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Coherent atomic deflection by resonant standing waves
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We extend the previous theoretical treatment of standing-wave deflection of two-level atoms to include
nonresonant excitation, nonorthogonal laser and atomic beams, and excitation duration upper bounded only by
atomic relaxation times. Numerically solving equations analogous to those of abruptly initiated multilevel atomic
excitation, we find bounds on the maximum deflection fixed by balancing acquired kinetic energy against interaction
energy. We find that frequency detuning or nonorthogonal orientation of laser and atomic beams can enhance the
deflection and, given sufficiently long interaction time, one can observe deflections at larger discrete angles. We
comment on the connection between these Bragg scatterings and multiphoton resonances.

I. INTRODUCTION

The advent of high-power tunable lasers has
renewed interest in electromagnetic wave deflec-
tion of neutral atomic beams. ' As previous work'
has noted, irradiated atoms absorb and emit pho-
tons into the applied fields at an induced rate while
occasionally emitting photons, in random direc-
tions, at the spontaneous rate. Beam deflection
occurs when the atoms gain or lose momentum
from the field.

The rate of momentum transfer depends upon
the nature of the applied field. If the field con-
sists of a single traveling wave, then the atoms
gain momentum at the spontaneous emission rate:
Each stimulated emission merely restores a pho-
ton to the field, whereas spontaneous emission
creates a photon with randomly directed momen-
tum to replace the absorbed photon. Thus the
atoms gain, on average, one quantum of linear
momentum with each spontaneous decay. Several
authors have discussed this mechanism for de-
flecting atomic beams, ' while others have reported
demonstrations. 4

Much faster rates of momentum transfer, and
hence larger beam deflections, occur when the
field comprises two or more traveling waves. '
An atom can absorb a photon from one of the waves
and be induced to emit into a different wave, there-
by chariging momentum at the induced emission
rate. The greatest momentum transfer occurs
when the absorbed and emitted photon are counter-
propagating, i.e. , the field is a standing wave.
With laser fields the induced rate may exceed the
spontaneous rate by many orders of magnitude,
so that standing waves offer potential for more
rapid and efficient beam deflection than do travel-
ing waves. (Because the stimulated absorption
and remission is coherent' it is the Rabi frequency
rather than the Einstein or Milne B coefficient
that fixes the induced rate —see below).

The deflection of atomic beams by resonant

standing electromagnetic waves is analogous to
the deflection of light by ultrasound. ' The same
equations also occur in treatments of stimulated
Compton scattering of electrons and the free-
electron laser. '

Hitherto the model' for coherent excitation and
deflection of atomic beams by strong resonant
standing electromagnetic waves has treated the
quantized translational motion of a two-level atom
in a classical monochromatic standing-wave field,
with solutions to the resulting semiclassical time-
dependent Schrodinger equation for the atomic
motion restricted by the following constraints:

(i) The frequency of the field &o matches the
Bohr transition frequency of the atom Z„/S' (i.e.
exact resonance).

(ii) The incident atomic beam is aligned per-
pendicular to the propagation axis of the waves.

(iii) The time duration of the atom-field interac-
tion is sufficiently brief that the kinetic energy of
deflection (i.e., energy from momentum transverse
to the wave fronts) remains much smaller than
the interaction energy, @Q.

Within these limits one finds that during each
Habi period 1/0 the rms deflection momentum
increases by kk/W2, where @k =%a/c is the photon
momentum. The resulting rms momentum SAQt/&2
after time t contrasts strikingly with the value
@kggt which one would predict on the basis of
random walks, as occurs with rate-equation de-
scription of incoherent momentum transfer. '

The occurrence of coherence effects in deflec-
tion by standing waves makes an extension of pre-
vious work desirable in order to eliminate the
foregoing restrictions. The present paper does
this.

We examine the more general problem of atomic
motion in a standing monochromatic wave, not
necessarily resonant with the atomic transition
frequency, with arbitrary orientation of laser and
atomic beam axis, and with interaction times re-
stricted only to be short compared with atomic
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relaxation times. (For longer times relaxation
processes destroy the coherence, and one must
employ a rate-equation description of the momen-
tum transfer. ')

We idealize the field as having uniform amplitude
within a sharply delineated volume, so that the
moving atoms abruptly enter and leave a region
of constant interaction strength. Thus our model
sharply contrasts with adiabatic following models
of excitation in which the interaction strength
gradually increases.

We derive our Schrodinger equation (in Sec. II)
by treating both the field amplitudes (for two coun-
terpropagating waves) and the atomic motion quan-
tum mechanically. This approach provides new
insight into the mechanism responsible for reson-
ant deflection by a standing wave: atomic absorp-
tion and emission transfer photons from one trav-
eling wave to the counterpropagating wave, con-

- comitantly altering the atomic momentum. -

Although we approach the problem via quantized
fields, we actually. treat the strong-field limit:
we neglect back reaction upon the fields by the
atoms. The equations of motion are formally iden-
tical to equations previously studied for appj. ica-
tion of a sequentially linked N-level atom, ' "
enabling us to apply both computational methods
and physical insight developed in that context.

The nature of the solutions to the basic equations
depend on the relative sizes .of four energies: The
energy detuning Sb of the laser frequency away
from the Bohr frequency; the atom-field interac-
tion energy RQ; the initial component of atomic
kinetic energy in the direction of laser propagation
p', /2M; and the photon-induced (deflection) kinetic
energy. In the simplest case (Sec. VI below) the
interaction energy greatly exceeds all other ener-
gies. The equations then have well-known analytic
solutions in terms of Bessel functions. " Suc-
ceeding sections present consequences of signifi-
cant deflection energy (long interaction times;
Sec. IX), significant initial transverse momentum
(Secs. X—XII) and significant frequency detuning
(Sec. XIII).

For a resonantly tuned standing wave, oriented
perpendicular to the atomic beam, we find that,
although the deflection momentum initially in-
creases linearly with time, this growth is limited:
The deflection kinetic energy cannot greatly ex-
ceed gg. Once the deflection reaches this limit
it begins to diminish. Over a long interaction
time the deflection momentum becomes distributed
over the range limited by the values ~p~

~ {2M@A)'~'.
The probability of larger deflections falls exponen-
tially with increasing ~p~.

When initial transverse momentum p, ih not
negligible the maximum deflection is still bounded,

II. THE HAMILTONIAN

We consider a collection of two-level atoms"
moving under the influence of two near-resonant
traveling-wave fields. The Hamiltonian for this
system,

K =H~+H~+Hg (2.1)

comprises the Hamiltonian for the free fields H~,
the Hamiltonian for a free-atom H„(in clu di ngboth
internal excitation and center-of-mass motion),
and the interaction between fields and atom, &~.

Let C, (N, ) with i=1 and 2, be photon number
states describing waves with frequencies ~, , pro-
pagation vectors k„and photon numbers +„ they
are eigenstates of the free-field Hamiltonian K~:

(H~ -Nk(d, )4)(N) =0. (2.2)

(We have here omitted the field zero-point energy. ")
Let the atomic states g (p) and g, (p) represent,
respectively, the ground and excited states of a
two-level atom governed by the free-atom Hamil-
tonian~„:

(2.3)

where E„ is the excitation energy relative to the
ground state, p is the atomic momentum, and M
the atomic mass. (We neglect mass changes due
to absorption and emission. )

For allowed transitions the dominant contribu-
tion to the interaction Hamiltonian comes from
the electric-dipole interaction,

II =-p, 'E (2.4)

In our derivation we shall take the electric field

but now positive and negative bounds differ. We
show that one can enhance the beam deflection in
one direction by appropriate nonorthogonal orien-
tation of atom and laser beams.

For very large angles of incidence we observe
Bragg scattering': selected quantized angles for
which deflection is very large. The expression
for these angles is just the Bragg law" for scat-
tering of (atomic) waves by periodic structure
(the standing wave). We relate this Bragg scatter-
ing to multiphoton resonance phenomena of the N-
level analog, in which n photons are coherently
transferred from one traveling wave to the other. '

Shifting the field frequency away from resonance
with the Bohr frequency enhances the effects of
and opportunities for multiphoton resonances and
hence permits much greater complexity in the
deflection dynamics. We find that, as with non-
orthogonal alignment, slight detuning can enhance
the deflection.
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to be the sum of two single modes of the radiation
field which are either linearly polarized in the
same direction or circularly polarized in opposite
senses with respect to their propagation vectors.
Following the derivation of the equations of motion
we shaLL restrict ourselves to the case of counter-
propagating waves (k, = -k,). The field is assumed
to have infinite extent in both the propagation di-
rection, x, and one orthogonal direction, y. In
the remaining direction, z, the field is character-
ized by a sudden turn on at z = 0, a constant am-
plitude for 0& g&z„and a sudden turn off at z, .
[It is a straightforward matter to construct a set
of modes containing one mode with the desired
spatial profile from the set F =Z,e'~ sin(mwz/z, ).]

Although we shall assume an electric-dipole
interaction, our final equations and conclusions
apply equally well to forbidden transitions: One
need only replace the dipole transition moment
by another electric or magnetic multipole moment.

IH. BASIS STATES

4'-i = 4"(Nx) 4'2(N2-1)4. (p+ @&2) ~ (3.5)

From the state 4, either field can stimulate emis-
sion. If the atom emits a photon into field P, the
system returns to the initial-state @,. However,
if it emits a photon into the second field P, then
the system progresses into the state

(3.6)

Similarly emission of a photon into field Q, from
state 4, generates the state

(3.7)

Generalizing this analysis we see that stimulated
emission and absorption carries the system
through a succession of momentum and energy
conserving states having the form

4„(P) =Q, (N,
—

~) Q.,(A' 2)g. (p+ 2
Kk, ——K%)

(3 8)
for g an even integer, or

4, (N, ) C,(N,) g, (p). (3.1)

To describe the system of atoms and fields we
take basis states of the product form

@.P)P-, , IN, -, ),, (N
+., ').

2

xy, ($+ 8%, — h%,) (3.9)

Acting upon such a state the interaction Hamil-
tonian connects g with g„and vice versa, alters
photon occupation numbers N,. by unity, and shifts
atomic momentum p by increments of 5%: We
assume that the atom enters and leaves the inter-
action region very suddenly.

Consider as an initial-state one with well-defined
photon number and an unexcited atom moving with
momentum p,

(3.2)

We consider the near-resonant condition

for g an odd integer.
Figure 1 illustrates the linked changes in fields

N2+ 1

~Cog ——~4) 2 ——Eg ~ (3.3)

Then resonant emission and absorption, conserv-
ing the energy &,0&,+ &,A~„have much higher
probabilities than do nonresonant processes.
Therefore we confine our attention to transitions
which approximately conserve energy and exactly
conserve momentum. From this initial state the
atom can absorb a photon from either of the two
fields. Absorption of a photon from the first field
reduces the occupation number N, by unity, pro-
motes the atom from the ground to the excited
state, and increases the atomic momentum by 5%,.
This action produces the state

Similarly absorption of a photon from the second
field changes the state of the system to

N1 —1

N1 —2

EA-
4lEc

0

0
—3 —2 —1 0 1 2 3

Atom momentum / Nc

FIG. 1. Basis states of combined atom-field system.
Abscissa expresses atomic momentum in units of photon
momentum hk, ordinate expresses excitation energy of
field 2 (uppermost curve), field 1 (middle curve), and
atom lowest curve). Arrows show allowed linkages be-
tween basis states (encircled numbers are the index n
labeling basis state 4„).
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and atom encompassed by these basis states, for
the particular case of exact resonance (K~, =S&y,

=Z„}, and counter-propagating beams $.,= -%,):
the transfer of photons from field 1 to field 2 ac-

companies a change of atomic momentum. Note
that the basis-state index n (shown encircled) also
measures the alteration in atomic momentum n8%.

IV. THE SCHRODINGER EQUATION

(4.1)

By restricting consideration to time intervals which are shorter than the natural lifetime of the excited
state we can neglect spontaneous emission. Then the system state vector @f) remains within the space
spanned by the basis states 4„, and we can write

e(f) = )l df QC„gi, f)c„g)exp(-m„f).

(4.2)

(4.3)

We are at liberty to choose the phases a„ for subsequent mathematical convenience; we discuss our phase
convention below. In this basis state the diagonal elements of the Hamiltonian are

(c.(p)kl+. (p'}) =&c.K+& Ic.}-=W.
I

N, -- (k~, + ~,+ —[~,+ ~~p+-8%, ——8%
~

Sgi'-p), n even

n+1 t' n-1 t 1 ( n+1 n-1
@~I.+ ~&2+ 2

l@&2+&~+
2 ~5+ 2

@~& — @~, 5(p'-p), n odd

where the Dirac brackets indicate integration over electronic coordinates, and center-of-mass coordi-
nates. The nonvanishing off-diagonal elements are

&4„„(P)I&I4.(p'}) =II...,.
(

4+&= (

ml g g

where p, is the component of the dipole transition moment along the &-field polarization direction. (We
have taken g to be real and positive, a choice always possible by suitable choice of internal atomic basis
phases. }

In this basis the Hamiltonian matrix is tridiago-
nal. The matrix has dimension +,+&, because,
in principle, all photons can be transferred from
the first field to the second, and vice versa. Our
interest centers on those basis states 4„ for which
g is far from these extreme values, so that we
shall neglect the g dependence of the off-diagonal
elements.

When the expansion (4.1), is substituted into the
time-dependent Schroding'er equation, and the
integration over momentum is carried out, we
find the following set of coupled ordinary differen-
tiaL equations for the probability amplitudes
c„-=c„(p,f):

dt

+ —,'(E„-h(g,}+@„ (4.5a)

for ~ even, and

n+& n- j.
@a„= N, — +e, + N, +

I

of the field. If we choose a Gaussian spacial
profile, for example, we obtain the Eqs. (4.4) only
in the case where the C„can be assumed to be
slowly varying functions of p, compared to the
Fourier transform of the Gaussian spacial profile.
At this point we can choose the phases a„ to elimi-
nate, as far as possibJ. e, the time dependence of
the coefficient matrix W, as expressed through
exponential terms. We make the choice

@&n Nj. @~a + N2+
2

n& nl

e t&n cfn+1)t Cn;n+ j. n+ j. + —,
' (g„-k(g, ) +8, (4.5b)

-=g@v„.c„. (4 4)

Note that the equations of motion assume this sim-
ple form because of our choice of spacial profile

for n odd. Here E, is an arbitrary reference ener-
gy. With this choice of phases the Schrodinger
equation becomes
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'11( n n
~~p+ —k% ——K

~

—2(E —k&u ) -E even n1 2 2) 2 A 2 Os

z
dt

C„=C„&, 1
~l p+ SR, — 5%, + ~(E„—k(o, ) -@0, odd pg

2M
(4.6)

j(Q) 2 Q)y) g/2 ~ 2 +f((d 2 Q)y )t/2

where ~,. is the Rabi frequency

~& =
I (N; &~J2v)". (4.7)

These equations of motion simplify greatly when
we consider the case of equal frequency (e, = &@,)
oppositely directed $,= -%,) fields of equal inten-
sity (N, =N,). The initial atomic momentum p has
a component p, which parallels the counterpropa-
gating beam axis (i.e., which is transverse to the
standing wave fronts), and a much larger com-
ponent p, perpendicular to the laser beams. This
latter component is unaffected by the stimulated
emission and absorption processes; it provides
a constant atomic velocity across the laser beam.
We can remove this component of kinetic energy
by setting

(4.9)

SQ = g~ SQ)~ =+~ S(d2 ~

and we have introduced the parameters

b —= kk /2M, q=—PJ@k.

(4.10)

(4.11)

V. SEMICLASSICAL DERIVATION

Although our derivation of Eq. (4.9) proceeded
from a quantized amplitude representation of the
fields, thereby facilitating a photon picture of
momentum exchange between fields and atom, the
resulting equation of motion can be obtained by
extending the previous semiclassical approach. '
We take as our basis states the atomic states

@„=q, (po + ~ hk),

and choose our phases to be

Then the equations can finally be written as

t~ C„=~b(2qn+n')a
2

C„-
2 (C„,+C„,~).

. d ( 2 6 Q
dt

(4 9)

Here the + (-) sign refers to even (odd) n, ; the
term 6 is the off-resonant detuning

H, =2ttg cos((ot) cos(R r). (5.3)

Upon evaluating matrix elements of II =II~+III in
this basis and neglecting rapidly varying terms
e'""' compared with unity (the rotating-wave ap-
proximation') we recover Eq. (4.9).

VI. THE N-LEVEL ANALOG

Equation (4.9) is identical with that which one
obtains for a sequentially linked multilevel system
interacting with classical monochromatic electric
fields in the rotating-wave approximation —a model
sometimes dubbed the E-level atom. ' " In the
latter model, as in our atomic-beam deflection,
the off-diagonal elements of the matrix APV are
interaction energies, the diagonal elements 9„„
are cumulative detunings.

In the multilevel system of Eq. (4.9) each tran-
sition has equal interaction energy —the "equal
Rabi" case. The detuning has two distinct terms:

(i) An alternating term + 6/2 expressing fre-
quency detuning away from the Bohr transition
frequency E„/It;

(ii) A kinetic-energy detuning b(2qn+n') com-
prising a photon-induced detuning bn, '=n'kk'/2M
and a cross term 2bqn = p~k/M which is n times
the single-photon Doppler shift.

Because the kinetic detuning grows quadratically
with excitation level n it is analogous to the (fre-
quency) detuning which occurs with an N-level
model of an anharmonic oscillator. Note, however,
that unlike the traditional treatments of an Ã-
level atom or molecule, where energy levels bear
positive integer labels n= 0, 1, 2, . . . , N, our
model deals with the sequence of negative and
positive integers n=. . . , -2, -1, 0, +1, +2, ,. . . .
That is, our initial state corresponds to a highly
excited state of the N-level system. Although
our tridiagonal matrix has dimension bounded by
photon occupation number, -N&n&N, the equal-
Babi form (4.9) holds only for ~n~«N: When n
becomes comparable to N we must return to Eq.
(4.3) for the n dependence of Q.

S~„=+op ~SQ, (5.2)

where the upper (lower) sign refers to even (odd)
n. In place of the quantized electric field we have
the semiclassical expression

VII. DEFLECTION ANGLES

From solutions to Eq. (4.9) one computes the
probability P„(t)= ~C„(t)~' of finding that an atom
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has acquired transverse momentum n@k at time t.
Initially the atom had transverse momentum p,
and moved at an angle of incidence go with respect
to the wave fronts (the xz plane)

tang, =p,/p, or sin60= p, /p. (7.1)

Here p= (p,'+p02}'~' is the initial atomic momentum.
The absorption of g photons changes the transverse
momentum to p, +n@k and increments the angle
9~ by 8, the deflection amay from the initial direc-
tion. (See Fig. 2). Because p, is unaffected by the
field, we have the relationship

tan(e, +8}= (p, + n@k)/p, (7.2)

for the deflection. When p, =0 (i.e. , 8,=0} the
deflection relationship reads simply

sins = n kk/p. (7.3)

d plane-wave
fields

Headily measurable deflections typically occur
with n values of several hundred.

The nature of the solutions to the basic equations
(4.9) depends upon the relative size of four fre-
quencies: the laser off-resonance detuning a;
the Rabi frequency 9; the initial transverse kinet-
ic-energy detuning bq'=- p, /2Mk; and the photon-
induced (deflection) kinetic detuning bn'. In the
following section we examine the. case where Q'

is much larger than any other frequency. In sub-
sequent sections me examine successively cases
where bn', bq', and finally b play important roles
in the dynamics.

The solutions also depend upon' the initial condi-
tions. Vfe shall generally assume that at time I;= 0,
all population resides in level g = 0.

VIII. ANALYTIC SOLUTIONS: NO DETUNING

The simplest soluble case of Eq. (4.9) occurs
when the detuning is much less than the Habi fre-
quency

(b(2qn+ s') ~—
( «—.0

2 2
' (8.1)

Under this restriction, '"the equation reduces to

f—c„=——(c„,+ c„„),. d Q
n (8.2)

which has solutions expressible as cylinder func-
tions. The solution of interest to us must have
unit magnitude at I;= 0, and so, apart from an
arbitrary phase common to all Q„, it is i" times
the Bessel function of order n.

c„(f)= f "z„(af). (8.2)

Here the label n = 0 identifies the state in which
all population resides when t = 0.

The Bessel-function probability distribution for
multilevel excitation in the absence of detuning is
mell known:

z(f) =z„2(af). (8.4)

Here we interpret p„(t) as the probability that the
atom has at time g acquired inomentum nil along
the laser beams by transferring photons from one
field to the other field. Because the Bessel func-
tion has the symmetry

Z (x) = (-1)"Z„(x), (8.8)

me find equal probabilities for momentum+eSk
and -nSk:

I'„(f)= I„(f). (8.8)

As previous articles have noted, "'0 the Bessel
function population flow follows a dominant). y dou-
ble-peaked pattern, symmetrically distributed
about the initial-state z = 0. As the system evolves
in time, population reaches and then passes by
levels with increasingly large values of ~n~. There
is never appreciable population in levels much
beyond the leading edge of the probability distribu-
tion, levels for which the order of the Bessel func-
'tion equals its argument, n=Qt. A first burst of
probability arrives at level g at roughly the time

2-level
atoms

Po

FIG. 2. Geometry of beam deQection. Initial atomic
momentum p is resolved into components p~ and po, re-
spectively, normal to and along, laser axis. After inter-
action the deGection away from incident direction is .

tq—=n 0, (8.7)

after which the probability undergoes damped
oscillations.

The Bessel-function approximation remains
valid so long as one can neglect detuning compared
with the Rabi frequency. Even if 6 =0 and q=0,
population will arrive in due time in levels for
which bg' no longer remains negligible compared
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with 9, and the approximation 8.1 then fails. The
following section discusses this failure.

i

IX. NO DETUNING, LONG INTERACTION TIMES

i —C„=bn'C„—
2 (C„,+C„„}.d 0

n (9.1)

The simple change of variables

c (t)=(i„("((„—:x—((tj,~ n P. (9.2)

where p = 5/0 and x = At, converts this equation
into the Baman-Nath equation

d ~n-P& &a+&n-x-&n+ix (9.8}

for the Haman-Nath functions R„(p;x) (our termi-
nology) whose properties have been examined for
application to the diffraction of light by ultrasound
waves in a dielectric liquid. '

It is instructive to examine a relief view of the
probability distribution p„(t) as a function of n

and time. Figure 3 displays such a view, obtained
by numerical solution of Eq. (8.1) for the para-
meter choices Q =1, b= 0.05. In this picture one
observes two peaks of probability moving away
from e = 0 at the rates + Qg, in accord with the
Bessel-function approximation. This pattern of
probability flow ceases on reaching the turning-

The next simplest case occurs when we assume
resonantly tuned lasers, ~ = 0, and an atomic beam
moving parallel to the standing wave fronts of the
lasers, p, = 0, but we no longer impose the restric-
tion bn'«Q. Such atoms have deflection ampli-
tudes governed by the equation

point levels where detuning equals the Babi fre-
quency:

(n J=-aa/f. (9.4)

For the present example this formula gives ~n Q
= 4.5. The time of this failure of the Bessel-func-
tion approximation is r oughly ~q= ~n ~/0 —= 5. At
longer times the probability distribution undergoes
more complicated variations, but remains almost
entirely within bounds +~n J.

For levels beyond the range ~n~ & n the popula-
tion faLls exponentially with increasing p. Thus
in practice one can treat a truncated system of
equations without introducing appreciable error.
For the examples in this paper we used 31 levels.

Equation (9.1), the equal-Rabi system with quad-
ratic detuning, describes the dynamics of an an-
harmonic oscillator initially in a highly excited
state Qo The index n expresses the deviation away
from this initial state. (We neglect the n variation
in the oscillator dipole moment, proportional to
Qp + Q Just as we have approximated N+ n. by @ in
the Babi frequency for our beam deflection. ) Al-
though such an anharmonic oscillator is not strict-
ly periodic, a significaht portion of the probability
does return to the initial state g = 0 after a period
of time. Figure 3 shows quite clearly this peak
ln po.

In interpreting the time-dependent dynamics
displayed in Fig. 3 it is useful. to think of the prob-
ability P„(t) as a fluid which, following initial re-
lease from confinement atg = 0, flows as a wave pack-
et toward larger ~n~ until it reflects from a soft bar-
rier at ~n ~. The probability then sloshes back
toward n= 0 where it subsequently piles up and
then again spreads out.

Although the Bessel-function approximation
predicts deflections which increase linearly with
exposure time (and hence linearly with thickness
of the laser interaction zone), kinetic detuning
limits deflections to a maximum

e = arctan
~

(n
Pi

(9.5)

0
0

20 -15

FIG. 3. Belief vie+ of probability distribution p„(t) as
a function of n and Qt.

As we see from Fig. 3, there is an optimum time
(thickness) for which this deflection occurs; it is
the time t&. Longer exposure times may actually
diminish the deflection. Over extremely long times
the deflection will be diluted over a range of angles
less than 8

Note that, so long as diagonal elements of the
Hamiltonian remain negligible compared with 9,
one can admit a time varying interaction without
altering the qualitative pattern of excitation: one
introduces an interaction duration
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X(t)= Jt dt'f1(t'), dX =dffL(f),

so thai Eq. 8.2 becomes

~ Cn=C„~+ Cn+j. ~

with the solution

(9.6)

(9.7)

about n = 0: for positive p, the population flow first
encounters a turning point at positive n, say n„
and subsequently reaches a turning point for nega-
tive z, say, n, . This means that there are now

two distinct maximum deflection angles: A nega-
tive def lection

8,= arctan [(po+ n, kk)/p, ]
c„(t)= '"z„(x(t)). (9.8) —ar ctan(p, /p, ), (10.2}

X. NONORTHOGONAL LASER AND ATOM BEAMS

We have seen that when the atomic beam crosses
the laser beam at right angles, the atomic beam
diffracts into a pattern symmetric about the inci-
dent atomic-beam axis (see Fig. 4). The popula-
tion flow arrives simultaneously into two turning-
point levels +g and -g, corresponding to
maximum deflection angles +6 where

8„=arctan(~n [kk/P, ). (10.1)

When the atomic beam approaches the laser
beam at some nonzero angle of incidence ep= sin '
(po/p) (measured clockwise from a normal to the
photon axis —see Fig. 4) then the deflection pattern
becomes more complicated. For sufficiently short
interaction times the pattern is symmetric about
the incident atomic-beam axis. However, popula-
tion turning-points levels are no longer symmetric

(b)

Photon axis

Atoms

FIG. 4. Maximum delfection angles. (a): Angles + e
for incident atomic beam normal to photon axis. g):
Maximum deflection Angles e~ and 82 for initial atomic
beam oriented at angle eo with respect to normal direc-
tion of photon axis.

This result means thai, within the Bessel ap-
proximation, the atom can enter (or leave) the
field gradually without altering the analytic form
of the probability distribution. Thus we see that
our assumed abrupt initiation of atom-field inter-
action at a sharp boundary only requires that the
field intensity reach full value before the deflection
departs significantly from that predicted by Bes-
se 1-function approximation.

—arctan(p, /P, ), 0.0.3)

which is smaller than e; see Fig. 4. Thus one
enhances the maximum achievable deflection by
aligning atom and photon beams at an angle. (Be-
low we discuss limitations imposed upon e, and
the optimum value of 8~) Note that the maximum
deflection angles remain symmetric about the
plane normal to the photon propagation axis. )

Figure 5 illustrates the probability distributions
as a function of interaction time for several
choices of incident angle. Each frame depicts the
probability P„(t}, as in Fig. 2, for a specific inte-
ger choice of the parameter m=pa/kk. We ob-
serve, in the frames for

~ m~ = 3 and 6, that the
deflection pattern becomes asymmetric about pg = 0,
following a brief interval during which the Bessel-
function approximation applies. When m& 0 the
population favors n& 0 whereas m& 0 favors ~&.0.
Thai is, the beam is bent back on itself. We see
that m= 6 permits much larger n values than does
(m[ = 3: increasing the angle of incidence has in-
creased the deflection. As we consider the still
larger [ m) values, )m[ = 9, we see that the proba-
bility distribution has become confined to a narrow
band around the initial value g= 0: There is little
deflection of the incident beam. Thus we see that
there exists an optimum orientation angle and time
to maximize deflection.

It is not difficult to find explanations for this
behavior of the N-level model for atomic

deflect-

ionn. Suppose that the beam of resonantly excited
(n= 0) atoms approaches the standing wave at some
finite angle O„say the deflection angle which would
be obtained by the absorption of the momentum
from m photons. Then the initial value of the
transverse atomic momentum is p, = nzSk and the
equation of motion reads

'—„C„=k(m+ n)'C„- —(C„,+ C„„)..d, 0
dt

(10.4)

(Here we have taken Zo= p,'/2M. ) We observe that
this equation obtains for the case pp 0 bui with
an expansion with shifted indices.

which is greater in magnitude than e, and a posi-
tive deflection

8, =arctan[(P, +n, kk)/P, ]
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20 20 20

-3

202020

1 transverse momentum paof n and D,t for selected valueues of the inc ia r
inFi . 3.0th d t '1 ' Fi

FIG. 5. Belief view o og
mls with, in clockwise order, m =9, 6,

gc„(t)c„,„e '+
e(t) =

(t) are still expressible as
Raman-Nath functions, but now we require

(10.5)

initial condition

IC.(0) I
= 5....

1 ith population initially in levelThat is, we dea wi
mra ther than level 0.

tunin term remains muchAs long as the de uning e
smaller than the Rabi term we have t e
function approximation

(10.6)

c„(t) =' " J„,„(Qt).

This approximation holdlds for times

(Q
n& —+m

~

—m

(10.7)

(10.8}

or
~A 0

2M

atelthen our equa iont ' becomes approxima y

(10.9)

is sufficiently large the inequalityHowever, if m is s ici
=0. the Bessel-10.8 cannot be satisfied

roximation never applies. In ee,
h h k' t'we are in the regime for w ic

domina etes int'eraction energies,

bilit remains fixed in tim,me lockedp o y
into the initially p po ulated level; er

(see below).f1ection, except for Bragg scattering se

XI. GRAPHICAL INTERPRETATION

sim le rules prove he1.pful in unifying
d' t 'bution observedf robability dis ri u

'

am les. One othese and other ex p
s to accumulate in n values wpop
ener greatly excee s ethe interaction energy g

er little popula-ener ies, and that very i e
h hth ' t t'oer reaches levels for w ic

er than the kinetic and de-energy is much smaller an

the magnitude o ef the diagonal elements o e
Hamiltonian

f(n) =Iw„„l

= Ib(2qn+n')+
2

de of the Rabi frequency Q. Wewith th ag
have chosen the -pzero- oint energy p u

n is the initial leve .f(n) vanish s when n i
one finds ath t the long-time average popu a '

(11.2}

Poi —Cn=
2 @Cndt " M

with the solution

C„(t)= expl'(p02iuz&)t]C„(0).

(10.10)

(10.11)

'n n values for which f(n)« IQ andaccumulates in yg va u
The "turningavoids n values for wfor which (n» Q .

abilit flow occurs when f( )=IQI.
(), h (.o- )Figure 6 plots examp, cm lesof fn, e c

d n a logarithmic scale, e cvatue of Q an, on
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responding values of p„. With resonant tuning
(6 = 0) and orthogonal laser-atom beams (q = 0),
the function f(n} is a parabola and the probability
is confined to a symmetri, c region around the ini-
tial value m=0: see Fig. 6(a}. The value ~=0
dominates the probability distribution.

When the atomic-beam angle of incidence is
nonzero the parabola tilts; the absolute value sign
produces a broad central peak of f(s), and popula-
t tends to avoid g = 0 while ac.cumulating in two
symmetrically placed values of n; see Fag.
So long as I Q I greatly exceeds the height of the
central peak, which is f(-q) =bq', the effect of
nonzero q =p,/kk. is to broaden the region of likely
~ values and hence to enhance the deflection. How-
ever, if Q is much smaller than bq', then there
are two unconnected intervals of g values in whic
the probability accumulates, centered about n = 0
and z= -q. See Fig. 6(c). Only if the second of
these intervals encompasses an integer will popu-
lation be found in any level but the initial one,
I=0. Fig. 6(d) shows an example of this type.

n'+ 2~ &0,/b. By so doing, the population can,
in due time, reach levels within a width (g/b+q')'~'
-q around the value 2q. This population oscilla-
tion is an illustration of what, for the &-level
atom, would be termed a multiPhoton resonance.
Here whenever q=p, /kk is an integer or half-

XII. BRAGG RESONANCES

Although the population at first remains con-
f d t the allowed region contiguous with theone o e

t timein& xa y potu't' ll ovulated level pg
= 0, after sufficxen

the popu a ion cl t on can "tunnel" through the forbidden
region, ypa, b ssing the virtual levels for which

1 X 1012

FIG. 7. Log P„as a function of n and &t. For suffi-
ciently ion ti population tunnels from one energy-
conserving set of n value's to the other. This is Bragg
scattering.



iaoo A. F. BERNHARDT AND B. W. SHORE

C
sQ

CO0

~ ~ 0 ~ ~ 0 ~ ~ ~ ~ ~ 4 ~ 4-2- P

I ~ ~ ~"~ ~

I'

~ ~ 4 ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

4

~ ~ ~ ~ t I ~ ~ ~ %a ~ ~ ~ ~ + ~~

!
~ ~ ~

~ t ~
~ ~

4 ~

I

6

~ ~
t

~ ~
~ ~
~ ~

~ ~

~ ~

~ ~
~ t

FIG. S. As in Fig. S, plots of P„(full lmes) and « IWnn~ and I (in
beams {@=0)with A=16; {a): D =-9, {b): 6=+9.

( (dotted lines), here for orthogonal laser and atom

integer, we encounter resonance between level
n = 0 and level g = 2q. It is interesting to note that
the condition for this resonance is the Bragg con-
dition: Let X„=2mil/p be the de Broglie wavelength
of the atoms and d —= 2s/k be the laser wavelength.
Then the atomic angle of incidence is

(12.2)sine = nx„/2d.

Observe that it is the spacing of the electric-field
periodicity d, not the intensity periodicity d/2,
that determines the Bragg condition.

Note that the probability shifts between the un-
deviated beam and the Bragg scattered beam and
back again; see Fig. 7. This periodic oscillation
of probability between level n = 0 and leve1. n = 2q
in the &-level model occurs at an effective Rabi
frequency Q, which one can estimate from the
perturbation theory formula"

g, 0"
(12.3)

2b 2b [(2q —1)!]"
where k =5k'/2M. Although it would be interesting
to observe such spatial manisfestations of Habi

osci1.lations, the times are too long for practical
observation.

XIII. FREQUENCY DETUNING

Because the dynamics of &-level excitation is
governed by the balance between diagonal and off-
diagonal elements of' the RWA Hamiltonian, we
can, by inspection of these elements, readily
understand the effect of frequency detuning.
Whereas the off-diagonal elements remain fixed
and independent of n, frequency detuning away
from resonance by amount 6 causes successive
diagonal elements to become alternatively +6/2

80= arcsin(p, /p) = arcsin(qX„/d), (12.1)

and the condition for resonance is that 2q =n. Thus
we obtain the familiar Bragg equation

and -6/2 by taking as zero-point energy the ex-
pression

we obtain diagonal magnitudes having the form

)b (2qg+ pg') ), even pg

f(n) = (12.2)
[k(2qn+n') -~j, odd n

A plot of f(g) versus n now reveals a sawtooth
pattern imposed upon the previous resonantly
tuned pattern. As inspection of Fig. 8 will show,
the effect of this sawtooth pattern depends on the
sign of the detuning: when ~ & 0 probability spreads
over a wider range of n values —there is enhanced
deflection —whereas when b, &0 the probability is
more confined —smaller defiections.

CONCI. USION

%e have analyzed a quantum-mechanical model
of deflection of a two-level atom by a standing
wave field. Using the analogy with pf-level dyna-
mics we have provided an intuitive picture of the
deflection process, including effects of angle of
incidence and laser frequency.
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