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A simple diagrammatic approach to the description of laser-induced macroscopic ordering processes in gases is
developed. We derive a set of simple rules which can be used to construct diagrams—each of which represents the
macroscopic properties of a gaseous sample after it has been excited by a particular sequence of short, resonant,
laser-excitation pulses. The features of the diagrams which signify various forms of laser-induced macroscopic
ordering, e.g., photon echoes, grating echoes, stimulated echoes, standing-wave echoes, trilevel echoes, nonthermal
velocity distributions, etc., are discussed. Important differences between the actions of traveling-wave and standing-
wave excitation pulses are pointed out. The diagrammatic technique presented here for gases can easily be
generalized to describe laser-induced macroscopic ordering in solids as well.

I. INTRODUCTION

The dynamics of laser-induced reordering pro-
cesses (such as those involved in optical echo
formation'-2%) possess an essential simplicity which
is often obscured in standard density-matrix-type
analyses.?'™ In certain cases (e.g., that of the
two-pulse photon echo), a vector-model anal-
ysis?®? of the effect of a laser-excitation-pulse
sequence provides an excellent picture of the re-
ordering dynamics. Unfortunately, however, the
vector model is limited to the description of re-
ordering processes which occur in samples of
what are basically two-level atomic systems.

In this paper, we present a simple diagrammatic
approach to the description of reordering process-
es (of which optical echoes are a subset) which is
both widely applicable and intuitively satisfying.
Simple rules allow the construction of diagrams
which map out in time the coherences in phase or
population which are generated in a sample by

any sequence of laser-excitation pulses. We will
concentrate here on the analysis of laser-induced
ordering in gases, but the diagrammatic approach
developed here is easily applied to solids as well.

II. PARTIAL STATE AMPLITUDES

A. Definitions

We deal with an optically thin gaseous sample of
atoms which are identical except with regards to
their velocity and position. In the absence of ex~
ternal fields each atom is described by a Hamil-
tonian H,. The atoms have eigenstates |s) which
satisfy

H,|s)=RQ|s). 1)
For convenience, we assume that the eigenstates

are nondegenerate and we neglect relaxation pro-
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cesses. The sample is to be irradiated by a series
of laser-excitation pulses which cause immediate
and delayed ordering. In general, we can write

an atom’s wave function as

Y(E)= D A%exp(=if,1)|s), (@)

where the state amplitudes A® are constants ex-
cept when being modified by the laser-excitation
pulses. As will become clear below, it is useful
to decompose the state amplitudes A® into a series

‘of partial state amplitudes (PSA’s) each of which

is labeled according to its historical development.
We write

A=) af, (3)
i

where the superscripts denote the eigenstate with
which the PSA is associated and the subscripts
differentiate between PSA’s with distinct histor-
ies. We sometimes find it useful to explicitly
indicate the number of times that laser pulses
have caused a change in the amplitude of a parti-
cular PSA (or its precursor) without changing its
index s. To show that »n, such changes have taken
place in the historical development of the PSA af
we write af(n,).

B. Response of an atom to laser excitation in terms
of its PSA’s

Consider a single atom initially residing solely
in a particular state |I) [see Fig. 1(a)]. The
atom’s initial wave function consists of a single
term and is given by

Y(t)= a(0) exp(=if,)|1) - 4)

Let a laser pulse, which is resonant with the
transition from the state |I) to another state |m)
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FIG. 1. The partial state amplitudes (PSA’s) created
in the course of two different excitation schemes. (a)—
(c) A single initial PSA, a{(0), is divided, through the
action of two successive equal frequency excitation
pulses, into a total of four PSA’s. (d)—(f) In a three
energy-level system, a single PSA is divided by two dif-
ferent frequency excitation pulses into three PSA’s.

act on the atom. This laser pulse has the effect

of reducing the amplitude of a{(O) and of generating
a new PSA a7(0) which is associated with the state
|m) [see Fig. 1(b)]. We represent this fact sym-
bolically by writing -

al(0)~al(1),a™(0). (5)

The PSA a'(0) is said to have been “transferred”
to state |m), and the PSA a}(1) “reduced” from
a{(O). It follows that after the single-laser excita-
tion pulse, the initial atomic wave function

[Eq. (4)] is transformed into

Y(t)=al(1) exp(=i;t)|1)
+ a"(0) exp(=iQ,t)| m) . (6)

The effect of a second-excitation pulse which is
also resonant with the [l) - lm) transition is il-
lustrated in Fig. 1(c) and summarized by the trans-
formation equations

aj(1)~aj(2),a7(1), (7a)
ap(0)~a7(1),a}(0) . (7b)

Thé atomic wave function of Eq. (6) is transfbrmed
by the second pulse into

P(t)=[a}(2)+ ak(0)] exp(~if2,;) | 1)
+ [aP(1)+ af(1)] exp(=i2,t)| m) . (8)

Generally speaking, an arbitrary PSA, af(n,) is
transformed by a laser pulse, resonant with the
|s)-|s’) transition, according to

a?(nr)"ais(nr"' 1),az§'l (nr) ’ (9)

where the index i’ is chosen to be different from
any other subscript already assigned to a PSA
associated with the state |s’).

If now a third-excitation pulse is applied (again
resonant with the |l)-|m) transition), its effect
would be

a;(2)~a}(3),a3(2),
a5(0)~ a3(1),a3(0)
ar(1)~af(2),ay(1),
az(1)~a3(2),a,1),

(10)

and so on.

Not all laser-excitation pulses need be reso-
nant with the same transition. Suppose a total of
two pulses are applied, the first resonant with
the |7)-|m) transition and the second resonant
with the [m)-|n) transition, where |n) represents
another distinct energy state. The effect would
be as illustrated in Figs. 1(d)-({). Assume as be-
fore that the atom is initially in the state !l) and
that the only nonzero PSA is a!(0). The first pulse
then causes

a}(0)-al(1),a(0), (112)
while the second pulse causes -
al(0)—al(1),ax0). (11p)

The final wave funcfion of the atom is given by
¥(t)=aj(1) exp(~i;t) 1)
+al(1) exp(=if2,t) |m)
+a(0) exp(~iQ2,t)|n) . (12)

C. Observables and PSA’s

The observables associated with an atom may
be calculated in terms of its PSA’s. We will deal
with two observables—the relative phase of the ra-
diation emitted by the atom on a particular transi-
tion and the probability of finding the atom in a
particular energy state. If an atom’s wave function
has the form

P(t)= A exp(~ie )| s)+ A" exp(-iQut)|s’),  (13)
it follows that ’
8, (s|0|s")A " (A%)*exp[-i(Q, = Q)]+ c.c., (14)

where 8, is the electric field radiated by the atom
on the |s)-|s’) transition and O is an operator cor-
responding to the multipole moment responsible
for the radiation. Expanding A® and A%’ according
to Eq. (3), we have

8, (s|0]|s") iz;' as’ (nD)as(n,)]*

X exp[=i(Q, -]+ c.c. (15)



The net electric field emitted by the atom can be
thought of as being the sum of a number of com -
ponents each of which in geneval has a differvent
phase. At certain times after excitation the rela-
tive phase of particular components of the electric
field may be ordered throughout the sample in
various ways (to be discussed below).

The wave function of Eq. (13) indicates that the
probability of finding the atom in state |s), p,,,
obeys

Doy EAHA)*
o Z at(n,)as. (n1)]* . (16)

As in the case of the emitted electric field, the
population density in state [s) can be thought of

as consisting of a number of components each of
which corresponds to a different product of PSA’s.
The population density corresponding to some
components may be ordered throughout the sample
at certain times after the excitation sequence.

III. TRAVELING-WAVE EXCITATION
A. Single atom

We now specialize to traveling-wave excitation
pulses. Let the jth pulse have area 6,;, wave vec-
tor E,, and correspond to exact resonance with the
transition between two arbitrary states denoted by
[s) and |s’). The electric field of excitation pulse
j then has the form

8,(t) expl~i(| R, 8, |t —K,- D]+ c.c. 17)

We assume that the pulse is sufficiently short to
]

a(N,)= a{(O)(ﬁcos(G,/Z))(f}i sin(6,/2) explie K, - F,]) ,

=1
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allow the neglect of atomic motion throughout its
duration. We consider a particular atom whose
initial wave function is given by Eq. 4, and denote
its position at the time ¢; as T,.

As discussed in the previous section the effect
of an excitation pulse on a general PSA aj(n,) is
summarized by the transformation equation

ai(n,)~ af(n,+1), a3 (n,) . (18)

A straightforward application of the formalism de-
veloped in Ref. 27 relates the new PSA’s to the old
PSA’s as follows:

aj(n,+1)=cos(8,/2)ai(n,) (19a)

a3’ (n,)=isin(9,/2)exp(ic K, - T,)aj(n,),  (19D)
where
€;=+1(-1) if Q> Q(Q,.<Q,).

These equations can be used to relate any PSA gen-
erated by a series of excitation pulses to the initial
PSA al(0). :
Consider a particular PSA af(N,) which is asso-
ciated with the state | p) and is assumed to have
been generated through the action of a sequence
of laser pulses on an atom initially described by
the wave function of Eq. (4). As indicated within
the parentheses, there were N, excitation pulses
which modified the PSA’s amplitude without chang-
ing the state to which it was associated. If there
were N, excitation pulses which did change the
state to which the PSA was associated, then re-
peated application of Eq. (19) yields

(20)

The index j runs over those excitation pulses relevant to the evolution of a{:(N,). This will be made clearer

in the next sections.

B. Sample as a whole

In the preceding sections, we have discussed the
response of a particular atom to a series of laser-
excitation pulses. Our ultimate objective, how-
ever, is to determine if and when the sample as
a whole displays order. Here order is defined as
a nonthermal variation of an observable (such as
polarization, population density, etc.) with posi-
tion (velocity) after averaging over atoms with all
velocities at each position (with all positions for
each velocity). To determine when ordering takes
place, we must find an expression for the PSA’s
of atoms as a function of position ¥ and velocity V.

Fortunately, the assumption of time-independent
v allows us to express the excitation positions of
atoms at T at time ¢ according to

T,=r=v(t-t,), (21)

where V is the atom’s velocity. Substituting Eq.
(21) into Eq. (20), we obtain

ab(N,) = al(0)fPeiRETe 907 | (22)

where

fa E (ﬁcos(ﬁ,/ﬂ)(ﬁi sin(e,/Z)) , (23a)
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Nt

K= Ze,ﬁ,, (23b)
=l .
and

W:—Zf €Kt ~t,) =Kot - 2 €kt (23c)

Equation (22) provides the form of the post-excitation
PSA’s of atoms throughout the sample as a function
of their instantaneous position and velocity. As

we will see the quantity ¢? is of special signifi-
cance and is denoted the velocity-dependent phase
(VDP) coefficient.

From Egs. (15) and (16) we see that the calcula-
tion of observable properties of an atom often in-
volves scalar products of PSA’s of the form
at(N,)[a’ (N})]*. Using Eq. (22), we have

a?(N,)a? (N ]*=£2(f2') * exp(iK, - F) exp(~ig, - V),
(24)

where we assume that a}(0) in Eq. (22) is common
to both PSA’s and ai(O) 1 We define here K
—K’ K’ and qo, @t - ¢t respectively, as the
wave vector and VDP coefficient associated with
the observable x.

IV. BASIC DIAGRAMS

A. Definitions and examples

As we now demonstrate, the characteristics of
the wave function which are important in the study
of reordering processes in general and optical
echoes in particular can be displayed in a simple
diagrammatic form. A diagram consists of a plot
‘of the velocity-dependent phase coefficient of each
PSA as a function of time. One axis of the diagram
is reserved for the time. The other axes are used
to represent the components of 5(t) for each PSA
along various spatial directions. Examining the
form of ¢(¢) for an arbitrary PSA [see Eq. (23c)],
we see that if all the laser pulses propagate with
either sense along a particular direction, say Z,
a(t) is always parallel to +z, and the diagrams
may be restricted to two dimensions. Similarly,
excitation pulses which are confined to a plane
may be represented in a three-dimensional dia-
gram. For the sake of simplicity, we restrict
our attention in the following examples to collinear
excitation pulses and two-dimensional diagrams.
If we assume that the laser pulses propagate along
+2, our diagrams consist of a plot of -q.J(t) 2=q,(t)
versus time.

Consider a sample in which all atoms initially
reside in a state [I) [see Fig. 1(a) and Eq. (4)].
Since in an unprepared sample the atoms are not
expected to show any special ordering with ve-
locity, the VDP coefficient of the single existing

PSA may be set equal to zero. Figure 2(a) gives
the appropriate diagram. The single line indicates
that there is only one PSA. Its lack of a time-de-
pendent VDP coefficient is indicated by the fact
that the line is horizontal. The character of the
line (i.e., solid) specifies with which enevrgy state
the PSA\is associated. We choose a solid line to
represent the state |7).

We study the diagrams which result after each
of a series of three laser pulses (designated by
the subscripts 1, 2, and 3, where ¢,<¢,<t,) all of
which are resonant with the |I)-|m) transition.

We assume £,>8,. Figure 2(b) shows a diagram
which represents the action of pulse 1 (here k 12).
At t=t,, the initial PSA (solid line £<¢,) is trans-
formed according to Eq. (5) into two PSA’s. The
VDP coefficient of the PSA which remains in |1)

is unaffected; hence, the solid line continues un-
altered for £>¢,. The PSA transferred to state
|m), (state |m) is represented by a dashed line)
acquires a VDP coefficient of € k Lt =t)

=k,(t —t,)2. Because the z component of this
PSA’s VDP coefficient increases with time, the
dashed line representing the transferred PSA
branches off from the original solid line with posi-
tive slope. Note that the amplitude associated
with each PSA is not indicated in the diagram,

but can easily be ascertained using Eq. (22). If

we instead specify that £, <&, or K, || -2 (but not
both), the dashed line in Fig. 2(b) will branch off
toward the bottom of the page.

After the action of the second pulse, which has
E‘=E2, we obtain the diagram shown in Fig. 2(c)
[see also Fig. 1(c)]. As usual the VDP-coefficient
lines representing the PSA’s not transferred by
the second pulse continue unaltered through ¢=%,.
The VDP coefficient of the PSA’s transferred out
of their initial state is modified; consequently,
the new VDP -coefficient lines representing them
branch away at £=¢, from the original VDP-coef-
ficient lines. The new solid (dashed) line repre-
sents the PSA transferred from [m)~ |1) (1)~ |m)).
The z-component VDP coefficient of the PSA’s
transferred from |I)-|m) at both t=t, and
t=1, increases at the same rate; consequently,
the dashed lines originating at £=¢, and ¢=¢, are
parallel. From Eq. (23c), the new solid line has
the VDP coefficient

€K, (t =)+ €K, (t =1,) =R, (t, ~1,)2 ,

where we have used €,=1, €,=-1, and k, =K, | 2.
If the second pulse is counterpropagating with re-
spect to the first, we obtain a quite different dia-
gram which is shown in Fig. 2(d).

Finally, a diagram which includes the effect of
a th1rd laser pulse whose wave vector k satis-
fies k k = —ka, is shown in Fig. 2(e). As usual,
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FIG. 2. (a) A diagram which displays the time evolution of the velocity—dependent—phgse (VDP) coefficient of a single
PSA in the absence of laser excitation. The vertical axis is the z component of the VDP coefficient and the horizontal
axis is the time. The fact that the VDP-coefficient trajectory is represented by a solid line indicates that the asso-
ciated PSA corresponds to state |I). (b) A VDP-coefficient diagram representing the macroscopic properties of a sam-
ple after the occurence of a single-laser excitation pulse at the time ¢; =0. The axes shown in Fig. 2(a) are omitted in
subsequent figures for simplicity. The dashed VDP-coefficient trajectory represents the PSA transferred by the pulse
from state |1} to |m). As indicated in the figure the laser pulse is assumed to propagate along +Z. (c) The VDP
coefficient diagram representing the action of two copropagating laser pulses. The intersection of a dashed and
solid line at ¢ =2¢, indicates the occurrence of the well-known two-pulse photon echo. The VDP coefficient of each of
the two PSA’s transferred by the second pulse is shown next to the line representing it. (d) The VDP-coefficient
diagram representing a sequence of two counter-propagating pulses. Note that there is no longer an intersec-
tion of lines at ¢ =2¢, indicating that the two-pulse photon echo cannot occur with counter-propagating excitation pulses.
(e) The VDP-coefficient diagram representing the action of two copropagating laser pulses followed by a third counter-
propagating pulse. If, as shown, the third pulse occurs before ¢ =2¢,, similar lines intersect and indicate the forma-
tion of grating echoes.

new VDP-coefficient lines, representing trans- B. General rules for construction of diagrams

ferred PSA’s, branch off from the existing VDP-

coefficient lines at £=£,. The VDP coefficient of We can write a few simple rules which allow the
each transferred PSA is simply modified by the construction of two-dimensional diagrams appro-

addition of a term €K,(t —t,)= —€ ky(t —£,)2. priate to an arbitrary sequence of traveling-wave
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excitation pulses which propagate along +Z.

(1) A diagram generally starts with a single
VDP-coefficient line representing a PSA associat-
ed with a certain initial state, e.g., the ground
state.

(2) A particular type of line (e.g., solid, dashed,
.etc.) is used to represent the VDP coefficient of
all PSA’s associated with a given state.

(8) If a traveling-wave laser pulse couples a
state |s) to a state |s’) at the time ¢,, all VDP-co-
efficient lines associated with state |s) will branch
at £=¢; into two parts. One part will continue un-
altered as to slope and type. The other part will
be of the line-type used to describe state |s’), and
will have a factor € ,E,-E added to its slope. As
above €,=+1 if @, >&  and —1 otherwise.

These rules are easily generalized to the case of
coplanar excitation pulses.

V. INTERPRETATION OF THE DIAGRAMS

A. Intersections of dissimilar lines

The presence of dissimilar lines in a diagram
implies that there exist PSA’s which are associ-
ated with more than one energy eigenstate, or
equivalently that the atoms are in a linear super-
position of states. We consider two levels |7)
and |#) which have PSA’s associated with them.
As in the preceding section, assume Q,>Q, We
denote the PSA in state |I) and |m) as &' and a™,
respectively. (Since we restrict our attention
to only these two PSA’s the subscripts used above
to specify PSA’s have been omitted.)

Because the atoms are in a linear superposition
of states, there will generally exist a polarization
in the sample which oscillates at the |1)-|m) transi-
tion frequency and corresponds to a particular
radiation multipole operator 0. The contribution

6.7, ) EGpE )

p9.(F,7) of a particular atom which is located at
the position ¥ and has the velocity ¥ to the net
polarization is given by

P (E,%) =(1l0|m) a™ (@) *exp[ - i@, —)t] + c.c.
=<llolm>fm(ft)*eiipol .F
X e PV o i@t Lo e (25)

Here Eq. (24) has been employed to obtain the
general form of ¢™(a")*. The net polarization at
¥, PP.(T), is obtained by integrating pg (¥,¥) over

the velocity distribution 7 (¥), i.e.,

PE(D)=(IO0lm) fn(f") 2 TP T (G et @m0t
+c.c., (26)
where

F(Ppat) = f dVf(¥) exp (=i, (¢) *¥) . (27)

It is immediately clear that |PC (¥)| is large only
when |$,q| =0. This occurs precisely when dis-
similar VDP coefficient lines representing the-
PSA’s ¢ and g™ intersect.

In Fig. 2(b) the dashed and solid lines branch
from a common point at ¢=¢,. The initial close-
ness of the lines (and in fact their intersection
at t=¢,) indicates that immediately after excitation
the sample has a net polarization. The magnitude
of this polarization decreases as the lines diverge.
In Fig. 2(c), a solid and dashed line intersect at
t=t,+2t,. The corresponding net polarization
gives rise to the two-pulse photon echo.

In a sample large compared to x,=27¢c/|Q,,-Q,|,
the intersection of dissimilar VDP-coefficient
lines and the concomitant appearance of a net pol-
arization (assuming of course that (7|0|m) #0) does
not guarantee the emission of coherent radiation by
the sample. The electric field emitted from the
net polarization of Eq. (26) located at T has the
form

expli( Kpo* T)] exp{~-i[Q¢ - K, (R-F)]} +c.c., (28)

where R is a distant point of observation, #=(R-¥)/|R-¥|, T{e =Q 1/Cy =R, —Q;, and P°() repre-
sents the angular distribution of radiation from the oth multipole moment. The total electric field at R is
obtained by integrating Eq. 28 over T throughout the sample volume:

8 (R E@dP20) 10 4 % - R)) f_mph % exp[—i(k, - R o) E]. (29)

IR|

We assume in Eq. (29), that R is sufficiently far
from the sample that it is possible to treat k,,
|R-¥|~|R|, and P°(n) as constants during the
integration over ¥. The integral over ¥ can only
be large if [k,| =2 |K,y|. If this condition is satis-

fied, the sample is said to be phase-matched, and

coherent emission may occur in directions feg Kpal.
The quantity Kpq=K™~K* can be obtained rather

quickly using (Eq. 23b) to obtain K™ and K? for

the PSA’s involved. The wave vectors associated
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with the ¢ =¢, +2¢, intersection of solid and dashed
lines in Fig. 2(c) are as follows: Km=k,, K!=0,
and Kpol =E1. Here K™ corresponds to the dashed
line. Since [k,|=Q,,/c, the photon echo is phase-
matched (provided as was assumed that the two
excitation pulses copropagate). The wave vector
of the polarization can also be obtained directly
from the diagram, as it can be deduced from the
difference in slope of the intersecting lines.

B. Parallel lines of the same character

Consider a diagram in which there are two paral-
el VDP-coefficient lines both of which correspond
to the energy eigenstate |I) [see Fig. 2(c)]. The
lines correspond to two [-state PSA’s which we
denote by @) and ¢}. Neglecting any other PSA’s
associated with |7), the expectation value of find-
ing an atom in state |I), p,,, is given by

0 = (@! +al)(a] +al)*
=la!|? +|af|® + 2Re[a! @@})*, (30)
which can be rewritten as

Py =a +Bcosx,,(F,¥,1)/2), (31)

where y,, represents the phase of ¢} (a})* and a
and B are constants. The fact that the VDP-coef-
ficient lines of the two PSA’s are parallel implies
that K, of Eq. (24) equals zero. Consequently

[see Eq. (24)], the phase y,, for parallel lines,
denoted by x4,, is independent of time and position,
but it is generally not independent of velocity.
Using Eq. (22) for ¢} and a}, Eq. (24) for a (a})*,
and with K} =K%, we have

Nty Ng
X12(V) = Z €k, Tt - €;K;2° Vt;,
=1 j2=1
+(N¢1"'Nt2)7r/2. (32)

Substituting Eq. (32) for y%, into the expression for
py; it can be seen that the number density of atoms
in state [I) is modulated as a function of V.

We see in Fig. 2(c) that two copropagating laser-
excitation pulses produce both-parallel solid and
parallel dashed lines. Evaluating Eq. (31) under
the diagram conditions we find that

Xia= sty =Ry b)) v, 1=k, (k= 1) v, — 7.

The population is modulated with », with a period
27 /k,(t,—¢,). This modulation is independent of
time and position. Note that the sum of the popu-
lation in states |I) and |m) displays no modulation
in 9, space. ‘

A third laser pulse, whose action is represented
diagrammatically in Fig. 2(e), can transform the
ordering of population versus v, into an ordering
of polarization versus position. Consider the two
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parallel solid lines which exist in the figure for
t>t, At the time ¢,, the third pulse causes a
dashed line to branch downward away from each
solid line. The upper of these dashed lines inter-
sects the lower solid line a time (¢,-¢,) after ¢,.
The echo which results is generally known as the
stimulated photon echo.'?'* Note that between ¢,
and ¢;, all the VDP-coefficient lines except the
two solid ones could be eliminated and the stimu-
lated echo would still occur. The same discussion
applies to the two parallel dashed lines that exist
between ¢, and ¢;. The stimulated echo may be
independently produced from velocity ordering of
population in either the |I) or |m) states.

C. Intersection of similar lines

As in the preceding section, the two similar
lines referring, say to state |I), lead to an ex-
pression for p,, given by Eq. (31). The fact that
the lines cross, however, leads to a different
expression for y,,. We use ¢, to denote the phase
of al(a})* at the time the two similar VDP lines
cross. Since the lines cross, we know that &) and
@% in the expressions [see Eq. (22)] for % and d},
must be equal. Consequently, y¢, is dependent
only on ¥ and has the form

()= (R -R)-F+ (N, N, Jn/2. . (33)

The atomic number density in state |f) then has the
form

P = 02 +Bc0$2{[(ﬁi -Ké) T+ (Nt; - Ntz)w/zl/z} .
” ‘ (34)

This expression for p,, shows that for the parti-
cular time that the similar lines cross, the over-
all density of atoms in state |J) varies periodi-
cally with position. The atoms in state |7) mo-
mentarily form a spatial grating (a grating echo)
which can be detected by scattering a laser from
it.®

In Fig. 2(e), a sequence of two copropagating
pulses followed by one counterpropagating pulse
gives rise to a grating echo in both state ll) and
|my. From Eq. (34) it is clear that these gra-
tings are characterized by the wave vector 2E1.

D. Parallel lines of dissimilar character

Using the same nomenclature as in Sec. V A,
we see that the presence of parallel dissimilar
lines in a diagram implies that K, of Eq. (26)
vanishes. Thus the phase of the polarization
P, (which corresponds to the two PSA’s repre-
sented by the paralled dissimilar lines) is inde-
pendent of position but unless ¢,, =0 is modula-
ted in velocity space. Among other things, the
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position indepence of P§, can give rise to inter-
esting grating echo effects. Parallel dissimilar
lines can quite generally be created by appropriate
coplanar excitation pulses.

VI. TRILEVEL ECHOES

Laser pulses, which successively excite coupled
transitions, can lead to a wide range of interesting
and useful echo effects.” 33! One such effect,
which has been termed the sum-frequency trilevel
echo (SF echo) is described here diagrammatic-
ally. The SF echo was chosen because of its
proven utility in measuring the collisional broad-
ening rates of two-photon transitions between
ground and Rydberg excited states of the same
parity.3°

The three energy levels involved are depicted
in Fig. 3a. We assume that 2,,>Q,;. The rela-
tive times, frequencies, and propagation direc-
tions of the three requisite pulses are shown in
Fig. 3(). The SF echo [shown as the dashed pulse
in Fig. 3(b)] occurs at the time ¢, >¢, on the |I)
~ |m) transition. The line-types used in the dia-
gram to represent the three energy states are de-
fined in Fig. 3(a).

The diagram, which is constructed according to
the rules of Sec. IVB, is shown in Fig. 3(c). Three
intersections between dissimilar lines are shown
in the figure. The intersection marked “A” indi-
cates a rephasing on the electric-dipole forbidden
|1> = |n> transition. Intersection “C” corresponds
to the two-pulse photon echo produced by the two
pulses resonant with the |m> — |n> transition.

The SF echo is indicated by intersection“ B”.
Note that if Q,,<Q,,, the dot-dash line origina-
ting at £, would have a positive slope and the SF
echo would not occur. Similarly, if pulse 3
occurred before intersection “A” the SF echo
would not occur. The SF echo can be thought of
as a third-pulse induced rephasing of “A”.

Since the VDP coefficient of the solid line can
be taken as zero, we can obtain the SF echo time
by simply solving for the time which makes the
VDP coefficient of the intersecting dashed line
equal to zero as well. We have

kmt(te—tl)—knm(te—t2)+knm(te_t3)=0’ (35)

or
Bym
te=t1 +‘I;n""(t3—t2) . (36)
ml

Here k;;=Q,,/c.

From Egs. (22), (24), and (29), the wave vector
of the echo Ee is equal to the wave vector of the
first pulse, i.e., K, =k 2.
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~
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t t, ~<
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\,\/{,/
~.
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FIG. 3. The relative energies of the three energy lev-
els involved in the sum-frequency trilevel echo. The
line-type used to designate each level is indicated in
this figure. (b) The frequencies, times, and relative
propagation directions (indicated by the arrows) of the
three sum-frequency trilevel echo excitation pulses.
The dashed pulse represents the echo. (c) The VDP-
coefficient diagram representing the action of the three
pulses described in Fig. 3(b). Intersection “B” repre-
sents the occurrence of the sum-frequency trilevel
echo. The slopes m; (j =1, 2, 3) shown are given by:
my = (kg —ko)b + (Roly —kit1), ma=kit — (kty —Fkaty + k3ts),
and m 3= (ky —k3)t + (k3l3 —k1f), where k; is the magni-
tude of the jth pulses’s wave vector.

VII. STANDING-WAVE EXCITATION.

In Fig. 2(b) we presented a diagram represen-
ting the action of a single traveling-wave exci-
tation pulse. A dramatically different but ana-
logous diagram for a single standing-wave (SW)
excitation pulse is given in Fig. 4.

As in Fig. 2(b) the solid and dashed lines repre-
sent PSA’s associated with the initial, |I), and
final, |m), state, respectively. The SW pulse is
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FIG. 4. The VDP coefficient diagram which repre-
sents the action of a single standing-wave pulse on a
PSA. The solid line refers to the initial state with
which the PSA is associated and the dashed line to the
state coupled to by the standing-wave field.

assumed to have the form &) cos(|®,,
—ﬂ,lt) cos(k:, 7). A traveling-wave pulse has a
constant area ¢, and a position-dependent phase.
On the other hand, a SW pulse has a constant phase
and a position-dependent area. For the SW we
have 6,(F) =6 cos(l?, «%).

The SW-transformation equation analogous to
Eq. (19) is given by

al(n,+1)=cos[6,(F))/2]al(n,),
apn,) =i sin[6,(t,)/ 2] al(n,).

We can use Bessel functions of the first kind to
expand the coefficients in Eq. (37) according to

cos[(69/2) cos(k; + )]

= i: (=1pe2® 70, (69/2), (38a)

(37)

and
sin[(69/2) cos(k, « )]

=Y (~1yret v Ering,, 1 (69/2) . (38b)
e

I Eq. (21) is used to eliminate T, in Eq. (38),
we see that the single initial PSA associated with
state |1) is divided into an infinite number of
PSA’s each characterized by a distinctive VDP
coefficient. After the SW pulse, there is a PSA
associated with state |I) for every VDP coeffi-
cient given by

2K, ¢ -1,), n=(..,=1,0,1,...).
The amplitude of each PSA is proportional to

Jx(6Y/2). For any 6%, |J,,(65/2)| eventually de-
creases rapidly for 1n] above a certain value.
Associated with the final state |m), there are
PSA’s having each of the VDP coefficients

@n+1)k,¢-t), n=(..,=1,0,1,...)

where the amplitude of each PSA varies as
I (09/2).

The dramatic difference between the action of a
traveling-wave pulse and that of a SW pulse has
an intuitive interpretation. A traveling-wave
pulse is characterized by a single wave vector,
say k,E. Consequently, in a second-order inter-
action, where a PSA is transferred by the single
pulse from |I)~ |m)~ |1}, the VDP coefficient of
the PSA is unchanged by the pulse. The same
second-order interaction induced by a SW pulse
may proceed via the +2 ,2 SW component from
|2}~ |m) and the ~k2 component from |m)— |1).
The z-component VDP coefficient of the PSA is
then modified by 2k,(‘t - t,). Generalizing, in the
traveling-wave case all even-order interactions
result in the PSA returning to state |I) and cause
no modification of VDP, All odd-order interac-
tions leave the PSA associated with state |m) and
modify the z-component VDP coefficient of the
PSA by k,{t —1,). The net effect of a traveling-
wave pulse then is only to create two PSA’s dis-
tinguishable on the basis of VDP. In the SW case
the 2nth-order interaction (n=1,2,...) which re-
turns the PSA to |I) may, because of the interac-
tion with the oppositely directed SW components,
have a VDP coefficient as large as 2nk,(t —¢,).
Similarly, odd-order interactions which leave the
PSA associated with state |m) may result in a
VDP coefficient as large as (2n +1)k,(¢ —¢,).

The action of a SW pulse is represented dia-
grammatically according to the following rule:

If a SW-laser pulse couples a state |s) to a state
|s’) at the time ¢,, all VDP-coefficient lines as-
sociated with state |s) will branch at the time ¢
into two fans of lines. One fan, of the same type
line associated with state |s), will have VDP
lines different in slope from the original line by
all even integral multiples of k,. The other fan,
of the line-type associated with state |s’), will
have lines different in slope from the original
line by all odd integral multiples of %,.

VIIL. CONCLUSION

We have outlined a broadly applicable diagram-
matic technique for the analysis of laser-induced
(re)ordering processes which is applicable to
both gases and solids. The diagrams explain many
echo phenomena in a clear and unified fashion
which should lead to a deeper understanding of the
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phenomena. It is to be expected that this diagram-
matic approach will also facilitate the full utiliza-
tion of (re)ordering effects in studies of both
relaxation® %1% 14 20,30-34 gng gpectroscopy.®® 2°

In many cases a reordering effect (e.g., an echo)
can be designed using diagrams to yield the par-
ticular information desired.
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