect.

L~(n)~pl„~ +pb ~
—2cos2o'Re(pn, a )

+2 sll12lxim(pg, g }~

n is the angle between the E, field polarization
direction and the x axis. From an experimental
point of view it is possible, using a rotating po-
larization technique, to measure separately the
absorption part 8„=-2 Re(p„, ) and the dis-
persion part S11 =+2Im(p„, }of the coherent
contribution to the fluorescence signal; the re-
maining contribution 8, =pb„, +p&, is usually
referred as to the incoherent part of the signal. "
In the foQowing, most of the calculations will thus
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be restricted to the determination of the Hertzian
coherence pb b

The elements of the density matrix p are cal-
culated by solving the Liouville equation with a
previously described method. " The Fourier-
transformed equations are solved in the I iouville
space using the usual Green's functions encoun-
tered in the linear response theory. The time-
dependent perturbation theory is used to the first
order relative to the interaction with the optical
field E, (weak field). For the optical Hanle ef-
fect, the level shift is not due to a magnetic field
as in the usual Hanle effect but is produced by a
second intense optical field Ea (strong beam).
The interaction with E, is treated to all orders
using a diagrammatic development which can be
summed. The summation technique for the dia-
grams is different for the three-level system" b

and for the two-level system. "' In addition,
the electromagnetic fields are treated classically
as monochromatic plane waves (semiclassical
theory), the atom-field interaction is restricted
to the electric-dipole term and the rotating wave
approximation is made (nonresonant terms ne-
glected). Furthermore as we consider an atomic
beam experiment, the problems of Doppler shifts
and broadening are eliminated and no velocity
averaging is needed.

A. Three-level system

The characteristics of the three-level system
are illustrated in Fig. 3. The Bohr frequencies
eo„and v„corresponds to allowed electric-
dipole transition so that the a —c transition is
forbidden. The weak laser beam (laser I, fre-
quency (d, ) is nearly resonant with the b —c
transition ((d, -te„) and the frequency &u, of the
strong beam (laser 2) is close to the atomic fre-

64) b

FIG. 3. Main characteristics of the simplified model
used for the calculation of the optical Hanle effect in the
three-level case. In the particular case shown on this
figure no radiative decay out of the three-level system
occurs. The closed system would correspond to &, 0,

0, & 0, A, 0, andA, /p p.

quency ~„. The two atomic frequencies ~„and
co„are supposed to be very different from one
another. The geometry and polarizations are
shown on Fig. 2 (Faraday geometry); the sub-
levels coupled by the two fields E, and E, are
indicated in Fig. 3.

Without laser fields, the level c is the only one

populated. Let p', =&/y, be the corresponding
population (~ is the population-pumping rate for
level c). The simplified model used for the re-
laxation of the three-level system includes spon-
taneous emission rates I',. and collisional-re-
laxation rates y,- and y, ,.

The steady-state solution, when the two laser
fields are applied, gives for the coherence
p„b the following expression:

2P, and 2P, are the Rabi nutation frequencies
corresponding, respectively, to the interaction
with the two fields 2P„=d,g, /5 and 2P, =d.P,/5;
d„ is the atomic dipole moment for the i —j
transition.

G„.(n„n, ) = (n, ((), +)).,()), —(()„.+il', )-',

G,,(n„n, ) is a linear response Green's function
with i,j = a, I), c, n„n, =0, +I, I',.

&
=y, , +—,'(I",. + I',.),

stance, is a typical two-photon term which can
couple the levels a and c since (((), +(d, )-cu„. How-

ever, the optical Hanle effect becomes meaning-

ful only in the case of a large detuning 5, =co, —~„
for the strong laser, i.e., under the conditions

ln, l»l';;, I";;,P;, IO, I =1cu, —(d,j.
These assumptions allows us to considerably
simplify the expression (2). They correspond to
the situation where the notion of radiative shift
can be defined.

For the sake of simplicity we consider that we

have a closed system where the relaxation rates
y; -0, y;, -0 and the pumping rate ~-0, keeping
&/r. constant and equal to p'. . We also assume
that I",=0 (c is a fundamental level). This leads
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to the following simplified expression for the co-
herence pb b

Popo f I
~b b-= g+Zj, I, ~, +~+ZrZ-, r, a, -Zr, -g-, r, &

' '

b, = —P,/ 5, is the radiative shift induced by the
strong beam. Consequently, the absorption and
dispersion signals are given by

a5, (5, +~) +-,'r',
A t c [da + pro ] [(5 +g)o + &ra ]

—b,I',
' '[5' +-,

' ro][(5, +a)'+-,'r;] '

The corresponding expression for the incoherent
part of the fluorescence signal is

plified expressions (9) differ slightly but sig-
nificantly. For a larger value of the detuning
the approximation is fully justified and one can
use the I orentzian expressions (9). This is il-
lustrated in Fig. 5(a} in the case 5, =501",.

Up to now we have considered the case of
narrow-band (monochromatic) excitation. If the
weak field is indeed provided by a broad-band
source, the excitation will be kept resonant even
when the strong beam is applied. A pure level-
crossing effect is thus expected, just as for the
magnetic Hanle effect, in the broad-band excita-

~I ~b+b+ +~b b

1 1
lp~

l~(5 +~}a+~ ra + 52+Era ~l ~ (8)

so that we have (S, —S„)/Sn =- 6/r, . A similar
relation is obtained for the magnetic Hanle ef-
fect." Considering the absorption and dispersion
signals as a function of the distance between the
shifted sublevels for a resonant excitation of the
b level (5, =0)' leads to

0.5

8Popo 1 8Popo
ro 1+4y ' r', 1+4y

with y =- &/r, .
The absorption-shaped S& and dispersion-

shaped S~ resonance curves are shown in Fig. 4
in the case 6, =101"„the curves calculated ac-
cording to the exact formula (a} or to the sim-

(9)

0

0.5'

Q5

0

0 4

FIG. 4. $& and S& resonance curves versus the re-
duced variable y =-6/I'b in the three-, level case (62

- =10I'b, 6~ = 0). Full line: Exact expression IEq. (2)].
Dashed line: Simplified expression [Eq. (9)].

FIG. 5. $& and SL} resonance curves versus the re-
duced variable y =-6/I'& in the three-level case (6t
= 501'b,' 6~ ——0). (a) Narrow-band excitation. Full line:
Exact expression fEq. (2)]. Dashed line: Simplified ex-
pression [Eq. (9)], (b) Broad-band excitation. Full line:
Lorentzian curves of Eq. (10). Dashed line: Expres-
sions (6) and (7) integrated over 6~ between -20~b and
+ 20I'b.
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tion regime. The resonance shapes are easily
obtained after a summation over 5, (from -o to
+~) of the expressions of S„and S~ [Egs. (6) and
(V}]. This leads to

S„~1/(1+y~), Sn "y/(1+y~), y= S/r

(lo)

The same Lorentzian curves would have been ob-
tained in the magnetic Hanle effect case, provided
that the reduced variable is redefined to y' =2Q/
I", where 20 is the Zeeman splitting of the &, and
b sublevels [Fig. 1(a}]. Figure 5(b} shows the
curves corresponding to (10) together with the
corresponding curves obtained after integration
of (6) and (7}over a limited range of 6, values.

In the case of three-level systems the broad-
band excitation [Eg. (10)] as well as the narrow-
band excitation [Eg. (8)] gives Lorentmian shapes
for the optical Hanle effect but the width is re-
duced by a factor of 2 in the narrow-band case;
this is illustrated in Fig. 5.

Let us remark now that, in the case of linear
polarizations at 45 from one another for the two
beams (Kerr geometry), ~b the expression for the
Hertzian coherence pQ $0 would be given by the
same expression as p&, , in the present case
(Faraday geometry}, i.e., by (2) or (5).

B. Two-level system (Fig. 6)

The geometry and the polarizations are the
same as in the three-level case (Fig. 2) but now
the frequencies of both laser beams lie in the
vicinity of the atomic frequency e„. The sub-
levels coupled by the two fields are indicated in
I'ig. 6. The notation for the relaxation and pump-
ing rates are the same as previously; without
laser beams the upper level b is not populated.
An important point is that now the strong beam
acts upon the c level and can shift the position
of this level as well as that of the b level.

%hen the two laser fields are turned on, one
finds for the expression of the coherence term
p„,, under steady-state regime

P,'P', f, 0
P', G„(1,-1)[Z,—P', G,„(0,0)G„(1,0)X,J

[G~~(0, 0)- p'G»(0, 1)](detX.) ( ' ' " ' ' [Go!(1 0) p'G»-(1 -1)]
P,'Z,*[G„(-1,+1)G„(-1,0) +G„(1,-1)Z,J

(det 1'*}

with

x, =G„(1,o)+G„(-1,o),

X2 = Gp, (0, 1)+G,~(0, -1),

Z, =G„,(1,0) +G,~(0, —1),

y~ =G„(-1,2}+G„(-1,o},

«tx, =1 —p; [G„(0,0}+G„(0,0)-g„(0,0)]x„

«t 1'* =1 —Pm[G»(-1~1)+Gee(-1, 1)-g.~(-1,1)]F*.

shows the fundamental importance of the two-
photon terms [G~,'(1,0)— p22G»(1, -1)]and det Y*
from which the radiative shift occur.

The following expressions will be given for a
closed system considering only the spontaneous
emission terms from & to c in the relaxation ma-
trix; this corresponds closely to the experimental
situation of Sec. GI. Thus we have to make y,.—0
and &-0 while keeping W„/y, = 1 and X/y, =pa.

Provided (4) is valid, one obtains

bo

G„(n„n,) has been defined previously through Eq.
(3}with, in the particular case, n„n~ = 0, al, +2;
2P, =d„E,/5 is the Rabi frequency for the strong
beam and the term g„(n„n,) = i r~G„(n„n~)G»(n„n, )
is due to the spontaneous emission rate from 5 to
C ~

Just as in the three-level case, the above ex-
pressions become much more simple and sig-
nificant in the situation of large detunings for the
strong beam (4). This approximation leads to a
reduction of the saturation term (detX, -1)and

FIG. 6. Main characteristics of the model used for
the calculation of the optical Hanle effect in the two-
level case.
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p 2pp ( 1 1
G,'(0, 0) —P G„(D, 1)i G,,'(1, Dj —P 6, (1,—c 6,,'(-1,0) —P [G, (-1,1)+G„(—1, 1)—g„(—1,1)j )

n +iI'p (6q —6+isl'q Qq
—26 —i21'p J

'

The expressions for S& and SD are now

26~(6, —3b, ) +46 s + 21'2p

' '[(6 —~}'+-'I', j [(6, —2~)'+-'I"2 j '

s p -Ela
' '[(6, —~}'+-,'I', j[(6, —2~)'+-,'I', j

(14}

00

When the excitation by the weak field is resonant
(6, =0), one obtains

SP~mpp' 1 +Sy
I"' (1 +4y')(1 +16y')

SP,pp
I', (1+4y')(1 +16y') '

0.5

(a)

y=- a/r, .
The absorption-shaped S& and the dispersion-
shaped S~ resonance curves are shown in Figs.
'I and S(a). As in the three-level case, a com-
parison is made between the results obtained
with the exact equation (11)and with Eq. (16).

0

I;-q
8 =10
8, =0

0.5
0,5

0
~ ~ ~ ~ ~

I 2 3 4

FIG. 7. S~ and S& resonance curves versus the reduced
variable y =-d, /I'p in the two-level case (Ot ——101'&, Ot
= 0). Full line: Exact expression fEq. (11)]. Dashed
line: Simplified expression lEq. (15)].

0

FIG. 8. S~ and S~ resonance curves versus the re-
duced variable y =-d/I'& in the two-level case (&2
= 2001"&, 6~ = 0). (a) Narrow-band excitation. 'The curves
corresponding to the exact expressions fEq. (11)] or to
the approximation of Eq. (15) cannot be distinguished.
(b) +road-band excitation. . Full line: Lorentzian curves
fEq. (10)]. Dashed line: Expression (14) integrated over
6~ between -50F& and+ 5OX'&.
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In the case 5, =200I', [Fig. 8(a)], the corres-
ponding curves are g.ot separated.

The line shapes are quite different from that
obtained in the three-level case: The width is
reduced as well as the relative amplitude of the
dispersion curve.

Just as for three-level systems one can con-
sider the case of broad-band excitation for, two-
level systems. Integrating Eg. (14) over 5, from
-~ to +~ gives exactly the same Lorentzian
shapes as previously gg. (10)]; this is illustrated
on Fig. 8(b). Figures 8(a) and 8(b) also allow a
comparison between the narrow-band case and
the broad-band case for the optical Hanle effect
in a two-level system.

C. Discussion

In order to discuss the particularities of the
optical Hanle effect (Faraday geometry}, let us
briefly recall the expression of the coherence
term p„, in the case of the usual magnetic Hanle
effect in the ~ =0-4 =1 transition of concern
[»g 1(a}]:

(18)

(5, +0)-i—,I"» j '

where ~ =gp&II is the Zeeman shift.
The above expression as well as the corres-

ponding ones [Eqs. (5) and (12)] for the optical
Hanle effect can be written in the same form:

Let us discuss the different terms, having in mind
the different situations illustrated in Fig. 1.

(a} C is a resonant denominator which repre-
sents the pure level crossing term; it contains
the energy difference between the 5 and 5, sub-
levels which is equal to the following:

(i) —2Q in the usual magnetic Hanle effect.
(ii) 4 in the optical Hanle effect for which only

one sublevel is shifted (5, in the three-level case
and 5 in the two-level case).

(b) B, is a resonant denominator corresponding
to the excitation of the e- b, transition. The en-
ergy of this transition is shifted from its zero-
field value. The shift is as follows:

(i}0 (Zeeman shift of bg in the usual magnetic
Hanle effect.

(ii) -b. (light shift of b, ) in the optical Hanle
effect (three-level case).

(iii) & (light shift of the lower level c of -&}

in the optical Hanle effect (two-level case).
(c) B is a resonant denominator corresponding

to the excitation of the c- b transition. The en-
ergy of this transition is shifted from its zero-
field value. The shift is as follows:

(i}-0 (Zeeman shift of 5 ) in the usual magnetic
Hanle effect.

(ii} zero (no radiative shift for 5 } in the optical
Hanle effect (three-level case).

(iii) 2& (light shift & for & and -4 for c) in the
optical Hanle effect (two-level case).

Let us remark that the radiative shift & is posi-
tive or negative according to the fact that the de-
tuning is negative or positive.

III. EXPERIMENTAL INVESTIGATION OF THE
OPTICAL HANLE EFFECT

A. Experimental arrangement

We have not found any suitable three-level sys-
tem for the investigation of the optical Hanle ef-
fect and we had to turn to a two'-level experiment.
The experiment has been performed with the
barium resonance transition at 553.5 nm (8&"SD- Ss6P 'P„) using a highly collimated atomic beam.

Let us briefly outline the main characteristics
of the experiment; 'the experimental setup has been
described with some detail in a previous paper. "
The geometry and polarizations are that of Fig. 2;
the Ba atomic beam is crossed at a right angle
by two counter-propagating laser beams; the
weak beam is frequency locked to the '"Ba line
and the strong beam is detuned in the range
-750- -6000 MHz from the same line (the natural
width is I', =19 MHz). The polarization direction
of the weak beam is rotated at frequency v and
the part of the fluorescence modulated at 2v is
detected thus giving, directly, S„(in-phase sig-
nal) and S~ (in-quadrature signal). " The re-
sonance signals S& and S~ are directly recorded
versus the strong-beam power for various values
of the detuning. In order to get the so-called
"broad-band excitation" experimental curves,
we have used a large amplitude for the frequency
modulation of the weak laser beam. '4

Let us now discuss some particular points
which correspond to some limitations of our ex-
periment. First, we had to work with natural
barium which includes about 28% of undesirable
isotopes. However, under our polarization con-
ditions, the '"Ba line is much more intense than
the eight other lines which are all located on the
high-frequency side." The weak beam is locked
to the '"Ba line; to avoid spurious effects due to
the othe.r isotopes, negative values of the detuning
6, have been used in our experiment. This pre-
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vents the direct pumping of the other isotopes by
the strong beam and, as the light shifts are posi-
tive, the shifted transition frequencies for the
undesirable isotopes cannot be brought into re-
sonance with the weak beam. Another point is that
we used nonuniform beams. The Gaussian dis-
tribution of the intensities in the beams and the
fact that the weak-beam size was not very much
smaller that the strong-beam size led to a defor-
mation of the resonance curve which had to be
included in the fit of the experimental curves.

Other parasitic effects such as nonzero residual
Doppler width, optical pumping effects due to the
'P, -'D, transition, spurious diffused laser light,
and fluorescence light not produced in the inter'-
action region —should be considered. Indeed, we
have found that the relevant consequences on the
resonance shape were not very important and that
they do not need to be included in the fitting pro-
cedure.

8. Experimental results

The experimental curves S„and 8~ corres-
ponding to the case of narrow-band excitation are
shown in Fig. 9. These resonance curves have
been obtained versus the strong-beam power and
for frequency detunings ranging from -750 to
-6000 MHz. The line shape is expected to be a
function of the optical light shift 6 = —Psm/6a;

P2 is proportional to the power density Pr, . The
S„and 8~ curves obtained for different values of
the strong-beam detuning 5, should have exactly
the same shape when plotted versus the variable

P~/6, . This 1/6, scaling law has been success-
fully checked for the whole set of experimental
curves (Fig. 9}. In Fig. 9 for P~ ~Pc= 35 W/cm',
the light shift 4 is about 1V MHz and the reduced
variable y =b,/I'~=0. 91.

The experimental curves corresponding to the
so-called "broad-band" excitation case are shown
in Fig. 10. For these resonance curves, we have
also checked the 1/6, scaling law (Fig. 10). In
Fig. 10, for Pr, Po= 35 W/cm', the light shift 6,
is about 46 MHz and the reduced variable y =6, /I",

As far as the position of the maximum of the
dispersion-shaped resonance curve and the rela-
tive amplitude of S& and S~ curves are concerned,
the experimental curves qualitatively behave as
expected. The maximum of the narrow-band ex-
citation curve is obtained for a light-shift value
much smaller than the natural width and, for the
broad-band case, this maximum is shifted towards
the higher values of the light shift. The relative
amplitude of the dispersion curve is much smaller
in the case of narrow-band excitation than in the
case of broad-band excitation.

Vfe have tried to fit directly the narrow-band
experimental curves using Eq. (15). We have
found that this could not be done in a satisfactory
way and we have tried to introduce corrections
to the theoreticaj. line shape in order to take into

SA

sa

SD

PLIPO

Flo. 9. Experimental resonance curves Sz and SD for
narrow-band excitation. The reference curves (solid
line) are relative to the detuning value 62 =-6000 MHz;
the other experimental curves (detuning 62) are plotted
with a power scale divided by the factor 62/62 for 62
=-750 MHz (); -1500 MHz (&); -3000 MHz (); -4500
MHz {0). The power density of the strong beam PI, is
given in the Po unit {P0~35%/cm ).

05

FIG. 10. Experimental resonance curves S& and Sz
for broad-band excitation. The reference curves {solid
line) are relative to the detuning value 52 = —2250 MHz;
the other experimental curves (detuning 52) are plotted
with a power scale divided by the factor 62/62 for 62
= -750 MHz (); -1500 MHz (&). The power density of
the strong beam PL is given in the Po unit (P0~35
W/em~).
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FIG. 11. Theoretical fit of the narrow-band excitation
curves S& and S&. The experimental curves (solid line)
correspond to 62 =-3000 MHz and the corresponding
calculated curve (dotted line) is obtained for Pp=35
W/cm (i.e., y= 1.81 for P~=Pp) ~ and for a ratio of two
between the strong- and weak-beam areas.

account some experimental limitations. We have
found that we had to introduce the Gaussian dis-
tribution of the beam intensities in order to re-
produce the recorded line shapes. Taking into
account this correction, we have been able to fit
the sehole set of experimental curves using the
following adjustable parameters:

A scaling parameter I', for the laser power
axis; this parameter has the same value for all
the curves to be fitted.

A normalization parameter of the amplitudes for
each ensemble of S„and SD curves (i.e., for each
value of (), used in the experiment); in addition,
for.each S„curve, a background is introduced
which accounts for spurious light coming from
scattered laser light or unwanted fluorescence.

The result of this fitting procedure is illus-
trated in Fig. 11 for a particular set of S„and
SD curves; the agreement between the calculated
and the experimental curve is good. The op-
timized value of &0 18 in close agreement with the
corresponding value deduced from another ex-
periment where the Autler- Townes doublet pro-
duced by the strong beam at resonance has been
observed. "

The corresponding fit for the broad-band ex-
citation curve could not be obtained in such a
satisfactory way. The amplitude of the frequency
modulation in this case was certainly not large
enough to produce a real broad-band excitation

'o

FIG. 12. Theoretical fit of the broad-band excitation
curves S& and SL). The experimental curves (solid line)
correspond to 62=-1500 MHz. and the corresponding
calculyted curve (dotted line) is obtained for Pp=40
W/cm (i.e., y =4.19 for Pz=P p)

so that the recorded curves are not Lorentzian
shaped. One can account in an effective way for
the weak laser linewidth under two different ways.
On one hand, one can make a summation over 5,
in the range (- —,'I;«, +-,'I;«) of Eq. (13) to get the
theoretical line shape. On the other hand, one
can introduce directly an effective width &I ff
instead of —,'I', in the second term of (13), which
contains the resonant character of the excitation
of the 0, and 0 sublevels (see Sec. IIC).

The latter case which corresponds to the intro-
duction of a Lorentzian shape for the laser spec-
trum is much better'suited to computer optimiza-
tions. The resufting line shape was found to be
almost the same in goth cases for our parameter
values. We have aisychecked that, in this par-
ticular case, the Gaussian distribution of intensi. -
ties had a rather s'fiaall influence upon the line
shape. The final fit was thus obtained by adding a
I;~ parameter to the list of parameters used in
the previous fit. The results are illustrated in
Fig. 12; the optimized parameter I;ff was about
IOO MHz. We had estimated the amplitude of the
frequency modulation to be somewhat greater
than this value. Indeed, a true broad-band exci-
tation regime could be obtained using a Ba hollow
cathode source and/or taking advantage of Doppler
broadening in a vapor.
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