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Systems exhibiting dispersive optical bistability are considered as examples of nonequilibrium steady states lacking
detailed balance. Methods for describing such states are developed. The Fokker-Planck equation for the steady-state
distribution function of the transmitted electromagnetic field is derived. In the limit of small fluctuations the
Fokker-Planck equation is reduced to the form of a Hamilton-Jacobi equation for a “nonequilibrium
thermodynamic potential.” This equation is solved in various approximations. The nonequilibrium thermodynamic
potential acts like a free-energy for the first-order-type transition far from thermodynamic equilibrium lacking
detailed balance. The potential entirely determines the steady-state distribution, the coexistence curve in the bistable
domain, a Lyapunoff function of the deterministic equations of motion, and allows us to cast the deterministic
equations of motion into the standard form of nonequilibrium thermodynamics.

I. INTRODUCTION

Systems in steady states far from thermody-
namic equilibrium may exhibit instabilities which
are analogous to phase transitions in thermody-
namic equilibrium. In optics such analogies have
been discussed first for the single-mode laser,!
whose threshold may be compared to a second-
order phase transition of mean-field type. An-
alogies to first-order phase transitions, again
in the mean-field limit, are found in optical de-
vices which exhibit regimes of bistable behavior
with hysteresis. Examples are lasers with
saturable absorbers® and dye lasers,® and systems
where bistability is based on the nonlinearities
of absorption or dispersion of passive media
in Fabry-Perot étalons.*®

For the comparison with phase transitions in
equilibrium, a key role is played by the steady-
state distribution function W of the relevant vari-
ables, e.g., the complex amplitude of the electric
field strength. Wis used to defirie a “nonequili-
brium thermodynamic potential”®’

d =—1nW

which may be compared with an equilibrium ther-
modynamic potential, e.g., the free energy.

The steady-state distribution W, and hence &,
can only be found in a straightforward way, if
the system under study has the property of de-
tailed balance. This property is always present
in thermodynamic equilibrium as a consequence
of microscopic reversibility.® In this case &
is identical with an equilibrium thermodynamic
potential. In nonequilibrium steady states de-
tailedbalance is generally not satisfied, apart from
special cases. (Detailed balance can always be
restored by appropriately choosing the definition of
time reversal, as is shown in a forthcoming
paper by one of us (R.G.). Absence of detailed

23

balance here means that the appropriate time-
reversal transformation is not known before the
steady-state distribution has been determined.)
Important physical examples, where detailed
balance is observed even in steady states far
from thermodynamic equilibrium, are single-
mode gas lasers near threshold,’ and purely
absorptive bistable devices on time scales long
compared to the atomic relaxation times .!°

In the present paper we are concerned with sys-
tems in steady states without detailed balance. A
physically interesting optical example is provided
by dispersive bistable devices. It is our aim here
to develop and test practically methods for ob-
taining the potential , at least approximately,
in such cases.

Having determined & it becomes possible for the
first time to make a real comparison of first-
order phase transitions in thermodynamic equili-
brium and corresponding transitions in steady
states without detailed balance.

This comparison is made possible by the fact
that the generalized thermodynamic potential &
governs a nonequilibrium steady state in the same
way as a thermostatic potential governs states of
thermodynamic equilibrium: Thus & determines
the steady-state probability distribution. In the
deterministic limit  acts as a Lyapunoff function
of the deterministic equations of motion. Its local
or global minima correspond to locally or globally
stable attractors. In multistable systems, as
e.g., in optical bistability, the knowledge of
the relative depth of the minima allows us to
decide which branch is the more stable one.
Therefore, the condition replacing the thermody-
namic Maxwell construction for a first-order-
type phase transition far from equilibrium can
be determined. Finally, once & is known the
deterministic equations of motion can be cast
into the standard form of thermodynamics first
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given by Onsager.'® In this standard form the
drift is given as a superposition of two parts, one
proportional to first-order derivatives of &, and
the other having & as a constant of motion. The
main difference to equilibrium thermodynamics,
which remains after formulating the nonequili-
brium theory in terms of @, is the absence of the
simple time-reversal symmetries and detailed
balance properties which characterize equilibrium
thermodynamics.

The paper is organized as follows. In Sec. II
we give a general discussion of steady states
without detailed balance assuming that a Fokker-
Planck description is valid. In Sec. III we con-
sider optically bistable systems, briefly derive
their equations of motion, and set up their Fokker-
Planck equation.

In Sec. IV we discuss various limiting cases
in which the steady-state distribution can.be
obtained exactly from the Fokker-Planck equation.
In Sec. V we derive a Hamilton-Jacobi equation
for & from the Fokker-Planck equation in the
limit of small fluctuations and obtain various
approximate solutions. Section VI contains a
discussion of the results and the conclusions.

II. NONEQUILIBRIUM THERMODYNAMIC
POTENTIAL FOR STEADY STATES WITHOUT
DETAILED BALANCE
We consider systems in steady states subject to

time-independent or periodic external fields. We
assume that a Fokker-Planck description with a
discrete set of variables is valid, i.e., a clear
separation of time scales between macroscopic
variables ¢*(v=1. . . n) and microscopic variables
exists and the macroscopic variables form a con-
tinuous Markoff process. The Fokker-Planck
equation of this process is written in the form

oP

3t~ "ag

aZ
W P 2.1)
P(qfqo, 7) is the conditional probability density
which reduces to an n-dimensional 6 function for
7—0, K*(g) is the drift, eQ"* is the diffusion
matrix, which is assumed to be independent of
q for simplicity and will later be considered as
small. The summation convention is implied.
Natural boundary conditions (i.e., P vanishing at
infinity) are assumed. We also assume that the
variables g are chosen in such a way, that the
metric in q space'! is Euclidean. The determin-
istic equations of motion corresponding to Eq.

(2.1) in the limit ¢— 0+ are then'!

¢'=K"(q) . (2.2)

Let us suppose Eq. (2.1) can be solved for the
steady-state distribution W satisfying

2 kv(q) Wig) + he @

o s W@ =0 (2.3)

and define & by
®(q)=—€lnWl(q) . : (2.4)

In the absence of any constants of motion of the
process g the steady-state distribution is unique
under certain general conditions,'? which are
assumed to hold.

If the externally applied forces allow the system

"to reach thermodynamic equilibrium, &(g) as

defined by Eq. (2.4) is proportional to the corres-
ponding thermodynamic potential. Furthermore,
K*(q) then consists of two parts, the dissipative
parts d”(g) and the reversible part #*(¢):

K@) =d"(q) +7'(q) . 2.5)

If we split the variables ¢ into even and odd under
time reversal and denote the time reversed of
q* by ¢

7'=€"q", e’=¢1, (2.6)
(no sum over v in expressions with ¢”), then

(@ =e"d"(q) , 2.7

(@) =-€"7"(q) . (2.8)

The dissipative part is then of the form given by
Onsager'3:

0
#(q)=- $Q" “’(") (2.9)
The reversible part is not determined by &, but
leaves the thermodynamic potential &(q) and the
volume element in g space invariant:

(q )aq’(") , 2.10)
agv(,q)zo ) 2.11)
q ,

Examples of (2.10) are the invariance of entropy
under reversible processes in closed systems
and the invariance of free energy under rever-
sible processes in isothermal systems with
constant volume. Equation (2.11) follows from
the Hamiltonian form of the reversible dynamics.

A more general version of (2.10), (2.11) which
only makes use of the detailed balance property
of the assumed equilibrium state is®”’

,,( )aé(q) v _
¢ 9q”
where 7¥(q) is defined by Eq. (2.8). Eq. (2.12)
does not assume that the reversible dynamics is
of Hamiltonian form.
Now we turn to steady states lacking detailed

=0, (2.12)
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balance .!* If we insert Eq. (2.4) into Eq. (2.3)
we obtain

® 0® o®
1 v + Kv
2" 3 o 9q*
9KY %% )
=d— + Q" ) -
e(aq” 2 P

Similar to the case of thermodynamic equilibrium,
Egs. (2.5) and (2.9), we may define 7*(q) by

(2.13)

0
K@=~ Bl r() . 2.14)
Inserting (2.14) in (2.13) we then obtain the an-
alog of (2.12)

arY
oq¥ =
The difference between (2.15) and (2.12) is that
no detailed balance property was assumed in
(2.15), and that »¥(q) is now defined by Eq. (2.14)
and not identical with the reversible part of K(q).
In steady states lacking detailed balance, the
time reversed »”(g) is not related to 7*(q) in any
simple way. However, apart from the time-
reversal properties, the formal structure of the
equilibrium theory expressed in terms of a
thermodynamic potential carries over to the
nonequilibrium theory expressed in terms of a
generalized thermodynamic potential. This
gives us the key for a very direct comparison
of equilibrium states and nonequilibrium steady
states lacking detailed balance.

Unfortunately, the difficulty of finding & (q)
explicitly is greatly increased in the absence
of detailed balance. While in equilibrium states
it is possible to determine d” and 7* from Eqs.
(2.5)—=(2.8) without difficulty and then integrate
Eq. (2.9) in order to obtain &(¢q), we have to turn
directly to the partial differential equations (2.3)
or (2.13) if detailed balance is lacking. These
equations define elliptic, second-order, non-
Hermitian boundary-value problems for which
no general method of solution is known. Up to
now only some simple models have been
studied numerically, see, e.g., Ref. 15.

Fortunately, the mathematical difficulty of the
problem can be reduced somewhat by taking the
physically important limit of weak fluctuations,
€¢—0+. Inthatlimit the potential &(g) becomes
independent of €, provided the equation

r"(q)g%gg—) —e 2.15)

% 9%
3¢" 3q"

%
aq*

+ K

Qv 0 (2.16)
obtained from (2.13) for e —0 + stillhas a mean-
ingful solution. On the other hand, the asym-
ptotic dependence of the probability density W

on €, which has an essential singularity for e —0 +,

is still taken into account by Eq. (2.4).

Equation (2.16) was originally obtained by in-
dependent phenomenlogical arguments by one
of us.!'® Since these arguments shed further light
on the analogy to systems inthermodynamic equili-
brium they are briefly repeated here. Suppose
the deterministic dynamics of a system is given
in the form of Eq. (2.2) and a positive matrix of
transport parameters @** is also given on physical
grounds, e.g., by a knowledge of the equilibrium
properties of the system. Then it is possible to
construct a potential & (¢g) which will only decrease
or be stationary under the dynamics (2.2)

le{uai go'

2t 27 (2.17)

in the following manner: Define & essentially
as the solution of the differential geometrical
problem of splitting the vector field K¥(q) into
two orthogonal fields, one of which is a gradient

- field. More precisely, split

K=o+ 22 (2.18)
with
7(q) ?;;Lg)zo . 2.19)

The property (2.17) then follows from the positiv-
ity of the matrix Q**. Equations (2.18) and (2.19)
can be combined to yield Eq. (2.16).

The relation of &(¢q) to the probability density
W in the limit of weak fluctuations is not apparent
in this second derivation of (2.16). However, it
points to another important feature: If &(q) can
be determined from Eq. (2.16) it is a Lyapunoff
function of the deterministic equation (2.2) which
allows us to discuss the local and global stability
of their solutions. Natural boundary conditions
for (2.3) imply by (2.4) that &(q) approaches +
at the boundaries. It is therefore clear that for
globally unstable systems (2.2), whose trajector-
ies can reach infinity, a solution &(gq) with the
required boundary condition cannot be found.
Other properties of &(g) follow from its relation
to W(g): It must be a single-valued function of
g bounded from below in order to be meaningful.
Any attractors of the deterministic Eqs. (2.2),
which may be fixed points, limit cycles, or
strange attractors!” have to correspond to minima
& (g). Local minima are only locally stable.
Global minima are globally stable.

Equation (2.16) is a first-order partial differ-
ential equation of the form of a time-independent
Hamilton-Jacobi equation in classical mechanics,
for vanishing energy. The corresponding time-
dependent Hamilton-Jacobi equation is obtained
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from Eq. (2.1) by introducing a time-dependent
&(q,t) via the time-dependent probability density
W(g,t) as in (2.4). The zero-energy condition in
the time-independent equation is then recognized
as being related to the eigenvalue zero of the
Fokker-Planck operator for the steady-state dis-
tribution. .

Mathematical literature exists'® in which the
initial-value problem of the Hamilton Jacobi
equation is related to a second-order initial-value
problem with a small parameter ¢ multiplying the
second-order derivatives. Under certain tech-
nical conditions, which seem tp be satisfied in
physical applications, the solution of the second-
order problem within a given fixed time interval
approaches the solution of the first-order problem
in the limit ¢ -=0+. However, we have not found
any theorem proven in the literature, by which
the solutions of the time-independent Hamilton-
Jacobi equation would be correspondingly related
to the solution of a second-order problem.
Mathematically, the two kinds of problems are
very different. While the second-order problem
is a non-Hermitian boundary-value problem with
W -0 at infinity, the time-independent first-order
problem must be considered as a different bound-
ary-value problem where ®(g) is given on a hyper-
surface intersecting the field of characteristics.
Uniqueness of the solution for the first-order
problem may only result from the requirement
of single valuedness.

In the absence of a well-developed mathematical
framework for our procedure we have adopted a
pragmatic attitude: If from a general solution of
Eq. (2.16) one can find a unique single-valued
one with the desired behavior & — « at infinity,
it will be taken as an approximation of a solution
of Eq. (2.13). Unfortunately, a general solution
of Eq. (2.16), or even a complete integral, cannot
be obtained generally in a systematic way. Fur-
ther approximations based on small parameters
contained in K¥(q) are therefore necessary. Such
approximate solutions of Eq. (2.16), for the case
of the dispersive optical bistability, will be ex-
plicitly constructed in Sec. V.

Here we summarize what actually is achieved,
once the single-valued solution of Eq. (2.16)
has been obtained, one way or other.

(i) The steady-state probability density is known
asymptotically for e—~0+.

(ii) A Lyapunoff function of the deterministic
system with local or global minima on its locally
or globally stable attractors is available.

(iii) A potential analogous to a thermodynamic
potential is known. The condition replacing the
Maxwell construction for a first-order-type phase
transition far from equilibrium can then be given.

(iv) The deterministic drift K*(g) can be decom-
posed into a gradient part which stabilizes the at-
tractors of K”(¢), and a remaining part #* with the
potential as a constant of the motion. These two
parts of K¥ are the analogs of the dissipative and
the reversible currents in thermodynamic equili-
brium. A comparison of the dynamics of steady
states and thermodynamic equilibrium states can
then be made.

IIl. EQUATIONS OF MOTION OF A MODEL
OF OPTICAL BISTABILITY

Intrinsic optical bistability* of a Fabry-Perot
étalon driven by an external monochromatic
optical field is achieved by filling the étalon with
media with a sufficiently strong and fast nonlinear
response to the applied field. Usually two extreme
cases are distinguished.

For absorptive bistability'® one uses a driving
field in resonance with the Fabry-Perot and an
absorption line of the medium. Due to the reson-
ance of the Fabry-Perot the medium is suddenly
bleached beyond a critical driving field strength.
This transition occurs with hysteresis, which
leads to bistability.

For dispersive bistability,?® one detunes the
Fabry-Perot and drives the filling medium off
resonance. The nonlinearity of the refractive
index is then responsible for a sudden tuning
of the Fabry-Perot beyond a critical field strength,
which again leads to hysteresis and a bistable
regime of operation. Usually, both absorptive
and dispersive nonlinearities occur together.

As a simple model® we will consider a homo-
geneously broadened two-level system in dipole
coupling to a single mode of the étalon. The
equations of this model are the coupled Maxwell-
Bloch equations in rotating-wave approximation?*

E*=i(w, - w)E* - KE* +igP* + KEX + F*(t) ,
(3.1)

P*=i(v - w)P* -y, P* —igoE*+T*(t) , (3.2)
G ==7,(0 - 0,) - 2ig(P*E - E*P) +T,(t) . (3.3)

The notation is as follows. w,, v, w are the
frequencies of the empty resonator, the two-level
system and the driving field, respectively. y,
=1/T,, v,=1/T, are the transverse and the long-
itudinal relaxation rates, respectively, k= (C/L)
(1 = R) is the inverse resonator lifetime, deter-
mined by the length L and the reflectivity R of the
resonator, g=e,d (2m?/Tw,)*/? is the dipole coup-
ling constant of the two-level transition and the
resonator mode. We neglect the spatial variation
of the field amplitudes. This approximation is
known in the theory of the optical bistability
under the somewhat unfortunate name of “mean-
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field approximation”; a term which must not be
confused with the mean-field approximation in the
theory of phase transitions, which is also gener-
ally used in this field.

The atomic dipole matrix element is e,d. The
number N of two-level atoms interacting with
the electric field is taken as a constant. The
variables of the model are the amplitudes of the
internal electric field strength within the beam
cross section, which is given by

@uiw A E* (et vt +c.c. ]
the polarization of the medium, given by
e,d[P*(t)e'“ +c.c.]

and the inversion density ¢(¢f). The parameter
g, gives the value of o(f) in thermal equilibrium
and is negative for passive media. The system is
externally driven by random forces F*(t), T*(¢),
T,(t), which describe the random influences of
heat reservoirs, quantum fluctuations, and ex-
ternal noise, and an incident coherent electric
tield (E¥e*#* +c.c.). The fluctuations of the
external laser field will be approximated by a
Gaussian, §-correlated process F¥(¢) which can
be lumped into F*(#). A more realistic model
of the laser fluctuations would have to include
the slow phase diffusion which is neglected here
because its time scale is long compared to the
time scales of E, P, and 0.

It is now assumed, that the atomic response to
the electric field is very fast. On the time scale
1/k of the electric field the atomic variables are
then given by the adiabatic approximation®

or(t)—(oo+-—-1" (t)/(l +4g2 (}*%%Q%) ,  (3.4)

PH(t) = —igly, +i(v - w)] [oo +(1/y)T,]
(v —wY+y%+ 4% . /y) |EP
T*(¢)
yL=iyv -w)’

E*(t)

(3.5)

The equation for E*(¢) is then

_ g2 +iA)y 00+ T ()]E*()
E*= k(5 — 1) E*+ T :-f)+4g o +FX#)

+KkE¥, (3.6)
where
5= (o= w), A=t (@-v) (3.7)
K 0 ’ Y1 ’
and
NN T*(t)
F*(t) = F*(t) + m . (3.8)

We henceforth neglect the “multiplicative” noise
source I';(#) compared to the additive sources

which are lumped in F*(t). Their influence has
been studied in.??*'° Furthermore F*(¢) is assumed
to represent Gaussian white noise

(F*(t) =0, (3.9)
(FrOF*¢+7) =0=(F®)F(E+7),  (3.10)
(F*@) F(t+7))= Q6(r). (3.11)
é contains three physically distinct contributions:
Q= Qo+ Qu + Qup, (3.12)

Q, is the strength of an external noise source
(which will usually be the largest contribution),

2
Q= 7 ma (3.13)

represents thermal noise,?! which is negligible at
optical frequencies (ny, = thermal quantum number,
V= volume of the medium which interacts with the
field).

Qsp = 2')’_1.,"2/V (3.14)

gives the strength of the quantum noise due to
spontaneous emission, 2! which is proportional to
the average number density », of excited two-level
atoms. For large interaction volumes @, and @,
approach zero, because this part of the noise is
averaged over the volume V. We measure times
in units of the cavity lifetime x~!(kt —¢) and re-
scale the field amplitude

px o (Yara(1+8%) E*
4’ ’ (3.15)
. v ’)’_L(1+A2) \ 1/2 -
Ef = 4g E,

but drop the tilde henceforth. Without loss of
generality we may take E  as a real quantity.
Equation (3.6) then assumes the form

E*=(i6-1)E*+E,

-r? %E* +R*?) (3.16)
with
g0 1/2
Mg (3 @.1m
(R*(t+T)R())= Qb(7), (3.18)
469 (3.19)

')’_LYIIK(I +A%)

T'? is positive for 0,<0, i.e., for passive media.
The Fokker-Planck equation corresponding to Eq.
(3.9) can now be written down. We use Cartesian
coordinates

E=x+1iy (3.20)
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and obtain
P _ .o ﬂ)
ot~ ‘ox (x—éy—Eo+F 1+x%+9°2 P
2 zLAx>
+ay (y+6x+I‘ Tr P +y?

L, (P 8P
rie(55+5)
Natural boundary conditions (P - 0 for x2 + y2— )
are physically appropriate.

Equation (3.21) will be considered in the follow-
ing section as an example of the general theory
presented in Sec. II. A description of dispersive
optical bistability with a cubic nonlinearity under
the influence of quantum noise has been given by
P.D. Drummond et al.?®

(3.21)

IV. SOLUTIONS OF THE EQUATIONS OF MOTION

A. Attractors of the deterministic equations

Neglecting fluctuations we obtain the following
system of first-order differential equations

X=-x+0y + Ey-T? -—x—:z—él—z—,

1+x%+y° 7 (4.1)
) = - _ﬁx_rz__y_i.é_’i_ )
y==J 1+x%+9%°

We assume I'?> 0, i.e., a passive medium ¢,<0.
The model is globally stable, since the positive
function

F=x*+y? (4.2)
can only decrease for xE < x% + y*
F<0 for xE < 2 +92. (4.3)

Since Eqgs. (4.1) are two autonomous first-order
equations, its attractors can only be fixed points
and limit cycles. In view of Eq. (4.3) all attractors
must be located within a circle of radius E, around
the origin (cf. Fig. 1). All attracting fixed points
must even lie inside the circle (x =3 E,)? + y*®

=3 E2%, Therefore, for E, =0, the only attractor

is the origin itself, which is a stable fixed point,
i=9y=0for x=9=0, E =0,

A complete discussion of the attractors of Eq.
(4.1) can be given for the special case A =6. The
reason for this is the fact that we have deter-
mined the nonequilibrium thermodynamic poten-
tial ® for this case exactly (cf. Sec. IVB 2 and
Sec. VA). Hence, we know an exact Lyapunoff
function of Eqs. (4.1) for 6 = A. It is given by
[ef. Eq. (4.27) and Sec. V AJ:

1 _E, \?2 ( E )2
= — - ——0 —0
® Q[(" 1+62) T\ T

+2In(1+ %2 + yz)] . (4.4)

FIG. 1. Regions in the phase space of Eq. (4.1) where
F=x%+y? may increase (region I) can only decrease
(regions II, III), and contains attractors (regions I,

). All attracting or nonattracting fixed points lie in
region I. .

It is clear that ® >0 in the entire x, y plane and
one easily checks, that

d®

—_— .

at 0 . (4.5)
under the time evolution of Egs. (4.1).

The attractors of Egs. (4.1) are therefore mini-

ma of ®, These minima %, § are isolated points
which lie along the direction

=tanyd=-95. (4.6)

Qo'

Thus, the only attractors are fixed points. Bistab-
ility may occur for I'>>8. ® has one minimum
for

E,<ED, 4.7
two minima and one maximum for

EV<E <E® (4.8)
and again one minimum for

E,>E® (4.9)
where

rz - r )‘/2( 2r )
(1,2) - (2 ~(P2_g)l/2
E¢ (z-”z(r 8) s ) -
(4.10)

In the bistable regime global stability is ex-
changed between the two locally stable branches
where the two minima of ® have equal depth. Let
us derive the rule which replaces the Maxwell
construction of thermodynamic equilibrium for
this case. We may rewrite the potential (4.4)
in the form
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2 E,x 20E,y
= — — —_—
®=%, 2 ——9—1+62 + 2 _L1+62 + const, (4.11)
where
®,= Q—l— [%% + 9%+ T2 In (1 + &% + 97)] (4.12)

is the potential for E,= 0. The extrema %, j of ®
satisfy

-9 2y 2%
E,= 2(1+l§) Y

-._9 2y 9%
== 3% (1+562%) % (4V.’,13)
and lie on the curve

J==0%. (4.14)

Introducing the distance from the origin as a
parameter ¢ along that curve by

dt odt

di = 1+ 06572 dy =~ 1+09) %> (4.15)
we obtain the differential
2 n ~ dt
a®, = 6Eo(x @), @) T+ " (4.16)

Integrating Eq. (4.16) for that value E =E¢ where
exchange of global stability occurs between two
states, which we call %, §, and %,, J,,

ES =E (%), §,)= E o 52), (4.17)

we obtain

L7 Ea20,56) Ty

ER XY

1771
= € (0%, 5,) - 8,(2, 3] (4.18)
5 [PolFes §2) —2o(%1, 51)] -
Using Eq. (4.11) with the condition
B, 9,) = (&>, 32), (4.19)
we obtain

[ B G, 5ehar

*1Yy
= BY(%, -2, + (5, - 5,71~ (4.20)

This is, of course, just the Maxwell rule of
thermodynamic equilibrium, which is thereby
proven also for our nonequilibrium steady state
lacking detailed balance with 8 = A. The fact that
the Maxwell rule applies unchanged is merely an
accident and may be traced to the fact that & dif-
fers from &, merely by a form linear in E, and
in x,y. For the general case 5 #A this will no
longer be true. The general condition (4.17) then
still applies, but a simple geometric interpretation

similar to the Maxwell rule is no longer possible.

It is not known rigorously, whether for 6 # A the
system also has limit cycles for some values of
E,. However, numerical solutions and our later
approximate results for & make this seem unlike-
ly. The fixed points of Eqs. (4.1) are located in
the circle I of Fig. 1 and satisfy a cubic equation,
which has three roots if the condition®%%

Bri1+a®)-sa-1P>212(A2+1)2(6%+ 1) (4.21)

is satisfied. For the special case 6 = A the condi-
tion (4.21) reduces to I'?> 8, the condition obtained
from the Lyapunoff function (4.4).

B. Solvable limits of the time-independent Fokker-Planck
equation

1. Special cases with detailed balance

i. The case E,=0. In this case, the two-level
atoms for {—« are able to come into complete
thermodynamic equilibrium with the electromag-
netic field. Microscopic reversibility then re-
quires that detailed balance is obeyed. The model
which we consider here indeed satisfies this gen-
eral requirement. Time reversal in Eqs. (3.17) is
defined by

t—--t,
X=X, Y~=9, (4.22)
E~E*, E,~E,.

We readily obtain d” defined by (2.5), and (2.7)

T2 %
dy=-x-T 1+x2+y2 7’ (4.23)
Y
= - _ 2 2
dy==y-T 1+x2+92°
and, integrating Eq. (2.9) with @“*=($ 2)
¢=%) [#2+ %+ T2In(1 +x%+9?)] . (4.24)

According to the general theory of Sec. II, ® is a
Lyapunoff function, and its minima are stable
states. Hence, Eq. (4.24) shows that for E,=0

the origin x =0=% is indeed the only stable state

in the entire x, y plane in agreement with our earl-
ier conclusion. The reversible drift ¥, defined
by (2.5) and (2.8) is obtained as

Yy
—_— 2
=0y 1A 1+x2+92°
(4.25)
r,=~0 —FZA_‘L'—
y=T0% 1+x%2+92% °

It satisfies Eqgs. (2.11) and (2.10) with @ given by
(4.24).
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#%. The case E,#0, A=0=6. This is the special
case of the purely absorptive optical bistability,
whose probability distribution was obtained in
Ref. 10. Despite the fact that this is a genuine
example of a nonequilibrium steady state, it still
‘satisfies the condition of detailed balance with
respect to the time-reversal transformation (4.22).
However, the physical reason for detailed balance
is here not the reversibility of the underlying
microscopic processes but rather the special
phase-matching condition of the coupling between
the system and the external driving field, which
ensures that the reversible drift 7" in this case
vanishes identically. The irreversible drift d”
is therefore identical with the total drift K”. The
potential @ is given by'°

® =% [ —E)?+y°+T2In(1+x2+y?)].  (4.26)
Since @ is a Lyapunoff function, we can conclude
from Eq. (4.26) that for E,< E{}’ there is only one
fixed point which is attracting for the entire x,
y plane, that for EQ’<E <E® there are two lo-
cally attracting fixed points and one repelling fix-
ed point (bistable regime), and that for E’<E,
there is again only one attracting fixed point.
Here E¢'? are given by Eq. (4.10) which is inde-
pendent of the value of 6, as long as 6=A, and thus
applies to 6=A =0. The form of the potential (4.26)
also shows, that other attractors (i.e., other fixed
points and limit cycles) do not exist.

2. A special case without detailed balance: E,#0, A=§

This is an interesting special case of dispersive
bistability which has no detailed balance, but
whose stationary distribution function can be de-
termined exactly nevertheless. It is given by the
potential

1

ooyl ot

+1"21n(1+x2+y2)] (4.27)
as may be verified by substitution into the Fokker-
Planck equation.

The drift ? in the steady state, defined by Eqs.
(2.14) and (2.15), is given by

7x=5(y+£1_)+m_i_ ,

1+62 1+x%4+92
(4.28)
- __Ey \_ 2 X
£ 6<x 1+8Y R Py

The absence of detailed balance is manifest by the
presence of terms in & and 7Y, which are irre-
versible under the time-reversal transformation

(4.22). The solution we have obtained here contains
the result of ¢ of Sec. IVB1 as a special case. It
also reduces to the potential of ¢ of Sec. IV B1 if
E,=0, but generalizes that result to E,# 0 only for
A =38. The generalization as compared to iz is that
E, now couples directly to x and y. The extrema
of the potential are therefore tilted away from the
real axis, i.e., the most probable phase shift be-
tween the driving field and the field amplitude is
neither zero nor — /2, but intermediate to pure
dissipation and pure dispersion at tan ¢ = - 4.
Physically, the special matching 6=A imposes

the constraint, that this phase shift is the same

as in the empty Fabry-Perot and independent of
the magnitude of the field amplitude. For 6#A

the phase shift between the driving field and the
driven field will depend on the magnitude of the
driven field. This effect is hard to take into ac-
count and presents the real crux of the problem
which we will take up in Sec. V. The stability
properties following from the potential ® as a
Lyapunoff function have already been discussed in
Sec. IVA. '

3. Special regions of phase space

i. Small amplitudes x*+y*< 1, E,<1. In this
case saturation of the interaction between atoms
and electromagnetic field is negligible and Eq.
(3.22) reduces to a linear Ornstein-Uhlenbeck
process. Detailed balance is not satisfied for this
process, which determines the potential & near
the origin

[

(6+T?A)E,
+(JH'(I+I‘2)2+((S+I‘2A)2) ’
We can split K? according to Eq. (2.14) and obtain
for rV?

(4.29)

— (5+PZA)E0 2
e = <y+ (1+T2)2+ ((S+I‘2A)2>(6 +I"A) ,

(4.30)

(1+T?E, )(6+P2A),

£ '(" AT+ (6+T7A)2

which contains reversible and irreversible parts
and explicitly exhibits the absence of detailed bal -
ance. It may be worthwhile to point out that the
irreversible part of »” is even in the detuning
parameters 6 and A. This is physically satisfac-
tory, since the dissipative part of the drift »¥
should be independent of the sign of the detuning.
For E,~ 0 the irreversible parts of »” vanish.
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The potential (4.29) and the drift »” (4.30) re-
duces, in this limit, to the first terms of an ex-
pansion in x, y of Eqs. (4.24) and (4.25), respect-
ively, as they must. For 6=A, Eqs. (4.29) and
(4.30) reduce to the first terms of an expansion
of (4.27) and (4.28) in x, v.

ii. Large amplitudes, x*+y*>max (1, T'?), In
this case the saturation is so strong, that the elec-
tromagnetic field is decoupled from the atoms and
we obtain

1 E, \? ( OE, )]
*34 [(x 1+52) Y (4.31)
and
oF
7= 5(y+ s gz) , (4.32)
E
ry=—5(x—1—,;°8—2-—) .

Again, the irreversible part of #” is independent
of the sign of the detuning parameter 6. The re-
sult (4.31) and (4.32) reduces to the result obtained
from (4.27) and (4.28) for (x2+¥?)> max (1, I'?),
as it should.

V. SOLUTIONS FOR WEAK FLUCTUATIONS
A. The Hamilton-Jacobi equation

We now want to consider the case where @ <1.
We proceed as in the general case in Sec. II and
take

W~ exp (—g) (5.1)

and assume that ¢ becomes independent of @ for

@ - 0. The Fokker-Planck equation (3.22) for

@ — 0 then reduces to the Hamilton-Jacobi equation
for ¢:

L(3g\* 1 (3g)* zx—w)ase
2(ax) +2(ay _<x"E°_5y+r T+x°+y° ) ox
Ax \o

- (y +8x+ T2 T{;ZT’;Z) 3—3?:0 : (5.2)

We will now seek solutions of this nonlinear first-
order partial differential equation instead of solv-

ing the original linear second-order differential
equation. Before doing so in the next subsection,
we note that Eq. (5.2) still includes the same ex-
actly solvable special cases as the original time-
independent Fokker-Planck equation:

(i) E,=0,
(ii) A=6.

The potential ¢ in these cases is related to & ob-
tained from the Fokker-Planck equation by
2=9/Q.

We can therefore conclude that Eq. (5.1) with
¢ independent of @ holds exactly in the two limits
E,=0, A=0=0 where detailed balance is satis-
fied, and in the case A =8 without detailed balance
which can be solved exactly. We also note that
for very small and very large amplitudes the
Hamilton-Jacobi equation is solved by ¢ =Q®,
where @ is given by (4.29) for x2+)2<< 1, E, <1,
and by (4.31) for x2+y2> max (1,T?3).

B. Approximate solutions

It seems that exact solutions of the Hamilton-
Jacobi equation (5.2) can only be given in the two
cases E,=0and A =5. In all other cases one has
to resort to approximations. These can be gen-
erated by considering either E, or (A - 6) or both
as small parameters. Of course, these small
parameters could already have been introduced
in the Fokker-Planck equation, and a perturba-
tive solution of that equation could have been
generated.?* However, it would then be necessary
to compute all eigenfunctions of the Fokker-
Planck problem in zero order, a task which for
many cases is impossible to perform in practice.
The immense practical advantage of considering
the Hamilton-Jacobi equation instead is that we
only need the “zero-energy” solution of the un-
perturbed problem. The disadvantage is the re-
striction to the special case of weak fluctuations.
Fortunately, in many practical cases noise is in-
deed a small perturbation and this restriction is
then not serious at all. We begin to consider per-
turbative solutions, by further investigating Eq.
(5.2) for small and for large amplitudes (x2+y2)¥2.

1. Limit of small amplitudes: x%+y? <1, E,< 1

In this limit the drift K” reduces to

K, ==(1+T2)x+E +(6+AT?)y + T2 (x*+y%)(x —AY) ,

K,==(1+T%)y - (6+AT%)x + T2(x2+y2)(y —Ax) .

(5.3)

We determine the asymptotic form of ¢ by considering the cubic terms in the drift as small perturbation.
The unperturbed problem has the solution ¢,=@Q® where & is given by Eq. (4.29). Writing ¢ = ¢, + @yt
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we obtain in first order the linear inhomogeneous differehtia.l equation of first order:

ax \ ax 9y \ 9y

29, (i‘ﬁg_ -x(1+ I‘2)+E0+y(6+AI‘2)) L2 (M -y(1+T%) —x(6+AI‘2))

- 9¢, _ 279
-—I‘2(x2+yz)(x—A:V)3‘5‘l T2(x2+92)(y+Ax) 5y

Since ¢, is a known quadratic form, the general solution of this partial differential equation is easily
worked out by the method of characteristics (cf. Appendix A).

We obtain

P=Qot @+
2 2
(=) e
2

E .
+HO =M gy [0 (2 =307 (9y* + o

+2y(n* = 3v®)(Tn? — ¥ 2)xy — n(1T7* = 100>y 2+ 5nt)y?]

6E

2E o(x* +9?)

+(6-A)T2
(6-2) (y2+n2)(9y% +1

‘where we used the abbreviations
y=1+I?, n=06+AT?, (5.5)

As is shown in Appendix A, the requirement
that ¢, is a regular, single-valued function in the
x, y-plane determines the solution uniquely up to
an arbitrary additive constant. Thus the hope ex-
pressed in Sec. II is indeed fulfilled in this exam-
ple. The same is true for all other examples con-
sidered below. In the special cases A =6 and E,
=0 the solution we have obtained here for small
amplitudes reduces to the power series up to
quartic terms generated from the exact solutions
(4.27) and (4.24), respectively, as, of course, it
must. However, the solution ¢, found here can
only make sense for small amplitudes. This be-
comes manifest by the fact that the probability
density W derived from ¢, is not normalizable at
large amplitudes. Indeed, already the expanded
drift (5.3) is meaningless for large amplitudes
since it describes a globally unstable system.

Sometimes, Eq. (5.3) with negative I'’< 0 is used
as a very simple model of optical bistability,
which is globally stable. A realization of I'?< 0
is possible by inverting the two levels of the
atoms, 0,> 0. In this case Eq. (5.4) leads to a
normalizable probability distribution also at large
amplitudes. For 6=A that distribution function is

5 [4ynx+(3y2=n2)y]-3T2(x%+y2)? ++ - - + const,

(5.4)

I

again an exact solution of the Fokker-Planck
equation. More generally, Eq. (5.3) may be ex-
pected to represent a reasonable approximation
for a model with I'*<0 as long as | (6 ~A)T3 re-
mains small.

For our more realistic model with I'*> 0, Eq.
(5.3) is restricted to small amplitudes x2+y? and
small E,, but it allows us to discuss an interest-
ing feature in that region. The shape of the poten-
tial near the origin is influenced by somewhat lar-
ger values of E, than could be allowed in Eq. (4.29).
We see that even those terms of ¢ which are
linear and quadratic in ¥ and y receive cor-
rections which are nonlinear in E,. Thus, even
arbitrarily close to the origin the potential
®,=¢/Q ceases to be a solution of the Ornstein-
Uhlenbeck process obtained by linearizing around
the origin, because the potential near the origin
is influenced by the form of the potential at larger
amplitudes which become important with increas-
ing E,. Stated differently, even though W
~exp(—¢/Q) satisfies the Fokker-Planck equation
(for small Q) linearized around the origin, it is
not identical with the solution of the correspond-
ing Ornstein-Uhlenbeck process, because it does
not satisfy natural boundary conditions at large
amplitudes. Instead, its behavior at large am-
plitudes is governed by the non-negligible drift at
large amplitudes. '
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2. Limit of small T'?

For very large amplitudes x2+ 92> max (1, I'%) the interaction between atoms and field becomes very
weak. It therefore appears reasonable to treat in this region the whole term~ I'? in Eq. (5.2) as a pertur-
bation. The potential ¢ =@ ® in zeroth order is given by Eq. (4.3). Writing ¢ =¢,+¢, ..., we obtain in
first order in I'? a linear inhomogeneous partial differential equation of first order for ¢,:

N (62 -1) ) 3Q1< _ 25 )= 2r? (2 2 (x=Ay) (y +Ax) )
—'El-ax <x+6y+ 711 E0+3y y-ox+7 57 Eo TT27157 x2+y T75¢ Eot 175 dE,} . (5.8)

This equation is solved by the method of characteristics in Appendix B. We obtain there with 17?0= (E,/
1+145), B=x+iy

, © B (B* —E*%,e~ @97 _¢ ¢,
- _ 2 o 0
[ in(1+ ‘3[2) +i(a = d)T _/0‘ ar 1E0|2+ m —Eol 26_27+[E0(B* _E,,(; Ve TaFinT +c.c.] . (5.7)

It is shown there, that the requirement of single valuedness and regularity of ¢, in the entire x,y plane
makes the solution of Eq. (5.6) unique up to a constant. Unfortunately, the definite integral in Eq. (5.7)
cannot be generally expressed in terms of tabulated functions. It is clear, however, that the integral
defines a single-valued and regular function in the entire x,y plane. For A=0 and for E,=0 the exact
results are recovered. We now consider three limiting cases, in which the result (5.7) can be evaluated
further.

i. Driving field in vesonance with the cavity, 6=0. In this case one may neglect the oscillatory behavior
of the integrand in (5.7). After substituting e"*=U, the integral in Eq. (5.7) is elementary and we obtain

=@+ @i+ = —E)?+y%+ T In(l +x2+93)
[(x = E)?+y%(1 + E?)]*/?

2
+2I'°AE T+ Eyx

5 arctan( ) ++++ +const. (5.8)

y
°[(x =Eg) +y* (1 +E)]/
We note that the argument of the arctan has a pole at x ==1/E, for all y. The regularity of ¢ then re-
quires that two neighboring branches of the arctan are pieced together at x =—1/E in a continuous way.
ii. Driving field far from resonance with the cavity, 1/5—~0. Introducing U=067 and € =1/5 one may
evaluate the integral in Eq. (5.7) asymptotically for € ~0. We obtain

(6-4)

@, =T%In(1+|B8|H)+T? 5

lim (In{1+ | E,| 2+ |8 = By| 272+ [E3(8 = EyJe™ “ +c.c.]P)|v . (5.9)
&0+

The upper boundary only contributes a constant and we obtain

A-d
5

¢1=F21n(l+lﬁ|2)+1"2< )ln(l- IEO|2+Iﬁ—F:‘ol"’+2Rei?5*B)+const. (5.10)

In Cartesian coordinates we arrive at the expression

E, \?2 E,\? A
<p=( - 6—2-) +<y+ —69—) +I"2—6-1n(1+x2+y2)+'--+const. (6.11)

iii. The limit of small'Eo. Equation (5.6) can be evaluated in closed form if we restrict ourselves to
the terms of first order in E,., We obtain

o B Rkp- A+ib)
cp1=1“21n(1+|B|2)+i(A—6)1"2f ar (—%—c.c.) . (6.12)
0

Substituting e 2" =U and using a formula of Ryzhik-Gradstein® we obtain
' Eg* i 6
@, =T21In(1+|B|?) +iT'%*(A - 5) ——ﬁ—F 1,3+ 2—6-;%+2—;—[3|2 -c.c.|, (5.13)
1+1i6 2 2
where F is a hypergeometric function. This result will be useful for a comparison with other more gen-
eral results obtained in the next section. We note that because of the relation
1
F(1,3;3;-18]%)= Tararctan |8l , (5.14)

the solutions (5.13) and (5.18) coincide in the region where both § and E, are small.
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C. ExpansioninE,

We now want to construct a solution of the Hamilton-Jacobi equation in first order in the amplitude E,
of the external driving field. This seems to be a promising approximation, since it must contain the two
exact solutions for E;=0 and 6=A as special cases. Furthermore, this approximation must be able to
reproduce the result (5.4) at very small amplitudes and the result (5.13) for small I'?, which applies to the
region of large amplitudes, and one may therefore expect that the solution is also a good approximation

in the intermediate regime. We expand

P=Pot@yteee,

(5.15)

where ¢,=Q%® is the solution (4.24) of Eq. (5.2) for E,=0 and ¢, is of order E,. For ¢, we obtain the linear
inhomogeneous partial differential equation of first order:

2 X+A4Ay '\ 98¢ _ 2 y—Ax
(x+6y+1" —ﬂ_§> Ly =6x+T ———1+x"’+y2

1+x%+y ox

9 2 X
1
By = 2E0<x+1" m). (5.16)

This equation is solved in Appendix C. We obtain in polar coordinates x = cosy, y =7 siny

E, -
¢=¢o+¢1=1’2—2 Tl—;——ég)l—,z—rcosd)+1"21n(1+rz)

-2E,I"?

170972 7 Im

where we introduced the rotated phase angle
$=y+arctand. (5.18)

F is a hypergeometric function in the notation of
Ref. 25. Equation (5.17) determines the potential
@ exactly to first order in E and to zero order

in @, the strength of the fluctuations. It is the
main result of this paper, and illustrates the
scope and power of the general methods described
in Sec. II. Since the result (5.17) is rather opaque
in its most general form, we discuss a number of
special cases and make contact with the results
obtained in the preceding sections.

i. Special cases. The exact solutions with
detailed balance obtained in Sec. IV A for E;=0
and for 6=A=0 are correctly contained in Eq.
(5.17). The exact solution without detailed balance
which we obtained for 8= A is also contained ex-
actly. This is, of course, expected since all these
exact solutions are rigorously of first order in
E,, and zero order in @ where (5.17) is exact.

. ia r? (1+T2)/2
F(l,%—l‘—;%— ‘—2—;"‘ 1+r2)‘

. 5
5 A (F(l,%—zz—';

i 6+AI*  7? )e,;
279 142 '~ 1412 > (5.17)

1+T7 = §(6+AT7)

r
ii. Asymptotic behavioy for small and large
amplitudes. Next, we check the behavior of (5.17)
for small 7 against our results in Secs. IVB and
VB. To compare with Sec. IV B it is sufficient to
replace the hypergeometric function by its value
at =0, F=1, For comparison with Sec. VB the
first-order term in the power-series expansion
of the hypergeometric function has to be taken into
account. The result of Sec. IV B is obtained ex-
actly, whereas only the correction term linear

‘in E, in the expansion (5.4) of Sec. VA is re-

produced, as one expects. Thus, to first order

in E, the departure of the steady-state probability
density from the solution of the Ornstein-Uhlenbeck
process near the origin is correctly given.

Next we turn to the behavior at large amplitudes.
To first order in I'? the result (5.17) correctly
reduces to the result (5.13) of Sec. VB. For a
more detailed discussion of the behavior at large
amplitudes we make use of the asymptotic rep-
resentation of F for large 7 2 (Ref. 25):

.0 . a
,2 )‘6/2 I‘(-’z-ﬂ 2—)1“(%—12—)

2r “""""(urz

r(1 +§.(6 _a)) , (5.19)

where I'(x) is the gamma function, and must not be confused with the parameter I'. We then obtain the

asymptotic result

2E cosy b ¥
o=r2- ﬁ%+r21n(l +72)—AEos1n(zp+61n - zpo) , (5.20)

with
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A= [2171"2(5 =4) (sinh (o - A))/<cosh—7i co;h

1+ 62 2(1+T%) 2

and

2

3 2
Bo= Im[ 1n1"2<1 + z—(5——A)I‘—->+ InT2 (% ) 5—) +1nI‘2(

2(1+T?)

In order to obtain the amplitude A we have made
use of the formulas

T
ITG+ix)| %= ————,
coshmx (5.23)
S \jz_ X
IT@+x)|*= sinhmx

The result (5.20) shows in a very transparent way
the twofold influence of the detuning & on the po-
tential ¢: It shifts the preferred direction away
from the real axis by the cosy term and it intro-
duces a dependence of the preferred angle on the
amplitude 7 by the sin[§+81n(r/7,)] term. At very
large amplitudes the second effect is negligible.
At 7 =0 the function (5.20) has a singularity, which
is spurious, however, since the asymptotic formula
applies only for large » and since we have already
checked that the full result (5.17) behaves cor-
rectly at small amplitudes.

iii. The case 6=0,A#0, In this case the result
(5.17) reduces.to

@ =@? -2rE,cosy)+ T In(1+7?)

AT? r? .
F(l,%;%— i*-_z-‘—ﬂ‘i‘)e‘w
1 > 14T
+2E01"2Arlm< 20+L)7 1+ .

1+ %~ {AT?
(5.24)

For further more specific discussion and graphical
representation of some results we now restrict
ourselves to the special case 6=0, i.e., to the
case of perfect resonance of the driving field with
the cavity mode. The detuning of both fields from
the atomic transition A is taken into account and
gives rise to departure from detailed balance.

If we keep only the term of first order in A in Eq.
(5.24) we may take A=0 in the curly bracket and
and use the formula (5.14) to obtain

@ =(r? —2vE ; cosp)+ T2 In(1 +72)

2 siny : 7
+2E A A+ 272 arctan A+ -

(5.25)

7(6+T24)\] /2
Saer)) 6.2

i 6+I%A
5] 6.22)

—

This result is much simpler than Eq. (5.24), but
restricted to small A, For large amplitudes but
arbitrary A we obtain from Eqs. (5.20) for 6=0

@=r2-27E cosd+T?In(l +732)

2 ’
+E, (—lg_—I];—,;;—ln—sim/) (5.26)
which coincides with the asymptotic form of (5.25)
for large amplitudes, despite the fact that it is
valid for arbitrary A. At intermediate ampli-
tudes and arbitrary A, the hypergeometric func-
tion has to be evaluated numerically. For this
purpose it is useful, to employ the transforma-
tion

F(a,a+3;c;~2)=(1+2)"F(a,2c -2a-1;¢;¢)

(5.27)
with
1+2z)/2_1
¢= -(2—(—1_4-_2‘)?2—’ (5.28)

since 0 < ¢ <73 in the domain 0< z <o, and one may
use the power-series expansion of F in £, which
converges for all z. Some numerical results are
discussed in the concluding section.

VI. DISCUSSION AND CONCLUSION

In the preceding sections we have described a
general method for obtaining the steady-state
probability distribution of Fokker-Planck models
without detailed balance in the limit of small
fluctuations. We have applied this method to a
model of dispersive optical bistability. The
steady-state distribution function of the trans-
mitted field amplitude x +iy is given by

W(x,y)~eXp(— g—(xé—y)>

The main result obtained in this paper is an
expression for ¢(x,y) which is exact to first order
in the external driving field E, and to zero order
in the fluctuation intensity @. This result is given
by Eq. (5.17) and may be written in the equivalent
form
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(x )= __ﬂ_z 6E0 z 1'!21 (1 2 2)
9le,y)=(x- 7755) +(9+ Tro7) +TIn(+x+y

: .03

F=tlm=) ==

F(1,
—2E,T'%(6 — A) Im \ (x +4y)

This result has been compared with exact results
for E,=0 and for 6=A and it has been simplified
and compared with other results for small and for
large amplitudes x,y. The potential ¢(x,y) exact to
first order in E jandzero orderin @ acts as a Lyapu-
noff function of the deterministic equations and is a
minimum on a stable attractor of these equations.
We may therefore check the quality of our expan-
sion of ¢ to first order in E; by comparing the
minima of the approximate ¢ (x,y) with the exact
attractors of the deterministic equations of motion.
For small driving fields E, the minimum of

@(x,y) is located at

14+T2
O (1+T%)%+ (6+AT%)? ?
_ (A +5)E, ,
y=- (1+1"2)2+(6+A1"2)2 ’

which agrees exactly with the stable fixed-point
attractor of the deterministic equations for small
E,. For large driving fields E, such agreement
cannot be expected. The deterministic equations
have the attracting fixed point for E,—:

E

x=E
(6.2)

r= (‘1‘+52)172 ’ (6.3)
tany=-5+ El—z— (6 - A)T2(1 + 6%). (6.4)

The potential (6.1), for E,~«, has a single mini-
mum, which is located at

E

r= (—1:6;—’—)172— ’ (6.5)
tanzp=-5+—E}0—-‘—42— (1+6%%cosa, (6.6)

where A is given by Eq. (5.21). The asymptotic
values of » and ¥ are therefore given exactly.
However, as expected, the approach of these as-
ymptotic values is not reproduced correctly by
the minima of the approximated potential and
comes out as too slow.

For the present purposes, the quality of the
comparison between the deterministic attractors
and the minima of ¢ is most crucial at inter-
mediate driving fields E, where bistability occurs.
For the special case 6=0 the deterministic at-
tractors ¥ and 7 are plotted in Figs. 2(a) and 2(b)
as a function of E, for various values of A. The

i 5+AT? x2+y2)
2 1+T2 77 1417

(1-i8)A+T%=i(AT?+5)

6.1)

r
corresponding minima of ¢, given by Eq. (5.24)
are plotted in Figs. 3(a) and 3(b). For small E,
there is excellent quantitative agreement. For
intermediate E, there is still good qualitative
agreement. In particular, the size of the bistable
regime is reproduced very well by the potential
with quantitative agreement on the unbleached
branch and qualitative agreement on the unstable
intermediate branch (where ¢ has a maximum)
and the stable-bleached branch. For large E, the
approach to the asymptotic values »=E,, =0 is
too slow.

The approximation deterioriates, if we use
I'%(6 - A), or, for 6=0, T?A as additional small
parameter. The advantage of this approximation
is that we obtain ¢ in terms of elementary func-
tions:

Qlr, )= -22E, ‘cosz/)) +T%In(l+72)

AT? . 7
+2E, A+ TOe siny arctan ATz

(6.7)

There is still qualitative agreement with the exact
attractors shown in Figs. 2(a) and 2(b) but quan-
titative agreement is poor, except on the un-
bleached branch.

The relative depth of the two minima of ¢ is
shown in Fig. 4 for the potential (5.24). The ab-
solute stability of the two minima is exchanged
where they have equal depth. This defines the
analog of the Maxwell rule of thermodynamic
equilibrium for our nonequilibrium steady state.
In Fig. 5 we compare for the potential (5.24) the
two cases A=0, where the Maxwell rule applies
unchanged (cf. Sec. IVA) and A=0.5, A=1, where
departures from the Maxwell rule are obtained.
In Fig. 6 we present a plot of the two-dimensional
probability density W~ exp(-¢/Q) obtained from
the potential (6.7).

The potential ¢ can be used to split the deter-
ministic drift in the manner of Eqs. (2.14) and
(2.15). We obtain

1 agp
7, =K, + 3 o’
1 98
yooK 4+ L 29
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1

S0

1

40

A=03

1 1 1

6 8 10

12 14 16 ro

Fig. 2. Deterministic stationary points in polar coordinates for Fz=25, A=0.3, 0.5, 0.7, 1,0, 1,5, 2,0, 2.5, 3.0,

For the potential (5.24), which we rewrite in the form

0s

@=+72+T?In(1 +7 3) = 277, -(-1—:%%172—”(5 ~A)E,[C(a%)e® Fr) - C*(A%e ® F*(y)],

the resulting expression for #” is obtained as
V=V ey+ Virrey
with the comf)onents, in polar coordinates,
(CF + C*F*') siny
(CF +C*F*) cosy ’
(6.8)

'rrev='rrev(A =) "'%(6 - A)EO

—
1 - kI kL
7 terev =V issen (A =0) 3 (6 = A)E0< (CF* - CxF*) cosy ) :

—(CF = C*F*) siny

(6.9)
where F!=dF/dr and »"*"™"(6=A4) is
0
_~_ _AE siny
Trev(A—é)—T;*AQE—( >-—A’r 1472492 , (6.10)
CcOosy —1—_:',;,‘5__
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6 8 10 12 14 16 Iy

FIG. 3. Most probable values of the stationary distribution (5.24) in polar coordinates for I'*=25, A=3.,0, 0.5, 0.7,
1.0, 1.5, 2.0, 2.5, 3.0.

7 rey (A= 8) == é%(‘“s”’). (6.11)
+singy.

The result we obtain here generalizes obviously the previously derived result, which was restricted to the
case 6=A,

APPENDIX A: SOLUTION OF EQ. (5.3)
It will be useful to introduce the abbreviations
y=1+I% 7n=06+4aI%, (A1)
Substituting ¢, from Eq. (4.29) into (5.3) we obtain the inhomogeneous partial differential equation:

3¢ n? —y? 1% 2m ) E

hat 0 § —L1 - ] AL N = 2 (2 442 2 442) —0_ (-

Py <7x+ny+ S Eo)+ 5y (yy nxt g Bo) == 2T +y )((x *9°) s =y +anx +(ya+n)y]).
(A2)

2
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The characteristics satisfy, with 8=x +¢y, the complex equation

i) - E, (7 in)?

d
2 P(r - v vl (A3)
which is integrated immediately to yield
8(t) =Boe T4t + I Jf: E,. (a4)
@, is now given by the total differential
d . .
S0 = _ayr|p(t)|* - IB(t)I {B@) [~y +na —i(ys +0)]+8*@) [~y +nb +i(ya +n)]}. (AB)
di Y +?1
Upon integration, using (A4) we obtain
(y +in)(y +3in)(1 —38) EJ =~ (y+in)(1 —i0)E3 ~
={_12 2 2
i ( o4 O *+n*) =BTy 2ty P
+in)(3y +in)(3 —ia ~ I? =
-r T Al e (3 00 |52 - T 1)) +(c.c) 47 (8,8% (a6)
r
with f=f(zp +1 ln'r> . (A11)
f=p-2~2k,. (A7) 4

2+n

f is the general solution of the homogeneous part
of Eq. (A2). It is therefore an arbitrary function
of the integration constant of the characteristics
(A4) expressed as function of 8,8*. In order to

find the integration constant we solve (A4) for ¢:

B

(y=-int=In 5 (A8)
0
Eliminating ¢ we find
B, BBY
\’rsu o 1 5a, - (A9)

With B, =7,e%0, B=7e!® we obtain the constant of
integration

Yo, 1, ¥, 1 A10
n Ylm'o 7 ylnr. (A10)

Thus f is an arbitrary function of the form

FIG. 4. Ratio of the probabilities of the two branches
in the bistable domain.

We now impose on ¢, the condition that it is a
regular single-valued function in the x,y plane.
The latter requirement restricts f to 2r-periodic
functions. However, all 2r-periodic functions

of ¥ +(n/v) Inr except the constant function have a
singularity at » =0. Therefore, f must be a con-
stant

f =const

and ¢, is unique except for an additive constant.
In Eq. (5.4) the solution (A6) has been written as
a quartic polynomial in x,y. We also made use of
the relationn —Ay =6 - A,

APPENDIX B: SOLUTION OF EQ. (5.6)

The characteristics of Eq. (5.6) satisfy the
complex equation

f=(1-i0)p+ ((13 :?:EO, ' (B1)
where we have put 8 =x +zy The solution of (B1)

B= E +B,e (1-i0)t (B2)
with

B,=1=2p (B3)

° 1+8%7°

is inserted in Eq. (5.6) to obtain the characteristic
equation for ¢,:
i) —or? ez‘riﬁolz Z(E ﬁ*e(uu)r(l +ZA)+C c. )
ar 1+|E, |2+,Bl2821+(EB*e(1“°"+cc)
(B4)
Upon integration and after eliminating B, by using
(B2), Eq. (B4) yields a particular solution for ¢,:
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T T T

r

FIG. 5. Generalization of the Maxwell construction.

(Ey(B* —E¥)e 107 —c.c.)

=72 2 T2 - - poy po P .
¢1 r In(1+|ﬁ| )+1'r (A G)J; dar lEol2+1+13_Eolze.e1’+[Eo(B*_E;’k)e-hb“)‘r_‘_c.c.] (B5)

We note that the particular solution (B5) is regular and single valued in the entire x,y plane.

A general solution is obtained by adding to (B5) a general solution of the homogeneous part of Eq. (5.6).
The latter may be taken as an arbitrary function f of the constant of integration, which is obtained by
eliminating ¢ between Eq. (B2) and its complex conjugate. We obtain the constant of integration

|84 =|(8 - E)*|. (B6)

~ ~

Equivalently we may write ¢, +0 Inv, = +8 In¥, with g, =r,e%, B-E =Fe®.

The requirement of single valuedness in the entire complex B plane restricts f to 2r-periodic functions of
P +56 In¥. Then the only way to avoid a singularity at 7 =0 is to restrict f further to the constant function.
In this way, the solution ¢, given by Eq. (B5) becomes-unique up to a constant.

APPENDIX C: SOLUTION OF EQ. (5.16)

We define ¢, by

EQ 5EQ ~
P11 = 2 x+2 y""P; (C1)

TT146% 0 148°

and obtain

8g, . X+Ay 8g, s y=0x \_ 2EI?* (6-4) :
ax (x+6y+1" 1+x2+y2) * 9y y-0z+T 1+x22+92) 7 148 1+xZ+y? (¥ +y). ‘ (C2)

Introducing polar coordinates by
x=rcdszp, y =7 siny (c3)

the differential equation of the characteristics of (C2) may be written as
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dr _  r(1+I?+92)
dp ~ SrZ+b+AIZ (cq)

Upon integration we find

_ (6 —a)r* r?
Vot ATy B IrrEest

-6lnr. (C5)

¢, varies along the characteristics according to

2E,I'2(5 — A)
T (L+TZ+73) (1 +6%)172

%";—L = sin[y(r) +arctand],
(Ce)

A particular integral of (C2) is therefore given by

2E,I%(5 - A)

A =08

FIG. 6. Probability distribution for the dispersive

optical bistability (A=0.5, I*=25, 7,=10.1).

¥'? 1412442

r - 5-A
(51(7',1,1)): W Jo- d’r'sin[l])'f' N1 +T9) I?2 l.n(

1+T2 +9"2 v

. )-61n%]/(1+1"2+7"2), (cm

where 1'13=zp +arctan and where we have used Eq. (C5) twice in order to express (» ') by ' and in order to

eliminate ¥, in favor of ¥ and 7.

Introducing 2 =7'/7, g2=(1+I'?)/r?, a ={(A -5)/[2(1 +T?)]}? we arrive at

ETI?( -4) (z)-2a-i0

. - 1
5 = —Q Ti iv 2\~ —_—
¢1 (1 +62)l 27,1- <e (1 +g ) ¢ JO- dz (gZ +22)1'-la

—c.c.) . (C8)

The integral can be performed, using a formula of Ryzhik-Gradstein,?® and we obtain

i6+02A

,,.2

@, =+E

0 (1 +52)!72 w 1+I2 —§(AT2 +6)

1_;8 5 i6+I%A
I35 -4) . (F(l’z"z’z'z 1+I2 ° 7

— et®
140 ) —c.c.). (C9)

F is a hypergeometric function, which is regular and single valued for 0<# <, A general solution of

Eq. (C2) is obtained by adding an arbitrary function

A-b 7?2
f=f(zp+ 2(1 +I?%) Fn 1+L2% +92 +51m') :

(C10)

However, only by choosing f as a 2r-periodic function we obtain a single-valued solution. If §# -TI4, all
2m-periodic functions (C10) necessarily have a singularity at » =0, except for the constant function, f
=const. In the special case 6 = -TI'A the singularity for » =0 is avoided and the 27-periodic function f re-
mains arbitrary in this order in E,. 1t is only restricted by requiring that single valuedness and regu-
larity of the solution persist to higher order in the expansion. However, requiring that the solution ¢, be
a continuous function of § and I'A we may take f=const also for 6§ =-I'A. The solution of Eq. (5.12) is

therefore given by Eqs. (C1) and (C9).
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