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We discuss the delay-time statistics of superfluorescent pulses by introducing the concept of a passage time at
which the field intensity reaches a specified value. Such passage times can be estimated accurately from the early-
stage linear dynamics of the radiating system. The distribution function for the passage times, we show, can be
expressed as a functional integral over the random zero point fluctuations of the atomic polarization. The functional
integral can be evaluated exactly and reduced to an elementary closed form. Our theory applies both to the sharp
and the broadened atomic line. The results we obtain agree with experimental data and numerical calculations
already in existence for the unbroadened line. For the broadened line we predict substantial changes of the mean
value and the variance of the passage time as the width of the atomic line increases. We also investigate the influence
of the shape of the spectral distribution of atomic frequencies and show that the delay statistics depend significantly
on the way in which the spectral density decreases in the wings of the atomic line.

I. INTRODUCTION

Superfluorescent pulses are brief intense pulses
radiated collectively by groups of many inverted
atoms. From a macroscopic point of view, the
initial atomic state of complete inversion is a
state of unstable equilibrium. Its decay is induced
by the presence of microscopic fluctuations in the
form of quantum uncertainties of the initial atomic
dipole moments.

The radiation process which begins with spon-
taneous emission proceeds coherently and rapidly
amplifies the fields to classically describable
magnitudes. The classical description, in fact,
begins to hold as soon as the atoms have left the
fluctuation-dominated neighborhood of their initial
state. To say that the pulse develops classically,
however, is not to say that it is predictable. Since
the initiation of each pulse is an intrinsically ran-
dom process, pulses differ significantly in shape
from one another. '

Among the quantities which display strong pulse-
to-pulse fluctuations, the delay time of the pulse
maximum is of particular interest since its statis-
tical properties have been measured recently by
Vrehen.! We have in a previous work,? hereafter
referred to as I, calculated by numerical means
the delay time statistics for a monochromatic
atomic line. The agreement with the experiments
of Vrehen was found to be satisfactory.

In the present paper we shall show that the delay
statistics can be calculated analytically,® and that
the effects of line broadening can readily be inclu-
ded as well. The results obtained with the present
method agree, for the case of the monochromatic
line, with both the numerical calculations and the
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experimental data noted earlier. For the case of
the broadened line, on the other hand, we obtain
a number of new results. We show, for example,
how the mean value and the variance of the delay
time change when the width of the atomic line is
increased below the mean delay time pertinent to
the sharp atomic line, the temporal development
of the mean intensity is quite different for the
Gaussian line shape than for the Lorentzian one.

Our approach, as in our previous work, de-
scribes the atomic polarization and inversion in
terms of quantum fields. We present in Sec. II
the equations of motion for these fields and for the
radiation field We then develop in Sec. III a de-
scription of pulse delays by means of appropriately
defined passage times. We define and calculate a
probability distribution for these passage times
which is based on the early-stage linearized dy-
namics of the system.*” We solve the linearized
field equations in Sec. IV. Section V is devoted to
the discussion of the way in which the radiated in-
tensity depends upon the shape of the atomic spec-
tral line. In Secs. VI and VII we present the de-
tailed passage time statistics for the monochro-
matic and the broadened atomic spectral lines.

As a brief characterization of our work and some
of its limitations, we would like to add the follow-
ing remarks. Our quantitative analysis will be
made for two-level atoms in a one-dimensional
model. We shall use a slowly varying envelope
approximation for all fields involved, thus requir-
ing the system to be much longer than a wavelength
of the radiation emitted. We shall not include the
effects of the pump pulse dynamics, but rather as-
sume complete atomic inversion as an initial con-
dition.
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II. EQUATIONS OF MOTION

Let us consider N two-level atoms and describe
them by means of the raising operators s;, with
©n=1,2,...,N; the lowering operators s;; and the
“inversion” operators s£. These operators obey
the angular momentum commutation relations

[s5,st]=20,,s% . (2.1)

We will assume the atoms to be identical save for
the separation of the two levels. If we denote that
separation by 7Zw,, we may write the Hamiltonian
of the noninteracting atoms in the form

[s},s3]1=56,,2s%,

Hy=) w,st . @.2)
m

For the sake of simplicity, we take the atomic
transition to be one that gives rise to light linearly
polarized in the z direction. The transition can
then be characterized by a single dipole matrix el-
ement which we denote by 7#g. The radiated light
can be represented by the z component of the
transverse electric field operator at the point X,
E,X)=ER). We then write the interaction Hamil-
tonian in the form

HAFzz ER,)ing(s; —s}) . (2.3)

From the Hamiltonians H, and H,, and the well-
known free-field Hamiltonian,® we find the Heisen-
berg equations of motion for the operators sh®

§ () =siw,s; () +2gERX,, t)s5 (1), - (2.4)

$2(t)=-gE®,, s, () +s,(], (2.5)
and the wave equation for the electric field

(vz Lz Z)E(x D=4V PTG, 0. (2.6)

The driving term in this 1nhomogeneous wave equa-
tion is provided by the transverse part of the
atomic polarization, ‘

PTr(X, t)—tﬁgz 83T (X -%,)s; ()= s3]
2.7

Here 6T7(X) denotes the zz component of the trans-
verse & function

St

The above equations of motion describe a dynam-
ical problem in three spatial dimensions. In order
to gain insight into the statistical properties of the
radiated light, we replace this problem with the

.much simpler one obtained by restricting the num-
ber of spatial dimensions to one. We have argued
in I that such a simplification, although drastically

G?T'(X) =
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idealized, may not be inappropriate if the atoms
are confined to a pencil-shaped cylinder with a
Fresnel number near unity. We shall think of the
cylinder as oriented along the x axis and denote
its length and diameter by [ and d, respectively.
The condition on the Fresnel number then reads
F=d3/\~=1. _

As a second, much less critical simplification,
we require that the number density of atoms, =,
be so large that there are many atoms in every
transverse section of the cylinder extending over
a typical wavelength A =27(c/w) along the axis.
We may then describe the atoms by means of pol-
arization and inversion densities. In order to de-
fine such densities, we think of the cylinder as
sliced in transverse sections with a longitudinal
extent Ax < and label the sections by their x co-
ordinate. Similarly, we introduce frequency in-
tervals Ay, each of which is small compared to
the width 1/T% of the distribution of the atomic
frequencies. By summing the atomic operators
s® of all atoms within a “cell” AxAv at x,v we ob-
tain the densities

1
Yy s =+,-
Jag(xyt, V) AVAY xS su(t)’ a »=, Or 2z,
wueAv (2.9)

where AV =Axnd?/4 is the volume of a cylinder
section.

Analogously, we can describe the electric field
by the smoothed-out field operator

E(x,t)= d 3%E(X,1) . (2.10)

AV
Although we have defined the fields J, (x,¢,v) and
E(x,t) in Egs. (2.9) and (2.10) to depend on a dis-
crete spatial variable and a discrete frequency, we
shall, in the following, assume these functions to
vary smoothly and adopt the point of view of a
macroscopic continuum theory with x and v as con-
tinuous variables.

We easily obtain the equations of motion for the
macroscopic fields J,(x,#,v) and E(x,#) from the
microscopic equations (2.4)~(2.6). We should
note that for the geometry we have chosen we may
replace the transverse 6 function 63T7(X) appearing
in (2.7) with the ordinary 6 function §3(X) since the
relevant wave vectors all point in the x direction.
The macroscopic field equations then take the
form

J(x,t,v)=2ivd,(x, t,v) + 2gE(x, )T (x, t,v) , (2.11)
J(x,t,v) = —gE(x, )J_(x,t,v) +d,(x,¢,0)], (2.12)

(-3

= —4ﬂmi7ig_ﬁiv[J_(x, v,t)=J,(x,v,0)]. (2.13)
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Finally, we assume a distribution W(v) of the
atomic frequencies, which is relatively sharp,

e., has a width 1/ T¥ small in comparison with its

center frequency w. The polarization densities J,
and the electric field can then be thought of as
slowly modulated plane waves propagating to the
right and to the left along the x axis.

We shall define the slowly varying amplitudes or
envelope operators for these waves as dimension-
less functions of dimensionless variables. To that
end, we use the length [ of the cylinder as a unit
of length and the superfluorescence time 7, which
is defined by

1/7=2ng%mwl/c

as a unit of time. We then represent the atomic
fields as '

J,x,t,v) = %nW(v)Z(%,-t;, - w)‘r) ,

(2.14)

(2.15)

JJx,t,v):énW(v)[ ¥ (kr-wt)p ( =, - w)T)

+e£i (kxuﬂ”L ( ,= (V w)T)]

here k=w/c is the wave number corresponding
to the center frequency of the distribution W(v).
Similarly, we write for the positive and negative
frequency parts of the electric field

e*i"“ wt)E* X t
R\7’7
+e"“""""”)E* X t
n'r

By inserting the representations (2.15) and
(2.186) into the field equations (2.11)-(2.13) and
neglecting rapidly oscillating terms, we obtain the
Maxwell-Bloch equations for the slowly varying
envelope operators R, , and E; X

E*(x,t)=

(2.16)

R (6,8, v)=2ivR, (x,¢, v)+E (x,0)Z(x,t,v),
IL::HVL*+ELZ,
=-%(E}R,+E;L,+H.c.),

1

m=vac,{t}|R, (x,,0,v,)..

\R,(x,,0,v,)Z(x!,0,v])...

(5; tl_]aa_t)E*(x )= fdvp(V)R*(x,t,V),

(2.17)

( aax i:t)E;(x t)= deP(V)L (x,2,v).

Here, in contrast to Eqs. (2.11)-(2.13), the quan-
tity v measures the detuning from the center fre-
quency w, p(v) is a dimensionless form of the fre-
quency distribution

p(v)%w(“’ +") : | (2.18)

T

and v is the dimensionless expression for the vel-
ocity of light,

v=cT/l. (2.19)

The Maxwell-Bloch equations (2.17) generalize the
equations treated in I to the case of an inhomogen-
eously broadened atomic line.

The field equations (2.17) have to be solved with
the boundary condition that no external signals im-
pinge on the cylinder at x=0 or x=1, and with ap-
propriate initial conditions for all the fields at
t=0. Once we have found the corresponding solu-
tions we can calculate, for example, the nth norm-
ally ordered moment of the intensity radiated to
the right as the expectation value

I (1) =(vac, {4} Ex(1,"EL (1, 07| vac,{t}) ,
(2.20)
where

lvac,{t}

denotes the initial state of the system. This initial
state is the vacuum of the electromagnetic field
and the excited state for each atom; it is an eigen-
state of the operator Z(x,0,v) with eigenvalue one.

Since the polarization fields R, and R_ are the
sources for the electric fields Ej and E}, respec-
tively, it is convenient, as we have shown in I, to
derive the normally ordered moments (2.20) from
a standard set of ordered atomic expectation val-
ues

(2.21)

Z(xy,0,v0)R_(x],0,v]).
(2.22)

By using the definitions (2.9) and (2.15) we can show, as in I, that the operators Z.in (2.22) can be re-

placed, up to corrections of order 1/N, by unit operators.

The expectation value 4, =A,  may then be

expressed as a sum of products of two-point expectation values A,,(x; - x},v;, v})

A,,o=z: Al =2, v, VDA, (X, — x5, vy, vp). . 'Am("
P

- X, v,,V5) . (2.23)

n’’n
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Here the sum runs over all n! permutations of the
primed variables. The basic two-point function is
given by -

A -x"v,v") :%b(x -x')6(v—v")p(v)t.
(2.24)

The spatial delta function, as we have seen in I,
is due to the fact that the expectation value 4,,
contains no contributions from pairs of different
atoms, but is instead a sum of single-atom con-
tributions. The delta function §(v — v’) has the
same origin. The factor p(v)! follows from our
normalization condition (2.15).

The results (2.23) and (2.24) can be obtained
equivalently by regarding the initial polarization
operator R,(x,0,v) as a classical complex random
field with the Gaussian probability density

P({R}):SIexp(-]Z\-rj:dx[j dvp(v)]R§(x,0,v)[2) .

(2.25)

The factor N is defined so that the functional in-
tegral of P{R}) is normalized to unity,

1= f a¥R}PERY) .

As we have shown in I (by using a suitable quasi-
probability functional to represent the density op-
erator), each superfluorescent pulse develops
classically in the following sense. To within cor-
rections of relative order 1/N, the fields R,, L,,
Z, and Ejz’ ¢ can all be treated as c-number fields
obeying classical equations of motion of the form
(2.17). The quantum nature of the pulses then ap-
pears solely in the uncertainty of the initial atomic
polarization which is described by the probability
distribution (2.25). We shall continue to use this
classical probability description in the present
paper. To simplify the notation we shall denote by
E(x,t) and R(x,t,v) the complex random fields as-
sociated with the operators E3(x,?) and R, (x,t,v),
respectively.

(2.26)

III. THE PASSAGE TIME PROBLEM

We shall next show that the way in which the
delay time of the superfluorescent pulses fluctu-
ates can be described by a simple probability dis-
tribution. To that end it is convenient to define
the delay of a pulse by means of the time 7, at
which the pulse intensity at one of the end faces of
the cylinder reaches a certain reference intensity
I, As illustrated in Fig. 1 this passage time
is typically somewhat smaller than the delay time
t, of the first maximum of the pulse. However, if
the reference intensity is chosen to be of a magni-

INTENSITY (arb. units)

S S S SO

7 S S e

TIME o ta

FIG. 1. Definition of the passage time £, and the delay
time #;. For most trajectories {,~{,.

tude comparable to the mean maximum intensity,
ie.,

Iref:0(1)7 (3.1)

the difference between /, and #, is relatively small
and easily estimated.

The passage time {, can be much easier to calcu-
late than the delay time #,. Indeed, superfluores-
cent pulses tend to rise quite steeply with time to
their first intensity maximum. The nonlinearity
of the pulse dynamics therefore becomes important
only shortly before the first maximum is reached.
We can thus estimate the passage time and its
statistical properties from the early-stage linear
dynamics of the pulse evolution withour appreci~
able error.

In the early-stage linear regime we can approx-
imate the atomic inversion density as

Z(x,t,v)=1. (3.2)

The left- and right-going waves are then decoupled.
The passage time for the right-going pulse depends
on the random initial polarization R(x,0,v),

t,=t,(R}, 3.3)

and will thus vary randomly from one pulse to the
next. Our task is to relate the probability distri-
bution of t‘, to the Gaussian distribution (2.25) of
the initial polarization.

As a convenient definition of a passage time dis-
tribution, we propose the following functional av-
erage over the initial polarization

a 2
O(dt‘E(t)] ))

W)= (o(l E®)|? - 1I,,,)
(3.4)

To interpret this definition, we note that the delta
function peaks at the passage time, ¢=1¢,({R}); the

a 2
1)
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modulus of the time derivative of the infensity
multiplying the delta function effectively turns the
latter into a delta function with the argument ¢ - t,
({R}); the unit step function in (3.4) serves to re-
ject from the averaging procedure all passages
with negative slope, if there are any for a given
trajectory.

It follows from the definition (3.4) that the nor-
malization integral [ 5 df W(t) is the mean number
of passages of the intensity | E(t)|? with positive
slope per trajectory. Were we to set the refer-
ence intensity at values comparable to the mean
square of the initial polarization fluctuations, we
would have to expect typical trajectories to cross
the level I, more than once; for such small in-
tensities the randomness of the initial polarization
configuration can lead to interference effects which
cause the radiated intensity to decrease as well as
increase. For that reason alone the passage time
distribution (3.4) would then have little relation to
the delay of the macroscopic pulse. If, however,
we set the reference intensity at a macroscopic
level as indicated in(3.1), the first passage is
]

%!E(t)|2=ﬁldxﬁldx’j:jdvj:j dv'pw)p(v')lélx, ¢,

We find two eigenvectors of the “matrix”
K(xv,x'v') =pw)p(v’)[e(x, t, v)elx’, t,v')* +c.c.]
in the form

Vix,v)=aelx,t,v) +Belx,t,v),

where the constants o and B are to solved for.
The eigenvalues that solve the ensuing quadratic
secular equation can be expressed in terms of the
average intensity

1(t)=<|El2>=%foldxfwdvp(v)le(x,t>v)|2,
(3.7

the average: squared derivative of the electric field
. 4 pl +o0 .
( E|2)=ﬁf dxf dvp)|étx,t,v)|2, (3.8)
0 -0
and the expectation value ’

(EE*) :%j:dx’[j dvpw)élx,t,v)elx,t,v)* .
(3.9

The two eigenvalues we seek for the matrix
K(xv,x'v’) then take the form

A =0 £ [P + a1/, (3.10)
in which
AR =(E|2|E]y - | (EE*Y|2. (3.11)

likely to occur at a time long compared to a photon
transit time I/c. For such times spatial and tem-
poral irregularities of the fields E and R due to
the initial irregularity of R have already been
washed out and the overwhelming majority of in-
tensity trajectories passes I,, no more than once
with positive slope. The excess of the normaliza-
tion integral [ 5dt W(¢) over unity should then be
of order no larger than 1/VN, and thus negligible.

For further discussion and eventual evaluation
we express the linear relationship between the el-
ectric field at x =1 and the initial polarization in
the form of an integral,

E(t):fldxf Mdvp(v)e(x,t,V)R(x,O,V), (3.5

in which e(x, ¢, v) is a kernel function which we need
need not specify until Sec. IV. As a first applica-
tion of the relation (3.5), we can show that the in-
tensity ]E(x:l,t)]2 need not increase monotonic-
ally with time.

The time derivative of the intensity is a quadra-
tic form in the initial polarization,

ve(x',t,v')* +c.c.]R(x,0,v)R(x’,0,v")* . (3.6)

r

Because of the Schwarz inequality, the function
A(#)? is non-negative. We conclude that one of the
eigenvalues (3.10) must be negative, and that the
intensity | E(¢,{R})|? itself cannot increase mono-
tonically for all initial polarizations.

We now return to the expression (3.4) and per-
form the functional average over the initial polar-
ization with the weight functional (2.25). That
task is simplified by employing the familiar Four-
ier integral representations for the delta function
and the unit step function,

G(x):f d—we"“”‘,
) 27

dQ eior
21 —iQ +¢€’

(3.12

6(x)= e— 0.

-

The expression (3.4) then takes the form
ref

W)= - f ‘Z—i;iexp(—iwl )

@@ 1 2
27 —12 +¢€ 012

><<exp (—iw[E’z—iQ%[El"’». (3.13)

Upon inserting the linear relation (3.5) in (3.13)
we see that the remaining functional integral over
the initial polarization is Gaussian in nature,
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<exp(—iw|El2_m%|E]Z)>

=91 fdz{R(x,v)}exp<— fdxfdx’ fdv de’M(xu,x’v')R(x,V)R*(x’,v’)),

with the matrix

M(xv,x'v’) =%6(x - x")8(v = v )p(v) +iwp(W)p(v')elx, t, v)e*(x’, t,v’)
+igp(Wp(v)elx, t,v)e*(x’, t,v") +elx, t,v)é*(x’,t,v)]. (3.14)

We show in the Appendix that the evaluation of this
functional integral can be reduced to the calcula-
tion of the determinant of a two by two matrix.
The result we find is simply

<exp(—iw| E|2"m%|Elz)>

=[1 +iwI(t) +iQU@#) + Q2a0)2]L . (3.16)

We now insert Eq. (3.16) in Eq. (3.13) and im-
mediately perform the integral over w by observ-
ing that the integrand has a pole at w =#(1 +4QJ
+Q2A%)/I. The result is

1 ae 1 i}

YO=15 ) sra+ein

Iref T 2 2
X exp (—m [1+iQ1(2) +Q2A() ])

(3.17)

The remaining integration is elementary and yields
the probability distribution for the passage time!®

1)

1)L, - v
Wt =go5ste ’ref”‘”(l +erf[“—"’741(t)a<t ] >

[Lrop A(E)2]H/2 Ieg  I(tPlee
*( E0d ”)exl’(‘ﬁ - 41‘(t>A(;>2) '

(3.18)

It should be noted that this result is only based
upon the linearity of the relation (3.5). It holds
irrespective of the spatial dimensionality of the
problem or of the shape of the atomic spectral
density p(v). While the dimensionality and the
shape of the spectral line do affect, of course, the
mean intensity I(#) and the averages entering the
function A(#), the form of Eq. (3.18) turns out to
be quite universal.

IV. EARLY-STAGE SOLUTIONS

The explicit evaluation of the passage time dis-
tribution (3.18) requires us to know the kernel
function e(x,?, v) in the linear relation (3.5). In
order to construct it we have to solve the linear-
ized versions of the Maxwell-Bloch equations
(2.17), i.e.,

1
R(x,t,v)=ivR(x,vt) + E(x,1),

(53; +%§;)E(x,t)=f_;”dup(u)R(x,t,V). 4.1)

We do that by recasting them as equations for the
space-time Laplace transforms R(q, s, v) and
E(q,s), defined, for example, by

E(q,s):fmdxe‘“fmdte"‘E(x,t). 4.2)
0 0

By using the boundary and initial conditions
E(x=0,s)=E(q,t=0)=0 we then find the trans-
form of the electric field to be

E(q,s)z(q +%—dev§£z)—)‘lR(q,t=0, V).

-iv
(4.3)

By inverting the spatial Laplace transform we can
write the electric field at the right end of the cyl-
inder in the form

E(x:l,s)=f1dxf mdup(v)R(x,t:O,v)e(x,s,v) ,

(4.4)
where the kernel function is

e(x,s,v)=(s —iv)ytexpl-(1 =x)[s/v - ¢(s)]}, (4.5)

= pw)
(P(S)=[w dv(s_—i_v)' (4.6)
To proceed further with the inversion we must now
specify the spectral distribution p(v) of the atomic
frequencies. Two distributions which obviously
merit consideration are furnished by the Lorent-
zian and Gaussian line shapes. We have found it
interesting to consider a larger family of spectral
distributions which interpolate between these as
extremes. These distributions can be written as

Ny _
p"(v)zm’ n=1,2,3,..., 4.7

where T is a relaxation time proportional to the
dephasing time T} of the atoms, and 3, is the
normalization factor,

T2 1(n — 1)1
m"=m. (4‘3)
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The Lorentz line shape then corresponds to =1

while the Gaussian line shape is approached for
n”— 0 ,

pW)= V—T_ﬂ—e-Tzvz . (4.9)

In the limit T — «, all distributions of this family
approach the delta function &(v) which corresponds
to a sharp atomic line.

All the distributions (4.7) permit an explicit
evaluation of the integral (4.6) by an elementary
application of the calculus of residues. The most
important special cases are®

e,(1-x,t,v) =0t —x/v)e” /)T

@, (s)=1/(s+1/T), (4.10)
0,(s)=1/(s +V2/T) +(V2/T)/(s +V2/T)?, (4.11)

o (s)=V7 T exp(T?s?) erfc(Ts) . (4.12)

In the limit of a sharp atomic line, T — <, all
@,(s) approach the function 1/s.

For small values of the parameter #n, it is con-
venient to reduce the inverse Laplace transform
of the function e(x, s, v) to sums of convolution in-
tegrals of elementary functions. For the Lorent-
zian line =1, for example, we can write the ker-
nel function e, (x,#,v) as

T v

x{]o(z[x(t —x/v)]t/?) +fo”/°dt'10(2w/x_t')(iu +%>exp[ (’iu +l> (t -t - ’—‘)]} (4.13)

where I, is the modified Bessel function of order zero 10 In the next simplest case, n=2, the corres-

ponding result is

wt—n -tz ot -2 L)

0
with

t=x /v dat’ {)(x, tl)eiv(t-t’-x/v) (4.14)

T
&(x,t)=e€" 2”’%] deexp[2vix’ cos® + (V2t/T) cos%](—‘/—T——zzsinZO) .
0

The integral ©(x,t) can also be represented as a sum of Bessel functions,

O(x, 1) =e-BIT) Y L(@)mlm(gm) .

mom!\ T

(4.15)

For larger values of the index »n, the expressions for the kernel e"(x, t,v) rapidly become lengthier.
Rather than presenting them, we proceed directly to the Gaussian limit, n— <. In that limit it is conven-

ient to write the kernel as

. t=x/v
e.(1 —x,t,v):@)(t—x/v)[\lf (x,t—%)+iuf dar'¥(x, t’)e‘"‘t-t'-x/w] , (4.16)
0

where the function ¥(x,¢) can only be found numer-
ically as the inverse temporal Laplace transform
of

'll(x,s)=%e“”=°‘s’ . (4.17)

By inserting the kernels e(x, ¢, v) just calculated
in the expressions (3.7), (3.8), and (3.9), we find
all the expectation values needed for the evalua-
tion of the passage time distribution (3.18). One
feature of these expectation values is perhaps
worth mentioning. As a consequence of the slow-
ly varying envelope approximation we have made
in Sec. II the kernel e(x,t,v) is discontinuous at
t=x/v. The time derivative & has a delta-function

r
singularity at that time. Consequently, the expec-
tation value (| £|?) given by Eq. (3.8) diverges un-
til the field discontinuity propagates out of the cyl-
inder, that is, until a transit time 1/v. In order
to calculate (IEIZ) and the passage time distribu-
tion W(¢) for times ¢ <1/v, we would have to aban-
don the slowly varying envelope approximation.
Fortunately, however, in typical experiments the
transit time is smaller than unity (in units of the
superfluorescence time), and much smaller still
than the mean delay time. For times f which are
that small, no significant fraction of the ensemble
of trajectories has risen to the macroscopic inten-
sity level . No measurable error is thus incur-
red by simply taking W(¢) to vanish for ¢<1/v.
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V. THE MEAN RADIATED INTENSITY
FOR DIFFERENT ATOMIC LINE SHAPES

If the radiating atoms move freely in space with
a thermal velocity distribution, the spectrum of
their transition frequencies is Doppler broadened
and thus Gaussian in form. However, as we have
indicated in Sec. IV, the Gaussian spectrum is a
computationally difficult one to treat. Before un-
dertaking this treatment, it is worth investigating
the dependence of the pulse statistics on the index
n which determines the line shapes p,(v). The
simplest quantity we can study in this sense is the
average radiated intensity I(f). When we evaluate
it from Eq. (3.7) and the kernels e,(x,¢,v) ap-
propriate to the spectral distributions p,(v), we
must exercise care in choosing the parameter T.

It is natural to define the dephasing time T¥ of
the atomic polarization by identifying it with the
parameter T =T appearing in the Gaussian dis-
tribution (4.9). There is, however, no unique way
of relating the parameter T=T"> which character-
izes the width of the distributions (4.7) to the de-
phasing time T¥=T¢". A physically sensible def-
inition of 7™, which we shall adopt in the follow-
ing, is given the requirement that the gain factor
of the inverted atomic medium be independent of
the index n. Since the gain factor is proportional
to p"(o), we choose as a definition of the parameter
)

T(n)zn-l(n - 1)!

P O =3, =

.
=mw=ﬁ . (5.1)

We show in Fig. 2 two families of mean intensi-
ties for n=1, 2, 3, and ©. One of the families
corresponds to T} =6.75, the other one to T}
=47.7. The parameters 3 and » are the same for
all curves and imply a mean delay time of the first

" pulse maximum (f,) =33 for T} =«. The interest-
ing inference to be drawn from these curves is
that, except for large values of T¥, i.e., larger
than the mean delay time, the intensities I(f) de-
pend sensitively on the index ». Indeed, the inten-
sities corresponding to the Lorentzian and the
Gaussian line differ by as much as an order of
magnitude at times comparable to the mean delay
time unless the dephasing time is larger than the
mean delay time. We conclude, therefore, that
a quantitative description of the effect of inhomo-
geneous line broadening on superfluorescent pulses
must be based on the Gaussian line shape.

The broadening of the atomic line has an addi-

]
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FIG. 2. Mean intensities as functions of time for
T; =6.75 (lower four curves) and T;" =47.7 (upper four
curves). The labels on the lower four curves refer to
the index » characterizing the line shape function (4.7);
especially, # =1 refers to the Lorentzian line while the
label G corresponds to the Gaussian line # =«, The
upper four curves correspond to the same sequence of
line shape functions. The uppermost one of them which
again corresponds to the Gaussian line, is dashed for
better visibility; to within the accuracy of the plot this
curve coincides with that of the mean intensity for the
monochromatic atomic line T} =«. All curves are eval-
uated for N =1.5x 10% and 1/» =0.3.

tional consequence worthy of mention. By causing
different components of the polarization to oscil-
late with different frequencies, it leads to dephas-:
ing, a process which eventually competes signifi-
cantly with the amplification process and tends to
cancel it out altogether. In that limit the inhomo-

.geneous term in the second of Eqs. (4.1) goes to

zero and the radiated intensity |E(1,¢)|2 ap-
proaches a constant value. Only in the limit of a
sharp atomic line does the amplification continue
indefinitely.

This competition of amplification and dephasing
is most easily illustrated for the Lorentz line
shape. The mean radiated intensity for that case
reads

2

10=5 [ L G(t—x/v)[e‘z“"""’”: L,@x(t - x/v)] /2 +(F) [ T gt oo /Té‘zo(zfx?)Z] . 5.2)
2 0

0
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While the first term in this expression decays to
zero in time, the second approaches the constant
value

I(»)=

8 ® -2t/ T ! 2
NTF fo dt e-?t/ 73 [O dx I,(2Vx7)

8 ©
:N—Tg‘l dt e‘zt/Té’t[Io(.‘Z\/'Z_)2 -1,evER].
(5.3)

For sufficiently small values of the dephasing time
T}, the radiated intensity (5.2) can approach the
asymptotic value I(~) well within the time interval
in which the linear approximation is valid. In that
limit, of course, the radiation process is over-
whelmed by the dephasing and shows little tendency
toward cooperative behavior; radiation emitted in
this regime has been called amplified spontaneous
emission .}

VI. PASSAGE TIME STATISTICS FOR A SHARP
ATOMIC LINE

The limiting case of a monochromatic atomic
line T — < deserves special attention because it
enables us to compare the passage time statistics
calculated in the present paper with the delay time
statistics we have calculated previously by numer-
ical means.? By taking the limit 7 —« in Eq.
(4.13) we find that the kernel reduces to the well-
known form?5,12

e(x, 1) = O(t - x/),2[x(t - x/0)/3) . (6.1)

If we use this expression to calculate the expecta-
tion values I(t) and A(t) we find the passage time
probability distribution which is plotted as the
solid curve in Fig. 3. The histogram in that fig-
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FIG. 3. The histogram shows the distribution of the
delay time #; obtained from a large number of numeri-
cal solutions of the nonlinear Maxwell-Bloch equations
as described in Ref. 2. The solid curve is the passage
time distribution W(¢) (3.18) with the reference intensity
chosen so that the maxima of W(¢) and of the histogram
occur simultaneously, Lg =0.43. All calculations were
done for N =1.5x10%, 1/ =0.3, T} =eo.

ure is the numerical result for the probability dis-
tribution of the delay time of the first pulse maxi-
mum.? The passage time distribution W(t) shown
corresponds to a value of the reference intensity
I, chosen so that the most probable delay time
coincides with the most probable passage time.
The agreement of the two distribution functions
substantiates the physical arguments given in Sec.
III.

Vrehen has recently measured the delay time
statistics for superfluorescent pulses radiated by
a pair of independent identically excited cylinders
of Cs atoms. His experiment measures the dif-
ference of the two delay times. Figure 4 shows
the experimental histogram for the delay time dif-
ference. The solid curve in Fig. 4 represents the
function

P(t)=[721tld‘rW(T+t§>W( -‘§> 6.2)

as evaluated from our present result (3.18)

for the passage time distribution W(¢). The value
of I,, chosen here is the same as the one used to
calculate the distribution W(¢) shown in Fig. 3.
The agreement of the theoretical curve with the
experimental histogram is evidently close.!®

VII. PASSAGE TIME DISTRIBUTION
FOR BROADENED LINES

We found in Sec. V that the Lorentz line shape
£,(v) yields results for the radiated intensity which
differ significantly from those of the more realis-
tic Gaussian line shape p_.(v). When we turn to a
discussion of the passage time statistics the Lor-
entzian line shape becomes even less useful. In-
deed, if we calculate the mean values (| E(2)|%
from Egs. (3.8) and (4.13) we find it to contain
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FIG. 4. The experimental delay time histogram of
Vrehen (Ref. 1) versus our result (6.2) for N =1.5x 108,
1/v =0.3, T} =c.
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an additive term of the form

%Judxf‘* dypl(V){Io(z[x(t_x/v)]l/z}g(%_*_vz)-
B (7.1)

The frequency integral in this expression diverges
since the Lorentz distribution p,(v) has no second
moment. ‘

No such difficulty arises for any other of the fre-
quency distributions p,(v) introduced id Sec. IV.
We display in Figs. 5 and 6 families of passage
time distributions W(¢) for various values of the
dephasing time T¥. These figures serve to com-
pare the distributions for the spectral density (V)
with those corresponding to the Gaussian density
p.(v). We conclude from them that the mean pas-
sage time begins to increase significantly as the
dephasing time T is made smaller than the mean
passage time characteristic of the sharp line.

This increase expresses the fact that the dephasing
of the atomic dipoles tends to impede the coopera-
tive buildup of the radiation pulse

It should also be noted in Figs. 5 and 6 that, for
a fixed value of the dephasing time T, the Gaus-
sian spectrum leads, on the average, to smaller
passage times than the spectrum p,(v). That is so
since the Gaussian distribution has less weight in
its wings than the distribution p,(v) and thus re-
sembles the sharp atomic line more closely. A
close inspection of Figs. 5 and 6 reveals that as
TF is decreased, the variance of the passage time
grows somewhat more rapidly than the mean pas-
sage time itself.

We have checked the passage time distribution
as calculated from Eq. (3.18) against the distri-
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FIG. 5. The solid curves show the passage time dis-
tribution W(¢) corresponding to the line shape function
p2(v); the label on each curve gives the dephasing time
T%. The dashed curve corresponds to the Gaussian line
shape p(v) with 7§ =6.75. Note the difference of this
latter curve from the lowest one of the solid curves
which refers to the same value of 7 5. All curves were
obtained for N =1.5x 10%, 1/» =0.3, ,,,=0.03.
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FIG. 6. Same as Fig. 5, except that the solid curves
refer to the Gaussian line p,(v), and the dashed one to
the line shape function p,(v).

bution of first passage times obtained from a large
number of numerical solutions of the nonlinear
Maxwell-Bloch equations (2.17). In calculating
the nonlinear trajectories we have represented the
broadened atomic line by five different frequencies
and have partitioned the total number of atoms be-
tween them according to the Gaussian distribution
p.(v). Even though such a representation of the
broadened line is a rather rough one, we find, for
reference intensities I,, within the lmear domain,
excellent agreement between the histograms ob-
tained numerically and the corresponding distribu-
tions W(¢). Infact, for a reference intensity I_,,
as large as 50% of the maximum of the mean ra-
diated intensity the linear theory presented in the
present paper gives, quite satisfactory results, as
can be seen from Fig. 7. The various curves

I,af = 20 %0 T,= 6.75
GAIN=3.8
{o0.12
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I
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z
i
.
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FIG. 7. The histogram gives the passage time distri-
bution as obtained from a large number of numerical
solutions of the nonlinear Maxwell-Bloch equations
(2.17) (see text). The curves labeled G, 3, and 2 show
the result (3.18) for the line shape functions p., p3, and
P2, respectively.
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shown in Fig. 7 are all calculated for identical
values of N, v, and TF. The slight shift of the
histogram to the left of the distribution W(¢) based
on the Gaussian line is due to the representation
of the atomic line by as few as five frequencies;
such a truncated spectrum has, of course, even

less weight in its wings than a Gaussian spectrum.
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APPENDIX

In order to evaluate the functional integral (3.14)
we begin by regarding it as the limit of a form in
which the spatial variable is rendered discrete,
x— {xi}’

D(w,Q)=9 f(ndzR,> exp<—ZM”RiR}‘> ,
i 14
in which
N . Ui .
M= x8;, + (Ax)liwe ef +iQ(éef+e;éf)] .
(A1)

To simplify the notation we omit, for the moment,
the depencence of R on the frequency v. Since the
normalization condition for the probability distri-
bution (2.25) reads

D(0,0)=1, (a2)

the quantity D(w,$) can be written as the ratio of
two multiple Gaussian integrals. As is well known,
the latter integrals can be expressed in terms of
the determinant of the matrix M,

DetM(0,0) 1
DetM(w,R)  Det[M(w,2)M(0,0)]

=exp{-tr In[M(w,2)M(0, 0)_1]},
(A3)

D(w,R)=

with

M(w,2)M(0,0)!
=0, + (i}%ﬁ) liwe;ef +iQe;ef +e;e)]
=0 tmyy . (A4)

We represent the logarithm of the matrix (A4) by
its Taylor series,

In(1+m)=y, (‘lni(m)n, (A5)

and thus find

D(w,)=exp (— E (_L)"‘l trm") . (A6)

The nth power of the matrix m is easily construc-
ted since it obviously has the structure

(mn);;=e;efA, +e;éfB, +é;efC,+é,éfD, (AT)

in which the four coefficients A, B, C,, and D,
remain to be determined. These coefficients obey
the “initial” conditions '

A, =iw(4ax/N), B,=C,=iQ44x/N), D,=0

and a set of recursion relations which can be writ-
ten with the help of a suitably defined 2 X2 transfer

matrix T as
b)) () (5)
M\=T1("_" ) = T "), (A8)

(Bn+1 BII ’ Dn“"l Dﬂ
The transfer matrix can be expressed in terms of
the sums Y3, (4ax/N)}e; |2, >3;(48x/N)|é,1%, and
2%(46x/N)é;ef. By inverting to the continuum de-
scription of the spatial variable x and reinstating
the frequency v as a summation variable, we rec-
ognize these sums as the mean values I= ([ E]z),
(|E|?), and (EE*), respectively. The definition of
the transfer matrix can then be given as )

T_<iw1+iQ(EE*) iw(EE*)+§Q([E|2)>

il iQUEE™) (49)

By noting that the recursion relations (A8) are
solved by

A\ _t8xp, i0) (C, 24_A£Tm(m
B,] N Q) \D, N 0)/)
(A10)

we can, in effect, reduce the problem of finding
the trace of the © X~ matrix m” to that of a 2X2
matrix. To accomplish that reduction we perform
the trace operation in Eq. (A7),

(le;124, +e,6¥B, + é;e¥C, + 1 ¢;12C,),

(A11)

trm" =
i

and insert the result (A10),
trm® = (T1),, (il +iQUEE*)) + (™), ,(i91) -
+(171),, (iw(EE*) +i(| E|2))
+(T71),, (UEEX))
=(T7),, + (T =trT" . (A12)

The trace of the 2X2 matrix T" can be expressed
in terms of the two eigenvalues £, of the transfer
matrix T as

trm=trT"=¢"+¢" . (A13)



We insert this result in the Taylor series (A5) and
obtain :

trin(l +m)=In(1 +¢,) +1n(1 +¢) . (A14)
The functional integral (A6) is thus
D(w,Q)= 1 (A15)

@+e)1+¢t) "

The two eigenvalues £, of T are easily found. By
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introducing the function A defined in Eq. (3.10),
we can write them as

t, = % Gl +iQ) £ [ L0l +iQI? - Q2a2]/2
(A16)

The final result for the functional integral thus
takes the simple form

D(w, Q)= (1 +iwl +iQf +Q2a%)1 . (A17)
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