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This paper augments previous theoretical desciiptions of superradiance in an extended optically thick medium by

giving expressions which limit the length and density of a high-gain system which can superradiate as a who e, or

equivalently, the shortness of its output radiation pulses. Limits arising from experimental conditions such as finite

inversion time, finite decay and dephasing times, finite transit time (cooperation length), feedback, diffraction, and

Fresnel number not approximately one, are discussed. Modifications to the simple analytical expressions for the

output radiation of the superradiant system due to each of these effects are described in detail. .Detailed computer

results are also given.

I. INTRODUCTION

The spontaneous emission rate of an assembly
of N atoms or molecules ean be much greater than
that of a, set of isolated atoms, due to mutual co-
operation via their common radiation field. ' In
this effect, called superradiance, much of the
stored energy is rapidly released by collective
radiative damping. Superradiance is the optimal
process for extracting coherent energy from an
inverted system.

Superradiance has been observed in the far in-
frared (in HF' ~ and CH, F' '), in the near infrared
(in Na "Tl '" Cs """ I i " and Rb'" ") and
recently in the visible (in Sr and Eu") and sub-
millimeter (in Cs and Na"). In all of the experi-
ments a long (compared to A.), optically thick
sample of N two-level atoms or molecules is pre-
pared in the excited state, inverted indirectly so
as to create a complete inversion between the two
levels of interest. Feedback is absent, and there
are no mirrors. After a sizable delay during
which the system evolves into a superradia, nt state,
it emits .coherent radiation, a sequence of events
sometimes referred to as superfluorescence. "
In this process incoherent emission induces a
small macroscopic polarization in the inverted
medium which gives rise to a growing electric
field and consequently an increasing polarization
in space and time. After a long delay, a highly
directional pulse of peak output power ~N' is
emitted, often accompanied by ringing.

In a previous paper" we presented a semiclassi-
cal theory of superradiance in an extended, opti-
cally thick medium formulated in terms of coupled
Maxwell-Schrodinger equations which could be
integrated numerically, and gave simple analytical
expressions for observable output parameters.
These expressions show that in a high-gain system
where all decay and dephasing times are much
longer than the collective radiation damping time,
the peak intensity ~N' and the pulse width ~1/N,

opening the possibility of producing very short,
high-intensity pulses. This paper considers fea-
tures present in any realistic system, such as
finite inversion and transit times, and diff rkct ion
and other geometrical effects, which limit the peak
intensity and pulse shortness of a superradiant
system. Other limiting features such as finite
decay time and feedback are also discussed, as
well as the effect of the interaction of forward
and backward traveling waves. Both swept and
uniform inversion configurations are considered.
In addition to the computer results, analytical
expressions are given for maximum length, maxi-
mum output power, and maximum energy in a
superradiant pulse for several cases of interest.
These limits should be of particular interest to
those attempting to observe superradiance in other
systems, and are relevant to the problem of x-
ray laser system design ~ and ultrashort pulse
generation. " Conditions which distinguish the
regimes of superradiance and self-induced trans-
parency in directly inverted two-level systems
are also discussed.

The remainder of this paper is organized as
follows. Section II: Simple expressions in the
ideal limit. Section III: Experimental conditions
which limit the length of a superradiant system.
A. Inversion time. B. Loss. C. Uniform inver-
sion: Cooperation length. Section IV: Other con-
ditions needed to obtain superradiance. A. Decay
and dephasing times. B. Feedback. C. Forward-
backward wave interaction. D. Initial polarization
at the superradiant transition. Section V: Devia-
tions from plane-wave behavior. A. The plane-
wave approximation. B. Small Fresnel number.
C. Large Fresnel number. D. Initial nonunif orm
cross section. Section VI. Summary.

II. SIMPLE EXPRESSIONS IN THE IDEAL LIMIT

In the previous theoretical analysis of super-
radiance" the semiclassical approach (classical
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fields, quantized molecules}' '~ "was chosen,
since it implicitly includes propagation effects.
The coupled Mamrgell-Schrodinger equations in the
slowly varying envelope approximation [Eq. (11),

'

Ref. 22] can be solved numerically to determine
the behavior of any superradiant system which is
consistent with the assumptions used to derive
these equations: (1) the semiclassical model with
a polarization source term to simulate spontaneous
emission can be used instead of a quantized field
model; (2} the plane-wave approximation is valid,
i.e., effects associated with finite beam diameter
can be neglected; and (3) the interaction of for
ward and backward traveling waves is negligible.
These assumptions and their implications are
discussed in detail in Ref. 25.

Although computer solutions of these Maxwell-
Schr5dinger equations should be used for precise
comparisons with experimental data, approximate
analytical solutions which are in close agreement
with the computer results can be obtained in cer-
tain limiting cases. These results are useful in
esti'mating relevant experimental parameters and
as an aid to understanding the underlying physical
processes.

In the "ideal superradiance" limit the following
additional assumptions are made: (1) the system
is inverted by a pulse traveling longitudinally
through the medium at the speed of light (swept
inversion), (2) it is inverted instantaneously, (3)
it is prepared with no initial polarization at the
superradiant transition, (4) all decay and dephas-
ing rates are negligible, (5) there is no loss, (6)
there is no feedback, (7) the system is nondegen-
erate, and (8) the polarization source term used
to simulate spontaneous emission can be replaced
by an equivalent step function input electric field. "
The justification of assumptions (7) and (8) is dis-
cussed in Refs. 22 and 25.

Assumption (4) is equivalent to assuming that
the small signal fieM gain coefficient at the super-
radiant transition,

4m' p, T,'
i

n, A. ')i
p'~] 8w

is infinite, since 7",, the inversion linewidth of the
transition, is infinite. In Eq. (1), n, is the initial
inversion density, A, is the wavelength of the tran-
sition, p,, is the dipole moment component parallel
to the direction of polarization, I, is the length of
the system, and T~ is the spontaneous lifetime of
the upper level of the transition.

In this ideal case the output intensity depends
on two parameters: Tn~, the characteristic radia-
tive damping time of the collective system, and p,
a logarithmic function of 8„the initial tipping
angle of the Bloch vector'4 corresponding to the

state of the system" and also the "area" of the
step-function input electric field":

T, = T~(8v/n, ~'I.) = Tg'aI. ,

Q
= ln(2v/8, ),

8, = p.,T„8(x= 0, T)I+,

(2)

(3)

(4)

4N~+
Ip= ~ ~N, (5a)

the width of the output pulse

Tw Ted' (5b)

and the energy contained in the first lobe of emitted
radiation

Ep=4N&~/Q ~N, (5c)

where lV = n,AL is the total number of initially
inverted atoms in a system of cross-sectional

arear'.

, and ~ is the frequency of the superradiant
transition. The delay time from the inversion
to I is

&i) Tn 0'/4 (5d)

so that T~- T~p/4. Equation (5d) was originally
derived" in the semiclassical framework; the
accuracy of this approximation has recently been
verified by an analysis based on a series-expan-
sion solution to the sine-Gordon equation. '" This
expression has also been derived from the quan-
tized field treatment of Ref. 37, with /= in( w2N)'~'

Expressions for 80 and P have been derived
from both quantum and semiclassical considera-
tions. Recently, Polder, Schuurmans, and Vre-
hen'~ "and Qlauber and Haake et al." ' have de-
veloped quantized field treatments which analyze
the initial stage of the superradiant emission proc-
cess in an extended medium. These theories allow
for spatial variations of the field amplitudes, and
thus fully include propagation effects, unlike some
earlier theories4'4' which failed to include the
spatial field amplitude variations which occur in
any superradiant system. " They show that the
initial fluctuations which trigger the superradiant
pulse can be treated stochastically, using a fluc-
tuating field source, a polarization source, or

where g(x, ]) is the complex envelope of the electric
field propagating in the x direction, and T=f —x/c
is the retarded time. All of the results of Secs.
III and IV, except those of Sec. IIIC, assume
swept excitation and are written in terms of re-
tarded time.

For any given value of 0, a single curve relates
T„'Ipto T/T„(see I ig. 4 of Ref. 22), where Ip is
the peak output power. As shown in Ref. 22 ap-
proximate expressions can then be derived for the
peak output power
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both, and confirm the validity of the semiclassical
treatment of the subsequent behavior of the system.

The average initial tipping angle 80 calculated
from either the Glauber-Haake polarization-fluc-
tuation model or the Polder-Schuurmans-Vrehen
field-fluctuation model, is

8O= 2/WN,

Q
= In(m&N),

(5e}

(5f)

so that typically 10& P & 20. Bonifacio and Lugi-
ato~ also obtained this result. (The more detailed
calculation of Ref. 3V gives

8 = 2[in(2wN )' '/N]' ' (5g)

which leads to an only slightly different value of

0)
A somewhat different expression for p has been

given by Macoillivray and Feld, "using the semi-
classical description and evaluating the amplitude
of a polarization source term from detailed bal-
ance considerations similar to those used to de-
rive the ratio of the Einstein', and B coefficients.
For an initially totally inverted system, as in the
experiments, this leads to an initial tipping angle

8 -N' '(2w) ' '(o. f,) '' (5h)

y =In[N ~ (27')'~ (~f ) ~ ] (5i}

so that typically 10& p & 25. For X ~50 pm, N
must be replaced by N[1+ (e""~"r —1) ']."

For typical values of N, Eqs. (5f) and (5i) only
differ by - 20%. Hence, it is difficult to decide
experimentally between the two. A recent experi-
ment by Vrehen and Schuurmans" has measured
the effective tipping angle 8, using two cesium
cells inverted in tandem by a pulse from a pump
laser. An infrared attenuator placed between the
cells permits a coherent pulse of small variable
area 0, resonant with the superradiating transi-
tion, to be injected into a second, lower pressure
cell. Studies of the delay time of the superradiant
output from the second cell support the H, expres-
sions [Eqs. (5e) and (5g)] of Glauber and Haake" 4'

and Polder, Schuurmans, and Vrehen, ""and
give a value of H, which differs by at least one
order of magnitude from that of Eq. (5h). While
this experiment does measure 8, directly, thus
avoiding the logarithmic dependence entailed in
measuring pulse delays, an accurate measurement
of N is still required for comparison with theory. 44

Other expressions for H, and TD are reviewed in
Ref. 3V. Analyses of pulse-to-pulse variations in
the time delays of the output radiation caused by
quantum fluctuations are given in Refs. 3V and 41.
An expression similar to that of Ref. 41 was ob-
tained'earlier by Degiorgio. "

From Eqs. (5a)-(5d) it would appear that in-

creasing the length or inversion density indefinite-
ly would result in arbitrarily short, high-intensity
pulses. The remainder of this paper examines
effects which cause deviations from this ideal be-
havior, first those of particular importance in
long systems and then those not related to length.
Analytical expressions are derived and compared
to computer results obtained by numerically inte-
grating Eqs. (11) of Ref. 22, which include the
randomly fluctuating polarization source.

IH. EXPERIMENTAL CONDITIONS VfHICH LIMIT
THE LENGTH OF A SUPERRADIANT SYSTEM

As mentioned previously, the simple expressions
derived in the ideal limit are useful in estimating
experimental parameters and in understanding
the underlying physical processes. In this section
these formulas are examined for several cases
of experimental interest in which the assumptions
of the ideal limit are no longer satisfied. Wher-
ever possible, as an aid to understanding, the
results of computer solutions of the Maxwell-
Schr5dinger equations have been expressed in
terms of simple formulas similar to those derived
in the ideal limit.

A. Inversion time

T/ = T„y'/4+ 7f(r) (T & TD),

where Tf(r) is the averaged additional delay,

(6)

Consider the case in which the process which
populates the upper level of the superradiant trans-
ition occurs over a finite time y, rather than in-
stantaneously (dashed lines, Fig. 1). Computer
results using the exact Maxwell-Schr'odinger equa-
tions show that as long as this process is com-
pleted before the first superradiant pulse is emit-
ted, the effect on the output is small [Fig. 1(b)],
other than to increase the delay time [Eq.. (6), be-
low].

In the simple case where the inversion process
creates population at a constant rate over a time
y& Tn, Eq. (5d) still holds if T~ is measured from
the midpoint in time of the excitation process [Fig.
1(b)]. The actual delay time TD', measured in
retarded time from the start of the inversion pro-
cess, is greater than TD [Eq. (5d)]: Tn= T„p'/4
+ z/2. In this case the inversion density which
would exist in the absence of stimulated emission,
n*(t), reaches a constant value which can be used
in place of n, in Eqs. (2) and (5).

In the more general case where n*(t) does not
grow at a constant rate, but still reaches a con-
stant value before the output pulse is emitted
(i.e. , 7 & T~), a similar expression for the actual
delay time TD can be written
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For any given n*(t) this equation can be solved
for Ts and then n,s which can be used in Eqs. (5).

The maximum length of an efficient system, L, ,
occurs when TD=7 lf n. *(t)=Ats ', then for a
given value of 7-,

(8)

the first lobe of output, so that n,„=n*(t=To) must
be used in place of n, in Eqs. (2) and (5}. With r
replaced by Tc, Eq. (8} becomes
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FIG. 1. Effect of changes in 7 on I(T). In all figures
a system with parameters similar to those of Befs.
11-13is used: unless otherwise indicated +p= 5 & 10
cm 3, L=2 cm, Tz=0.5ns, and (t)=15. The solid lines
indicate output intensity in arbitrary units as a function
of retarded time (same scale throughout). The dashed
lines indicate n (t), the total inversion density created
up to that time; For purposes of illustration, a value
of the polarization source term corresponding to that
used to derive Eqs. (5h) and (5i) was used to generate
all of these figures. (a) Instantaneous inversion {v=0).
(b) ~=Tz (v=60 ns, T~-57 ns). Note that Tz=Tz
+r/2 (c) 7'». Tl& (v=600 ns). Note the change in
horizontal scale. Only a fraction n,fz/no= 0.4 of the
atoms can contribute to the first lobe of radiation.

weighted over n*(t) for f & ~:

( ) 1
(n*(t})
N*(T)

n'(t)dtl ~n*(r).
& o

ff n *(t)= At s ', A constant and p & 1, then f= 1-1/p,
and 0& f ~1. Computer results confirm Eq. (8).

For sufficiently long systems, however, . the
observed delay time becomes shorter than the
duration z of the inversion pulse. Such a system
will radiate before it has been fully inverted and
will no longer be able to radiate all of its stored
energy in one coherent series of bursts of radia-
tion [Fig. 1(c)]. Here only n*(t) up to Ts can affect

In experiments up to now I., has typically been
10-100 times I. (Table I). Equivalently, Eq. (9a)
can be rewritten as a condition limiting the time g
during which an efficient system of length L, is
inverted:

y'/4 T,'

1-f(T}aL '

For systems longer than I„,solving Eq. (8) for
&t,&f

= n*(TD) =AT»+ '& gives

n.,=A[n„~/A] ' '" ~A'" (10)

T' = [n, /A]a &a ")= [n,T/A]' s A '~s

where

n, = »T~ y'p/)&, 'LT = n,„-TD/T.

Using this value of n,s in Eq. (5a) gives

I,= P@~/&.LA(n„~/A}&' "&

As an example, for p = 2 [i.e. , n*(t) = At] I&,

= 2k~gL, A. Note that in this case I~~A'~, not A',
but pf ' radiation still occurs because the effective
number of radiators N=n~AI. c A' ~. However,
although I~ increases with increasing A, the ef-
ficiency E~/@&„,(where E&„,=Ax &s '&

I&&0 is the en-
ergy needed to invert the system) decreases:
p /E„,= (4/&t&)(Tc/7)&s '&, instead of 4/&I&& in the
ideal case. This agrees with the computer re-
sults of Fig. 2. Equation (11) shows that for L & L»
I~~I. '6, not L' (Fig. 2).

%hen the pumping process is very long, the
system will only emit a few bursts of radiation of
this type. As the system continues to radiate, the
inversion density is replenished as fast as it is
depleted, leading to a quasisteady state with
I= If~AL[dn*(t)/dt]. Some evidence for the transi-
tion of such a system from its transient, ~'-depen-
dent superradiant behavior to its steady state has
been observed in Na by Gross et a/. ' This evolu-
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TABLE I. Typical experimental parameters for several observations of superradiance,
and calculated values of @ [Eq. (5h)], L1 tEq. (9)], and L~ fEq. (24)]. The calculated value of
L1 assumes that A is constant over a time v. It should be noted that the Na system is near
the zL p limit [Eq. (21)], that CHSF is strongly affected by T1 as discussed in Sec. lV A and
Ref. 5, and that the CH3F system is much closer to the L1 and L, limits than is any of the
other systems.

CHSF HF Na

References

2

g0 (cm 3)

TR

p (calculated)

L1 (calculated)

L, (calculated)

5-7

496 pm

600 cm

(T1= 60 ns)

3 X1012

65 ns

100 ns

0.3 ns

200

900 cm

1300 cm

84 JL(m

100 cm

220 ns

10"
100 ns

400 ns

5ns

17

700 cm

1500 cm

3.4 pm

14 cm

1,7 ns

2 x1010

2ns

Vns

0.2 ns

120 cm

120 cm

11-13
2.9 pm

2 cm

32 ns

4 x 1010

2 ns

12 ns

0.7 ns

50

14

70 cm

60 cm

10

1,3 pm

15 cm

1 ns

2 xl01&

5ns

12 ns

0.05 ns

20

24

40 cm

80 cm

tion is an interesting problem which merits further
study.

It should be noted that the 'results of this section
apply to both uniform inversion, where the entire
length of the sample is inverted simultaneously,
and swept inversion. For a uniformly inverted
system in which the inversion pulse crosses the
medium transversely (as would be the case in
some proposed x-ray laser schemes46), the transit
time of this pulse could become comparable to TD

and would then have to be taken into account when
calculating n*(t).

B. Loss

The presence of loss can be important even in
the case of infinite gain, aL= '/T~T»&1 [Eq.
(2}].'"""4' This loss will be considered in
two cases: (1) linear loss, where the loss coef-
ficient z=(sg/sx}&, [Eq. (11a), Ref. 22] is con-
stant throughout the medium and (2) diffraction of
a Gaussian beam, where4'

(12)

Effects of large linear loss have been described
previously. ~ " ' ' Here we extend this analysis,
discuss its region of applicability, and illustrate
results in the intermediate regime.

(1) A large constant ~ can be significant even for
very high-gain systems (see Fig. 3). For large
values of xL, g (as a function of retarded time T)

becomes independent of g. References 26, 28,
and 4V derive the asymptotic expression for this
"steady-state" regime,

p,,S(T)/@= (1/aLT„)sech[(T-To)/~LT„] (T ~ 0)

(13)
which describes a single pulse of area

O=pg g TdT
woo

Here To can be determined from the value of g at
retarded time T = 0'.

As shown in Ref. 22 an appropriate input condi-
tion to model spontaneous emission is a constant
(step-function) input field of amplitude go=&80/

Using this boundary condition in Eq. (13)
gives

(p., 8,/h)~LT„= sech(TD/ALT~),

so that"

TD = ALT„sech '(ALBO}, (15)

(16)

Equation (16) predicts a longer delay time than

in the ideal limit [Eq. (5d}] unless

where T~ has been used in place of T, since the
peak output intensity occurs at T,. When &I.g, «1,
as in the HF experiments where g0-10 ', sech
(qL9,) = in(2/xLg, ) = p- ln(wzL}, so that

T~/Tz = gL[p in(mL)] - zLp.—
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FIG. 2. Effect of changes in r on To/Ts, T„/Ts, Ip,
and Ep/Eq~ for, n (t)= At, i.e., P=2. Theory predicts
a breakpoint at v =2 TD ~ 115 Tz (vertical brohen line),

'which is consistent with the data. Note that for large v,
Th ~ T~ T2'» Ip~Ts~ and Ep/Eiac~Ts 'i in

agreement with expressions given in the text.

KL &KL2= f/4

As can be seen in Fig. 4, as gl. increases from
zero the ratio Ts/Ts immediately deviates from
its ideal value. However, this behavior is best
described as a very slow approach to two asymp-
totic expressions [Eqs. (5d) and (18)]. L =L„the
crossover point between these two expressions,
is therefore a reasonable approximation for the
point at which the ideal limit breaks down and
large xL effects start to dominate (Fig. 4).

Similar values for L„canbe derived by examin-
ing Ip and Ts for the sech' pulse of Eq. (13) at
T = T, (= Ts}:

(fJI-

CQ
LL

M

hl

z

yl

I

I 1KL=O

I l
1

l

I
I
I

/
'

I I

50 100
T/

/
/

~ ~ ~ IO

I

)50

FIG. 3. Effect of changes in gI. on output intensity.
All parameters of the dashed curve (—-) are as in Fig.
1(a). In the solid curve ( ) M=4, and in the dotted
curve ( ~ ~ ) zI.=10.

Ip
= (cA/8s) h = (cA@ /8s p, ) (1/&L, Ts)

= ~I(g/4Ts(xL)', (18)

which is independent of L,, but still proportional
to s,'. Comparison with Eq. (5a) shows that the
crossover point is again L,= g/4z. The full width
at half maximum (FWHM) of the pulse of Eq. (13)
is T~= 1.8 ~LTs. Comparison with Eq. (5b) gives
the slightly different crossover point 0.55 p/x,
which has the same dependence on a and p.

%e therefore see that the large-g4 expressions
start to become better approximations than the
small-sL "ideal formulas" near I.2= p/4a. This
is illustrated by the computer results shown in
Fig. 4 in which To/T„ is plotted as a function of

A similar conclusion is obtained from a com-
puter plot of l~ vs gL, .

Equation (1V) shows that zL R g/4 is a necessary
condition in order to reach the steady-state limit.

)60-
LU

80-
C5
O

g 40-I-
~O

20- vL= P/4

)0

FIG. 4. Effect of changes in sL on Ts/Ts. All param-
eters of the system are as in Fig. 1(a) except that M
is allowed to vary from 0 to 10. The dotted line (—-)
is the large xL expression for Ts/Ts [Eq. (16)J. The
broken line ( —~ —~-) is the ideal limit (gL, = 0) expres-
sion for Ts/Ts (Eq. (6c)]. Ts/Ts (solid line) slowly
approaches the large sL limit for sL greater than 4/4
(vertical line).
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d8/dx= —x8+ nsin8,

where the area

(19)

and where the gain coefficient + is defined in Eq.
(1). To achieve full superradiance a small input

pulse (e.g. , 8,—10 ') must grow to area -s. Since
g«1 throughout most of the pulse evolution sine
- 8 and integration of Eq. (19) gives

ln(8/8, ) = —Z+ n L, (20)

In the special case where p, = Ts (i.e. , T, is the
dominant decay process, as discussed in Sec.
IVA), Bonifacio et al.~7 have derived the additional
condition that c./a must be zp in order for super-
radiance to occur. It should be noted that combin-
ing these two conditions gives n L & Q /4, a condi-
tion which is not only applicable to the case of
large xL, but is also a general condition on T,/Ts,
as shown in Sec. IVA [Eq. (29c)].

Another condition on the length follows from the
area theorem, "derived for systems with arbi-
trary T,*and negligible decay:

C. Uniform inversion: Cooperation 1ength

In this section the case of uniform inversion is
considered. As noted by Arecchi and Courtens, "
in this case atoms near x = I. (the output end for
the forward traveling wave) start to superradiate
before radiation due to atoms near x= 0 can reach
them. For short systems computer results show
that the only effect is to increase the observed
delay time by L/2c (Fig. 5), the average transit
time. For long systems, however, the output end
can start to superradiate before radiation from
x= 0 reaches the output face. The medium stops
radiating as a whole when the transit time T„=L/c
equals the observed delay time To+ Z'„/2. This
defines a "cooperation length" I...

I.,/c = T,y'/4+ I.,/2 c, (23)

where Ts [Eq. (2)] is evaluated at L = L .

L, = y(4ncr„/n, )~')'/',

which is 5-30 times the system length in most
experiments to date (Table I). As can be seen in
Fig. 6, longer systems will break up into a num-

where the total loss g = at when g is constant.
Thus, in order for 8 to grow to -m, 520-

aL (21)
Irl

80
(TD-L/2c)/TR

40-
O

2O- W

g= ~ xdx~ 4.
0

(22)

For a Gaussian beam, g= —,
' in[1+ (L/I. ,)'], which

will, always be negligible for Fresnel number 2A/
yL ~ 0.1. For smaller Fresnel number, other
considerations discussed in Sec. V 8 become im-
portant.

This requirement for high gain is not sufficient,
however, since in most cases Eq. (29a) below is
a far more stringent condition than Eq. (21).

Equation (21) requires that ~L& p for full super-
radiance, which implies that the duration of a
superradiant pulse, T~ = T„p,must always be
shorter than the inverse bandwidth of the trans-
ition, T2 =T„aL,i.e., I'~& 7", . This relationship
is important to the understanding of the transient
nature of the superradiant process. "

(2) When the electric field is best modeled as a
Gaussian beam, Eq. (12), computer results show
that only the total loss g = J~ u(x)dx is important,
so that z proportional to x/(x'+ I.', ) and constant u

give virtually the same output for the same total
loss. Equation (17) can therefore be generalized
to

!0
~ W~ ~ ~ ~~ ~ ~ ~

(i)

(h

z~ s-

gj o
~ M
'4 (g
a.O 2-

o 0,2

UJ

o.i-0
UJ

I

0.5

L/Lc(LOG SCALE)

FIG. 5. Effect of changes inl on TD/TR, T~/Tz, I&,
and E&/E„,in a uniformly inverted system otherwise
the same as in Fig. 1. I~ is calculated to be =58 cm
[Eq. (21)j. (i) Asymptotic limits for I &I.~ ( "ideal
formulas" ). Note that (To L/2c)/Ts (dashed l-ine) is
approximately constant in this regime. (ii) Asymptotic
limits for I &I
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FIG. 7. Output intensity I(T) of a uniformly inverted
system of length L = 200 cm ~ 3.5 L~ and otherwise the
same as in Fig. 1. The transit time is 6.67 ns. The
corresponding I(T) for a much shorter system (L
«I,) is given in Fig. 3 of Ref. 22.
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(b)

FIG. 6. Amplitude and phase of the polarization
envelope density (P(x, t) in uniformly inverted systems
as a function of g, illustrating breakup of medi. um in
long samples. The phase has been shifted in the diagram
by 180' every time P(z, t)( goes through zero in order to
increase clarity. (a) L =200 cm-3.5 I; otherwise as
in Fig. 5. Here t =3.5 ns, just after the first lobe of
output radiation has been emitted I'the time behavior of
system (a) is shown in Fig. 7j. Note the rapid phase
changes. (b) L = 2 cm- 0.035 L„otherwise as in Fig.
5. Here t=70Tz=35 ns, again just after the first
lobe of output radiation has been emitted.

ber of independently radiating segments in a man-
ner described by Arecchi and Courtens, "although
as discussed below, the cooperation length of Eq.
(24) differs from theirs, especially for P»1.

The results of Figs. 5-V were obtained by com-
puter simulation using the distributed polarization
source described in Sec. II. When analyzing a long
uniformly inverted system, a distributed source
must be used, as opposed to an initial boundary
condition, since polarization and the electric field
are building up in various regions of the medium
simultaneously.

Figure 6 illustrates the amplitude and phase of
the polarization density envelope 6' of the forward
wave as a function of distance into the medium.
As can be seen, for samples much larger than L,
sharp variations in both amplitude and phase set
in. Notice that in a long sample the phase remains
constant only over regions of length -I,,

In uniformly inverted systems a backward trav-
eling wave of approximately equal intensity mill
also be present. Homever, as discussed in Sec.

IVC, the interaction of the two traveling waves is
negligible for cases of experimental interest.

Note that these arguments apply only to uniform
inversion and not to the forward wave resulting
from swept inversion, where the inversion pulse
reaches all parts of the medium at the same re-
tarded time. When swept inversion is used, as in
all experiments up to nom, transit-time effects
are irrelevant, and all atoms can contribute co-
herently to the forward-wave output, regardless
of the length of the sample. However, the back-
ward wave can be affected by cooperation length
effects. This has been observed by Ehrlich et cl.'
in the form of an increased ratio of forward-wave
intensity to backward-wave intensity as length
increases. "

For a uniformly inverted sample of length L,&1,,
the output behavior deviates substantially from the
ideal case. As shown in the computer results of
Fig. 5, the percentage of input energy radiated in
the first output lobe drops markedly, the ratio
g /gs increases, and I~ is no longer proportional
to L,'. For I. =. I., the peak power of the first lobe
ls

4';~ 4 n, AL.Iau

T Q g (Ss/sA, L, )y2 o ~

This expression also holds for L & L, , since only
the length I., can contribute to the first lobe of the
output radiation. However, the rest of the medium
contributes to later output lobes, which as a re-
sult can be more intense than the first lobe (Fig.
7).

Our expression for I... Eil. (24), differs from
that of Arecchi and Courtens, "(4cT~/n, A.'P ',
whenever 8,«1. They considered the large 8,
regime (e, - 1), as would occur in a system pre-
pared in a coherent superposition of states, and
therefore assumed that the coherent decay process
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is completed after a time T„rather than Tp.
However, for an initially inverted medium 0,«1,
so that Ts»T„and Eq. (24) applies.

T, ~ eT (8~/n, ~'I.)(y'/4),

which can also be written

Tg& eTg)p p

(28a)

(28b)
IV. OTHER CONDITIONS NEEDED TO OBTAIN

SUPERRADIANCE

A. Decay and dephasing times

In order for the ideal solutions of Sec. II to hold,
the atomic decay and dephasing times must be long
compared to the times which characterize the col-
lective radiative decay. Specifically, two condi-
tions must be met.

(1) The net gain, nI, —Z, must be large enough
so that the total area of the output pulse can grow
to -~. The condition eI. —8& p was derived above.
[Eq. (21)j.

As mentioned previously, collective effects
can occur in a limited sense even if Eq. (21) is not
satisfied, as long as T~ «T„.In this regime of
"limited superradiance", "defined by T~ «Tgp and

o.I «1, only a small fraction of the stored energy
is radiated coherently (since T2/T„=nI «I). This
regime includes such familiar effects as free in-
duction decay" "and echoes. " In the intermed-
iate regime 1 & (nI. —g) &

&f&, the peak intensity will
be much less than that given in Eq. (5a), and ana-
lytical results can be obtained from the linear
theory of Crisp. "' The output from an initially
inverted system will become more directional as
the gain is increased beyond one."

(2) The homogeneous decay time T„dueto
spontaneous emission, collisions, and other
mechanisms, must not be so short that incoherent
decay becomes the dominant mode of deexcitation,
which would prevent superradiance. The ideal
limit holds when T, »T~. If T, is comparable to
To computer results show that Eqs. (5) can be
made more accurate by using n,e a ~& in place
of n, in Eqs. (2) and (5). In other words, a system
with finite T, behaves approximately as if the
population lost to T, decay up to time TD had never
been present. In the case of instantaneous inver-
sion (7 =0) Eq. (5d) then becomes

where T~o is the delay time which would exist if
T, were infinite. This condition implies

o.I, Z e(y'/4)(T', /T, ),
n, I, ~e(2 ys'/X')(T /T, ) .

(29a)

(29b)

For a system where T, is the dominant mode of
incoherent decay, Eq. (29a) becomes

n,I.R eQ'/4, (29c)
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a far more stringent requirement than Eq. (21)
above. The effects of short T, are illustrated in
the computer results of Fig. 8.

The effects of finite dephasing time T, and in-
homogeneous broadening time T,*are different
from the effect of finite T„in that high gain in-
creases the effective T, and T2~ to T,~I. and T,*o.L, ,
respectively. " Since whenever uI & P, both

T,er. and T,*o.I. are greater than T~, there is no

8mTsp

n e-~~~ ~X'I. 4

or equivalently,

(28)
00 I
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(T /T, )e rs ra=(T„/T-,)(8s/n, &'I.)(Q'/4) .
I I

m500 200 )00
I
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In order for such a system to reach full super-
radiance, Eq. (27) must have a solution, which re-
quires that the right-hand side be less than e ',
the maximum of the function xe ". This gives

FIG. 8. Effect of changes in Tq on Tc/Ts, T /Tn,
Ip, and Ep/Ej~~. All parameters are as in Fig. & (where
T~= 2 & 10 Tz) except T~. The horizontal scale is linear
in Ts/Tq. The data support the statement that no
should be replaced by noe ~&~ ~& in Eqs. (2) and (5).
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new condition on 7, and p,* similar to that of Eq.
(28b).

B. Feedback
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0

The basic features of superradiance are not
changed by the presence of feedback. However,
the details of the radiation process may be modi-
fied. In particular, the delay time decreases and
the amount of ringing increases (Fig. 9}. This is
because feedback tends to increase the effective
length of the sample or, alternatively, to increase
the initial tipping angle e„asituation analogous
to continuing to push an initially inverted pendu-
lum after it has started to fall. An analogous
problem, the radiative damping of an inverted
NMR system in a resonant circuit, has been stud-
ied previously. "

In the HF experiments, 4 ~ when feedback was
deliberately introduced using mirrors superrad-
iance was still observed, but with drastically re-
duced delay times. The pulse shapes and delays
with feedback were similar to those observed in
much higher density systems without feedback.

The effect of feedback on the output will be
negligible as long as the output field h, (t) due to
the initializing spontaneous emission is signifi-
cantly greater than the additional field Sz(t ) which
results from the feedback process. Consider a
short (so that the transit time is negligible) high-
gain system with a 5-function input electric fieM

I @ ( )
e,I,[2(f/T„)' ']

(fT„)"' (3o)

where I,(x) is the modified Bessel function of or-
der one. Similarly, "

~
~~ ~h, (t) = df'[(i ./h)ES, (f')](p

0

,I I,(2[(f-f')/T„]"]
&~

[(& —&' }T„]"'
Inserting Eti. (30) into Eti. (31), evaluating" at
f = Tn, and making the substitution 4t /Tn = p'
sin'u~, 4Tn/T„= P' gives

pm/2

I,(p cosu )I,(P sinu )d u .
&S] 0

Using I,(x) =e"/(2~x)' ' for x~1, the integral is
found to be approximately e'35e/3p, so that the
condition for feedback to be negligible, g, (f =T )
«h, (t = Tn), becomes

( E9./T„)e'" /3P (28./T„y)e'/(2~y}' '

(32)

of area 8,«1, in which a fraction E of the output
at every time P is instantaneously added to the in-
put. To obtain a simple upper limit of F for which
feedback is negligible, consider the approximation
in which a fraction E of only S,(t), not the entire
output, is added to the input. If h, (t ), the addition-
al output due to this additional input E/g, (t), is
much smaller than 8,(f ), then the total additional
field hz(f ) resulting from all feedback will also be
negligible.

During most of the evolution process the pulse
is weak, and the small area solution of Crisp"
is valid:
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Similar calculations can be made for systems
in which the time required for radiation emerging
from the output face of the sample to return to the
input face via the feedback process is a signifi-
cant fraction of T~. In this case the additional de-
lay reduces the influence of feedback (Fig. 9}.
Thus, the value of E for which feedback becomes
important will be larger:

FIG. 9. Effect of feedback on Tn/Tn, I&, E&/E„,. A
fraction F of the output electric field is added, after
a delay of 0, 8, or 20 TJ, (compared to Tz= 57 Tz
without feedback) to the input field of a system other-
wise identical to that of Fig. l.

E ++ o s*,y, yg epx(- 1.35/[(1 -T /T ) —1]},

(35)
where T, is the round trip transit time. For p
= 15 and T,/Tn =0.1, this increases the maximum
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negligible feedback from -3x10 ' to -10 '. Some
computer results illustrating this point are given
in Fig. 9.

As E gradually increases beyond the value al-
lowed by Eq. (35), the delay time decreases and
the peak power increases (Fig. 9). For F close
to unity the feedback process in some ways re-
sembles that of a laser amplifier, whose effect-
ive length, and consequently gain, is increased
by a factor -1/(1 F) —Th.us, a single-pass sys-
tem with eJ = 1 and F = 0.95 is to some extent
similar to a system with E = 0 and nL, = 20. How-
ever, there are important differences. Owing to
the small transmission (1 E) a-ssociated with
near-unity feedback, the system's energy recir-
culates and is released slowly, rather than in a
few bursts. Furthermore, unlike a long single-
pass system, the growth of the 8 field is influ-
enced by the polarization which has built up in
the medium during previous passes.

A superradiant system with feedback also dif-
fers from an ordinary laser in that the polariza-
tion cannot adjust instantaneously to the applied
field. Consequently, the usual laser equations"
do not apply.

C. Forward-backward wave interaction

In swept or uniform systems with small 0, and
small transit time (I./ca Tv), the interaction be-
tween forward and backward traveling waves is
shown by computer analysis to be virtually negli-
gible as far as affecting the first two lobes of out-
put radiation. This is because for such systems
the forward and backward waves only become
sizable in the same region after much of the
stored energy has been radiated. For short sys-
tems (Tva L/c), as 80 becomes larger the fra, c-
tion of stored energy which the system radiates
in the first lobe increases, and the two waves be-
gin to interact. Saunders, Hassan, and Bul-
lough"' "have studied this interaction in the 9,
-0.1 regime where the interaction tends to signi-
ficantly increase delay times and decrease ring-
ing.

To study this interaction, the forward-backward
wave interaction was added to Eqs. (11) of Ref. 22
by writing separate Bg/Bz and s(P/sT equations for
the two waves and using a single Bn/sT equation
combining P ~ from both waves. Here(P is the
polarization density envelope as in Ref. 22. Sep-
arate solutions for the forward and backward
waves were then iterated until convergence was
reached Compute. r results in short (I.S I., )

samples show that the interaction starts to be-
come significant for the second lobe near 8, -10 ',
and for the first lobe near 8, -10 ', values at-

tainable only for relatively small inversion den-
sities [Eq. (5e)|. As mentioned in Sec. II, all
estimates of 6, for superradiance experiments
reported to date give 60& 10, so that the inter-
action of the two traveling waves should not be
significant.

Longer systems could not be explored by com-
puter due to the failure of this algorithm to con-
verge. However, there is no reason to expect
the forward-backward wave interaction to become
significant in longer systems for small, experi-
mentally relevant values of 8,.

If g, were much larger than in experiments to
date, this interaction would become more im-
portant than in short systems. In particular, in
long uniformlyinverte'd systems the effect of de-
pletion of inverted population by the oppositely
traveling wave increases with increasing length.
Similar considerations apply to the relatively un-
important backward traveling wave in long suePt
inversion systems. For the forward wave in such
systems, however, the effect of this interaction
decreases with increasing length, since both re-
tardation effects of the type described in Sec. IIIC
and this forward-backward interaction inhibit
the growth of the backward wave. As discussed
in Sec. IIIC Ehrlich et al. ' have observed such a
decrease in the intensity of the backward wave.

Unwanted feedback between forward and back-
ward traveling waves can also influence the out-
'put. The effect of this feedback is similar to that
occurring in the absence of the forward-backward
wave interaction (Sec. IV B), except that the feed-
back is less important in the early stages of the
evolution process, when the system is linear and
the phases and polarization directions of the two
waves are unrelated. Since sufficiently large
feedback between forward and backward waves
will cause their phases to become correlated, a
lower limit on the acceptable amount of feedback
can'be estimated by using the one-way transit
time in place of T„in Eq. (35).

D. Initial polarization at the superradiant transition

Up to now, all observations of superradiance
have used indirect inversion methods, such as
three-level pumping, ' '" "two-photon excita-
tion with a nonresonant intermediate state, ' and
three-wave mixing, ' "to achieve a complete
population inversion. In principle, a complete
inversion could be created directly, using a co-
herent pump pulse at the superradiant wavelength
of area exactly z. However, direct inversion of
a two-level system presents several difficulties.
Transverse variations in the electric field associ-
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tt' (f = 0) ~ p, n, sin 8, - p, ,n08, , (36)

where N (f =0) is the slowly varying envelope of
the polarization at t = 0. This condition implies
that the area of the inversion pulse must be with-
in 80 of x, typically a ratio of 10 '.

Another problem with direct inversion is the
change in the area of the inversion pulse as it
travels through and interacts with the medium.
To avoid this, the pulse energy E~ = (h'/Sm) Acr,
where v is the duration of the inversion pulse,
must be larger than the energy which is needed to
completely invert the medium (n, AISLE). For a
pulse of area n (y, , hv/5 = w), this gives the con-
dition

This is a far more stringent requirement on v

that that of Sec. IIIA.
It should be noted that the other extreme, v» g~,

ensures complete absorption of the pulse by the
medium, as occurs in self-induced transparency. "
Thus, for direct inversion of a two-level system
v «g„and v» g~ serve to distinguish conditions
under which superradiance and self-induced trans-
parency, respectively, may be observed.

As mentioned earlier, all observations of su-
perradiance have used indirect inversion meth-
ods. Even with indirect inversion, however, it
is still possible that a large residual polarization
could remain at the pump transition. This could
lead to superradiant emission at )his transition,
which would deplete the population available for

ated with beam profile may cause different parts
of the cross section to be subjected to different
input areas, as described in Sec. VD below. The
presence of level degeneracy would make it diffi-
cult to simultaneously invert all of the degenerate
transitions, and also, propagation effects would
prevent a pulse area near ~ from being maintained.
Even in a nondegenerate system it would be diffi-
cult to generate a pulse of area exactly x. Devia-
tions of the input area from exactly n would leave
polarization at the superradiant transition after
the inversion process is completed, the presence
of which is equivalent to increasing 9,. As shown
in some early semiclassical studies by Burnham
and Chiao, "such as increase in 8, would shorten
the delay time and reduce the ringing, thus in-
creasing the difficulty of completing the inversion
process before coherent emission begins.

Specifically, the presence of polarization at the
superradiant transition at t = 0 will not significant-
ly affect the output radiation provided that the ef-
fective tipping angle (P (f = 0)/p, ,n, is small com-
pared to 8, due to spontaneous emission. This
gives

superradiance at the desired wavelength. This
problem can be circumvented by using an inco-
herent pump pulse, or by choosing a three-level
system in which the pump transition has a much
shorter wavelength or much smaller matrix ele-
ment (and therefore a much longer T„)than the
superradiant transition.

One should also note that in indirect excitation
schemes the background emission which initiates
the evolution of the system to a superradiant state
can be modified by the presence of the pump field
through Raman-type processes. In this case
background spontaneous emission is effectively in-
creased by the presence of the intense pump field,
as discussed in Ref. 66. Although these process-
es tend to increase the effective initial tipping
angle, estimates" show that this effect is small
in all experiments performed to date.

V. DEVIATIONS FROM PLANE-%EAVE BEHAVIOR

A. The plane-wave approximation

Our model assumes that the 8 field is a uniform
one-dimensional plane wave. This model is a
reasonable approximation as long as (a) the en-
tire cross section radiates as one coherent plane
wave, (b) transverse field components are small,
and (c) in the coupled Maxwell-SchrMinger equa-
tions the 8 field envelope can be approximated by
its average value over the cross section. These
assumptions are not always valid, particularly
in systems with small or large Fresnel number
6:= 2A/u, .

The limitations of the plane-wave approximation
can be avoided by including transverse variations
and transverse fields in the wave equation. Such
an approach has been used by Mattar and New-
stein" and others" to study the effects of non-
plane-wave behavior on the propagation of co-
herent pulses in absorbers. This section explores
experimental circumstances for which non-plane-
wave effects may become important.

8. Small Fresnel number

In systems with small Fresnel number, where
the radiating volume is long and thin ("pencil" ),
the dependence of P~ on the system parameters
differs from that of Eg.'(2), which is valid for
large Fresnel number ("disk" ). This can be
visualized by noting that for a long thin array of
radiators, the solid angle over which phases sum
constructively is very different from that of a
short flat array. Rehler and Eberly"' found that
a sharp change in the shape factor p, used in the
formula for T„occursnear 6:-0.1 (Fig. 5, Ref.
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42a). For 8:s 0.1, T~ is no longer given by Eq.
(2), but instead becomes30 4" approximately"

Tz = T, (8x/no A, A) = T,~(8v/no X'L)(AL/2&). (38)

The maximum length I,, of a system which can be
described by our Eqs. (2) and (5) is therefore
given by 2A/XL, - 0.1, or

(39)

For L, &L,„&~remains constant as the length
increases. Since 1~ determines the time scale of
the entire superradiant process, output pulses
can no longer be shortened by increasing the
length of the system. However, the output inten-
sity should still be proportional to the square
of the population inversion density.

The expressions for diffraction loss and for Qp

must also be modified for samples with small
Fresnel number. The diffraction loss 2 =-,' in[1
+ 4/F'] (Sec. III B) is no longer negligible (as it is
for large 8:) and must be taken into account. Also,
the derivation of Op in Ref. 22 uses a solid-angle
factor which incorporates the shape factor p. as
does T„;for 8:s 0.1 this factor changes from A.'/
4xA to X/4L. 30'4" Since the expressions for the
output parameters depend only logarithmically on

6p the effect of this change is small.
These changes in P~ and Lgp and this choice of

8 may be adequate to allow the use of the plane-
wave solutions for small Fresnel numbers.

C. Large Fresnel number

A large-Fresnel-number system (Fa 1) may be
unable to evolve to the coherent "plane" wave as-
sumed in our model. In an initially inverted sys-
tem spontaneous emission occurs independently
in different sections of the cross section, and

coupling between sections due to diffraction is
needed to produce a single coherent phase front.
In the PS 1 case the output face of the medium
(x = L) is in the far field zone of x = 0, where spon-
taneous emission is most important. Therefore,
coupling between transverse sections should be
sufficiently large for a single coherent wave to
evolve. For large F, however, independent re-
gions each with J' ~ 1 should evolve independently,
since x = L is in the near field zone of x = 0.
Therefore, diffraction coupling may not be strong
enough to create a single coherent wave front.
Thus, different sections may have different
phases which would not add constructively.

In addition, in high-gain media nonlinear effects
such as self-focusing, self-defocusing, and beam
trapping may place a limit on the largest coherent
phase front which can be sustained. Similar lim-

itations occur in pulse propagation in absorbers.
For example, Gibbs et al."have shown that self-
induced transparency can be inhibited by trans-
verse effects of this type.

D. Initial nonuniform cross section

y2/4
1-f aL ' (9b')

A related experimental difficulty which could
lead to rion-plane-wave behavior is an initial in-
version density which is nonuniform over the
cross section of the system (e.g. , near the peri-
meter of the cross section of the inverted region).
Such nonuniformity could lead to independent rad-
iation in distinct sections of the cross section,
with different g~'s and different delays, and could
also cause the effects of transverse fields to be
significant.

As an example, consider the case of a coherent
input pulse of Gaussian'cross section which is
used to indirectly populate the upper level of an
initially unpopulated two-level system. If Op at
the center of the beam is several times p, the in-
version density will vary greatly over the cross
section, since variations in $ w'ill cause some sec-
tions to be completely populated (where o„alinear
function of g, equals an odd multiple of p) and
others to be completely unpopulated, forming a
pattern of concentric rings. As a result, different
sections of the cross section with different TR's
begin to evolve independently. This evolution may be
further complicated by diffraction co'upling between
these rings. For large Fresnel number, small-
diffraction coupling could result in independent
sections of output radiation with different phase
fronts and delays. A detector incapable of re-
solving these sections would then average ringing
from different sections into a single asymmetric
radiation lobe with a long tail.

As mentioned previously, the behavior of trans-
verse variations and transverse fields during the
evolution of a superradiant system merits further
attention.

VI. SUMMARY

As discussed in Sec. II, useful approximate
analytical solutions which are in close agreement
with computer solutions of the full coupled Max-
well-SchrOdinger equations [Eqs. (11), Ref. 22]
can be derived in the "ideal superradiance" limit.
Since experimental factors can cause the super-
xadiant emission to deviate from that which would
occur in the "ideal superradiance" limit, it is
useful to summarize the conditions which are
necessary for this limit to occur.

(a) The time v during which the sample is in-
verted must not be too long:
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or, equivalently,

g'(T,'/~)
4R(1 f)—

where —,'sf &I [Eq. (V)j. Otherwise, the efficiency
is reduced [Eq. (11)].

(b) Loss places an upper limit on the length of
the sampl. e,

the case in experiments performed to date.
(g) Excessive feedback can prevent ideal be-

havior (Sec. IVB). The fraction F of emerging
radiation returned to the input face cannot be too
large:

e='"' ( (I T-/T )"x D

~( exp(1.36/[(1-T, /T~)'~' -1]j) '

(36')
L& +4m, (22' )

where e= g/I, is the average loss/cm. Other-
wise, the superradiant output mill evolve into a
steady state pulse [Eq. (13)].

(c) Loss also constrains the gain to exceed a
minimum value:

nL& Q+Z. (21' )

Otherwise, limited superradiance" [Sec. IV A (1)]
will occur.

(d) A high-gain condition is also imposed by the
presence of incoherent decay:

aI, & ,' ey' T,'—/T, . (29a' )

L,, = y(4wcZ', p/n, X')'/' (24' )

in order'that ideal superradiant pulses will be
emitted from both ends of the medium. If 1,& L,,
and the sample is prepared via swept inversion,
ideal superradiance will still occur in the forward
direction, although backward emission will be re-
duced. However, if a sample of length L, & L,, is
prepared via uniform inversion (Sec. IIIC), the
medium will break up into independently radiating
segments, preventing ideal behavior.

(f) Interference between forward and backward
waves (Sec. IVC) will not prevent ideal behavior
as long as 8,S 10 ' (Pa 4.6), which is generally

Otherwise, inversion is lost and the output de-
creases.

(e) The sample must be shorter than the cooper-
ation length,

6' (f = 0) & p, s08o . (36' )

(i) Non-plane-wave behavior can prevent ideal
superradiance (Sec. V). The conditions under
which non-plane-wave features become significant
are not fully understood at present.

In many experimental situations these require-
ments can be met, but in others they cannot be,
leading to deviations from ideal behavior as dis-
cussed in Secs. III-V. Future work should be di-
rected towards testing these predictions and util-
izing them in practical applications.
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