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Exchange in low-energy electron-molecule scattering: Orthogonalixation and free-electron-gas
approximations for collisions with polar and nonpolar molecules
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Three approximate treatments of the exchange interaction in low-energy electron-molecule scattering are applied
to a variety of collision systems. Static-exchange calculations for e-H„e-w„e-CO, e-LiH, e-HCl, and e-LiF
collisions with scattering energies from 0.01 to 1.0 Ry are discussed, and results obtained using p,pproximate
treatments of exchange are compared with those obtained in a corresponding study in which exchange is
incorporated exactly via an iterative procedure. The approximate treatments considered are orthogonalized-static,
free- .ectron-gas model potential, and orthogonalized-model-potential procedures, The latter procedure is found to
be uniformly superior to other approximate methods for all systems studied, in many cases yielding results
indistinguishable from those of the exact static-exchange calculation. Strengths and weaknesses of each method are
discussed.

I. INTRODUCTION

In the past several years, there has been in-
creasing activity in the field of electron-molecule
collision theory. ' ' Considerable progress has
been made in developing techniques to study the
quantum-mechanical problem of the scattering of
a "low-energy" electron (i.e. , one with incident
kinetic energy s10.0 eV) from "small" diatomic
and polyatomic molecules (e.g. , H„N„LiF, CO,),
advances being reported both in formulation of the
collision problem and in treatment of the electron-
molecule interaction potential.

The interaction potential that appears in the non-
relativistic Schrodinger theory for this collision
problem arises from the Coulomb forces between
the scattering electron and the target electrons
and nuclei. This "static potential" is often aug-
mented by an approximate polarization potential
that takes account of second-order effects due to
distortion of the molecular charge cloud by the
electric field of .the scattering electron.

One must also ensure that the electron-mole-
cule wave function is antisymmetric under pair-
wise electron interchange. This quantum-mechan-
ical requirement produces integral "exchange
terms" in the Schrodinger equation for the wave
function of the scattering electron. It is essential
that this exchange interaction be incorporated in
any theory of low-energy electron-molecule scat-
tering, ' but its inclusion in tractable computational
schemes for determining cross sections is very
difficult, largely due to its nonlocal character.

With the recent advent of L,'-variational methods'
and the introduction of new numerical close-cou-
pling procedures, ' "it is now possible to treat

exchange exactly in a variety of small-molecule
collision systems (e.g. , e-N„e-LiH). These stu-
dies provide valuable benchmark results but are
at present numerically feasible only for a limited
range of systems. This situation, together with a
desire to probe the physical nature of exchange in
electron collisions, has provoked the investigation
of more tractable approximate treatments of this
interaction. " "

In developing such treatments, two quite differ-
ent strategies have been adopted. In oÃhogonaliza-
tion Procedures, ' "exchange is taken into account
only to the extent of ensuring that each continuum
orbital is orthogonal to all bound molecular orbi-
tals (MO's) of the same symmetry This ap. proach
has been implemented for electron collisions with
N„CO, HCl, HF, CH„H,O, and H,S. An a.lterna-
tive tactic is to use modeL-exchange poten-
tials. """""" These potentials are local
approximations to the exchange terms in the scat-
tering equations which mock, in some average
sense, the effects of exchange on the scattering
function. Two types of model-exchange potentials
have been used in electron scattering calculations:

semiclassica& -exch, ange"'"'" "potentials. In
electron-molecule scattering studies, use of the
latter potentials has been restricted primarily to
intermediate-energy collisions. " The FEG poten-
tials have been employed in calculations of low-
energy electron scattering from CO„H„N„LiF,
LiH, and HCl.

It is not possible to evaluate these various ap-
proximate treatments of exchange from research
reported to date. This situation is partly due to
the use of different target wave functions and stan-
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dards of numerical accuracy in various calcula-
tions. Secondly, in many of these studies polariza-
tion effects are taken into account. Of course, po-
larization must be included in theories that are
expected to produce results for comparison with
experimental data. ' But this additional interac-
tion can obscure the effects of exchange, "which
are at issue in the present work. Ideally, an in-
vestigation of approximations to exchange effects
should be carried out in the static-exchange (SE)
approximation, in which polarization is ignored. ""
Finally, a systematic evaluation of these approxi-
mations requires that mell-converged exact-sta-
tic exchan-ge (ESE) results for a wide variety of
systems be used for comparison. Only very re-
cently has such data become available. ""

In the present work, we have investigated three
approximate treatments of exchange: the ortho-
gonalized-static method, the PEG model-exchange-
potential method, and a combination orthogona-
lized-model-potential method. These models are
described in Sec. II. Static-exchange scattering
calculations using these three procedures have
been carried out for the e-H» e-N» e-CO, and
e-LiH systems. Results for these systems are
presented and discussed, together with earlier
calculations" "for e-LiF and e-HCl collisions,
in Sec. III. To ensure internal consistency, we use

'the same static potential and impose the same
standards of numerical accuracy as in our earlier
exact SE calculations, '"the results of which are
used herein for comparison. This investigation of
the validity of the aforementioned approximate
treatments of exchange for these six systems,
which span a wide range of characteristic polar
and nonpolar electron-diatomic collision problems,
provides the basis for the concluding rema, rks in
Sec. IV. (Unless otherwise indicated, atomic units
are used throughout. ")

II. THEORETICAL TREATMENTS OF EXCHANGE
IN ELECTRON-MOLECULE SCATTERING

The electron-molecule collision problem is for-
mulated in single-center coordinates in a body-
fixed reference frame. The fixed-nuclei approxi-
mation"'" is made; i.e. , the orientation of the in-
ternuclear axis and the internuclear separation are
held fixed for the duration of the collision. The
electron-molecule system wave function is ex-
panded' in the complete set of Born-Oppenheimer
electronic wave functions of the target, and the ex-
pansion is truncated to include only the ground
electronic state. The wave function of the scatter-
ing electron is expanded in partial waves (spheri-
cal harmonics), leading to body-frame coupled ra-
dial equations. " In this formulation, channels are
designated by quantum numbers representing the

orbital angular momentum of the scattering elec-
tron (l) and the projection of this angular momen-
tum along the internuclear axis (m).

A discussion of this approach to the collision
theory in the context of the general electron-mole-
cule scattering problem can be found in a recent
review by Lane. ' Special concerns attending its
application to collisions with polar targets are
discussed by Collins and Norcross. " In earlier
papers, we have presented thorough discussions of
the exact-static-exchange (ESE) equations, "of an
iterative procedure for solving them, "and of the
theory of the free-electron-gas model potentials. "
Therefore, in the present paper we shall merely
summarize the key points of the theory, giving
special attention to the orthogonality constraint.
(We shall refer to our earlier model-exchange-po-
tential paper" as I and to the iterative exact-sta-
tic-exchange paper" as II.)

When the antisymmetrization requirement men-
tioned in Sec. I is imposed on the system wave
function in the context of the present theoretical
formulation, the resulting ESE coupled equations
for the radial scattering functions f~~~ are [I, Eq.
(2.15)]

(
d l(l+ 1) 2 ps@(

0

OO

ff(m) (r r )fEsE (r ) dr

where h' is the incident kinetic energy of the scat-
tering electron (in Ry), and l, denotes the incident
channel and labels the linearly-independent solu-
tions of (1). We have suppressed the label m on
the scattering function since in the body-frame
fixed-nuclei theory there is no coupling of chan-
nels with different values of m. Coupling between
channels (lm) and (l'm) is provided by V,'P,', the
matrix element of the static potential (averaged
over the ground electronic state of the molecule)
between spherical harmonics YP(r) and FP, (r), and

by the exchange kernel K,'P) (r, r'), which is cal-
culated from radial expansion coefficients of the
bound molecular orbitals (MO's). The integral ex-
change terms in (1) also depend on the scattering
energy, through the presence of the radial scatter-
ing functions. [Expressions for these coupling ma-
trix elements are given I, Eq. (2.16)-(2.21).] The
coupled integrodifferential equations (1) are also
known as the continuum Hartree-Fock equations. 34

By examining the asymptotic (r- ~) behavior of
the solutions of these equations, one can' extract
the S matrix and calculate from it collision quan-
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tities such as eigenphase sums and various cross
sections.

The integrals in the ESE equations (1) are called
"two-electron exchange terms. " If these equations
are to be solved for electron collisions with open-
shell molecules, additiona1. terms must be re-
tained. "'" These "one-electron exchange terms"
contain the bound-orbital energies and overlap in-
tegrals of the continuum orbital and the bound
MO's. For scattering from closed-shell targets,
like the molecules considered in the present study,
these terms can be omitted, as in Eq. (1). The re
suiting continuum orbital, with partial-wave pro-
jections f~PE, will be rigorously orthogonal to all
bound MO's. '4 No further orthogonality constraints
must be imposed.

The iterative procedure we use to solve the ESE
equations (1) is described in paper II. Here we
wish to emphasize that in these ESE calculations,
we enforce orthogonality of the continuum orbital
to bound molecular orbitals of the same symmetry
as the continuum orbital at each iteration only to
improve convergence. As illustrated in Table I
of paper II for e-H, scattering, fewer iterations are
required to achieve a high degree of convergence
if orthogonality is imposed. However, this con-
straint is not necessary, since in this procedure
no approximations are made to the ESE equations
(1).

Orthogonality is no longer guaranteed if one in-
troduces approximations to the exchange terms in
Eq. (1). The two strategies for doing so that are

examined here adopt fundamentally different points
of view.

Our approach is to replace the nonlocal exchange
terms in the ESE scattering equations by a local
term involving a model-exchange potential. " Thus
in Eq. (1) we set

r 9 0

where p(r) is the charge density of the (undistor-
ted) target molecule as calculated from near-Har-
tree- Fock electronic wave functions. " The quan-
tity g is given by

[2(E;„,+I) + h~(r)]'~'
h~(r)

where h~(r) = [3m'p(r)]' ' is the Fermi momentum

(4)

(2)

where the matrix element on the right entails in-
tegration over the body-frame angular coordinates
r. The principle advantage of this replacement is
that it reduces the integrodifferential ESE equa-
tions to differential (approximate) SE equations.
The assumptions underlying the FEG exchange
potential V„«are discussed in paper I. Several
variants of this potential have be n investi-
gated"'"'" "since the initial implementation of
this approach by Hara" (cf. Sec. IIIA). His
HFEGE potential has the form

TABLE I. Parameters for close-coupling calculations and molecular data for the molecu-
lar targets considered in Sec. III. The parameters are described in the text.

H2 LiH HCl

Electronic
Wave function

R eq(aP)

p (eap)'

q{ea())
'

~mm

el~max

l (Z)

(II)

&max(+p)

Bef. 40

1.402

0.48

0.564

6(7)

6(7)

60.0

Bef. 41

2.068

-0.939

0.492

20

14(15)

26(15)

85.0

Bef. 42

2.132

0.105

0.560

52.0

Ref. 43

3.015

2.361

-3.377

0.302

10

200.0

Bef. 42

2.987

2.59

—4.564

0.472

36

26

200.0

Ref. 44

2.409

0.4714

2.83

0.435

17

64.0

' Near-Hartree-Pock wave function for P =Aeq are used in all calculations.
Extracted from the & =1 (dipole) expansion coefficient of the static potential.
Extracted from the A, =2 (quadrupole) expansion coefficient of the static potential.
For homonuclear targets, Z~(Z„) and II~(II„). These numbers are for nonorthogonalized

calculations. See Ref, 61.
See Bef. 16.
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of the molecule, E;„, is the incident energy of the
scattering electron (in hartrees), and I is the ioni-
zation potential of the target (in hartrees).

Once the replacement (2) has been made in the
ESE equations (1), the approximate continuum or-
bital obtained by solving the resulting SE equa-
tions need not be orthogonal to the bound MO's
although such may be the case. In other words,
the ESE scattering function has nodes at particular
values of v which are prescribed in part by the
aforementioned orthogonality conditions. Unless
these conditions are explicitly imposed as con-
straints on the aPproximate SE scattering func-
tion, "the nodal structure of this solution may dif-
fer from that of the ESE scattering function.

The second type of approximate treatment of ex-
change in electron scattering is predicated on the
argument that the most important effect of the ex-
change interaction is to constrain the nodal struc-
ture of the scattering function through the ortho-
gonality conditions. "" As the first step in de-
veloping a method based on this premise, the two-
electron exchange terms in (1) are neglected,
leaving a purely static interaction potential in the
collision equations, viz. ,

(5)
This is the static approximation (S), in which ex-
change is completely ignored. In the orthogona-
lized-static (OS) procedure, one solves for solu-
tions of the static equations which also satisfy the
orthogonality constraints

where P,' )(x) is the lth projection in a spherical-
harmonic expansion of the ith bound MO. There
will be one such constraint for each of the n„bound
MO's of the same symmetry as the continuum or-
bital under consideration and for each linearly in-
dependent solution vector (labelled by l,). These
constraints are imposed by the method of I agrange
undetermined multipliers, "'"in which one solves
the inhomogeneous differential equations

( + k f,o'(x) —2 g V,', )(~)f, ,', (~)
n

(j) (& ) y g (& )
0

g =1

rather than the static equations (5). In (7) the X,("
are the I agrange multipliers.

It is important to notice that neither the two-
electron exchange terms nor approximations to
these terms appear in the OS equations (7). The
significance of this observation becomes apparent

if one thinks about the collision in terms of the
various electron-molecule symmetries that cor-
respond to the irreducible representations of the
point group of the molecule. (In the body-frame/'
fixed-nuclei formulation, the sets of coupled equa-
tions that describe scattering i:n each of these
symmetries are independent of one another. ) In
this context, we see that exchange effects are com-
pletely ignored in all symmetries except those for
which there happens to be a corresponding bound
MO in the electronic configuration of the target
molecule. This defect in the OS procedure can be
quite important, as in e.-N, scattering, where a
II, shape resonance is found' in the ESE total in-
tegrated cross section at a collision energy of 3.SO

eV. Since there is no bound m, MO in the X'Z,'
ground state of N„ the OS procedure reduces to
the static approximation in this symmetry, and the
resonance does not appear (see Sec. III B and Fig.
2).

However, this predicament does not arise for
most systems to which the OS method has been ap-
plied. "" In these calculations, the principal con-
tributions to the cross sections of interest are due
to electron-molecule symmetries with correspond-
ing bound MO's, so we can enforce orthogonality.
Then the validity of the OS method rests on the
extent to which it accurately represents exchange
effects in these symmetries. This question can be
addressed by comparing ESE and OS results for
several systems (see especially the results for
e-CO collisions in Sec. III C).

In addition to these comparisons for the FEG and
OS methods, we consider in Sec. III a third alter-
native in which the model-potential and orthogona-
lization strategies are combined. The possible
utility of such an "orthogonalized-model-poten-
tial" approach was first suggested by Riley and
Truhlar" in a study of triplet scattering of elec-
trons by hydrogen atoms. 5 The possibility that
such a procedure could improve the accuracy of
local model-exchange potentials for electron-mol-
ecule scattering was suggested by earlier stu-
dies.""In the present implementation, we begin
by making the replacement (2) of the FEG exchange
potential in the ESE equations. The resulting ap-
proximate SE equations are solved for radial scat-
tering functions which also satisfy the orthogonali-
ty constraints (6). This is the OHFEGE method.
Conceptually, the imposition of the orthogonality
constraints can be thought of as "correcting" the
approximate SE collision equations by re-imposing
conditions on the continuum orbital that were "lost"
when the replacement (2) was made. Of course,
if the HFEGE model potential is itself a very good
approximation, the orthogonality constraints will
have little effect on the results. This appears to
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be the case in the e-HCl scattering calculations for
the Z symmetry that Collins et al. have reported. "
These results are discussed briefly in Sec. III D.

potential I [see Eq. (4) ]. Experimentally deter-
mined ionization potentials were used; they are
given in Table I.

III. RESULTS AND DISCUSSION

The coupled differential SE equations described
in Sec. II were solved using an integral equations
algorithm. " The details of our application of this
algorithm to electron-molecule collisions have
been discussed elsewhere. "

Several parameters are germain to these cal-
culations; their values are given in Table I for
each of the molecules under consideration. The
electrostatic interaction potential, averaged over
the equilibrium-geometry, near-Hartree- Fock
ground-state target wave function, is expanded
in Lengendre polynomials" of order A. =0 through
A =A. „. Each coefficient in this expansion is the
sum of an electronic part and a nuclear part. For
all X. such that A.",„&X & A. ,„, only the nuclear part
is retained; it is the dominant contribution to these
high-order coefficients. "'" From this static po-
tential, which appears in the matrix elements
V,'p&(r) in Eqs. (1), (5), and (7), we determine the
long-range permanent quadrupole (k =2) and, for
polar systems, dipole (X =1, moments shown in
Table I.

In the expansion of the scattering function in
spherical harmonics, which leads to the coupled
radial equations in Sec. II, we retain partial waves
through order4' E,„. Thus this parameter deter-
mines the number of channels Nin each close-
coupling calculation. In calculations that require
orthogonalization, such as those that use the OS or
OHFEGE methods, we include Lagrange undeter-
mined multipliers for all bound MO's of the same
symmetry as the continuum orbital. These bound
MO's are also expanded in partial waves; this ex-
pansion results in the function P,"'(x) of Eq. (6).
The solution matrix is propagated to x,„, where
the T matrix is extracted from it."

In determining the values of these parameters,
we have required that the results of the approxi-
mate SE calculations be globally converged" to the
same degree of accuracy as the iterative ESE data
to which they are compared. '" This ensures that
these comparisons actually reveal differences in
the various treatments of the physics of exchange
rather than vagaries in the numerical process of
the different calculations. Convergence criteria
for each system are given below. Eigenphase
sums and/or cross sections a,re globally converged
to these criteria in the parameters discussed
above.

Finally, specification of the HFEGE potential
for a particular molecule requires the ionization
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FIG. &. Static-exchange cross sections for e-H2
scattering in the Z~ symmetry from calculations in
which exchange is included exactly {ESEcurve, from
Ref. 10), and where FEG model potentials are used
with and without orthogonalization. (The AAFEGE and
OAAFEGE results above 0.2 Ry agree with the ESE
cross sections to within accuracy of this graph. )

A. e-H2 scattering

In our earlier study of FEG potentials for e-H,
scattering in the Z, symmetry, "three such poten-
tials were used: (1) the HFEGE of Eqs. (3) and

(4); (2) the asymptotically adjusted FEG exchange
potential (AAFEGE) of Riley and Truhlar, "in
which I= 0 in Eq. (4); and (3), a "tuned" FEG ex-
change potential (TFEGE), in which jwas treated
as an adjustable parameter. In the third model,
I is chosen so that the TFEGE and ESE Z, eigen-
phase sums are equal at a scattering energy of
0.04 Ry. The resulting model-exchange potential
is used in scattering calculations for energies
from 0.01 to 1.0 Ry. Subsequently, Gibson and
Morrison" extended this work to include all other
important e-H, symmetries, investigated the semi-
classical exchange potential for this system, and
explored the effect of including polarization in
these calculations.

These studies showed the TFEGE potential to
be capable of producing SE cross sections in ex-
cellent agreement with the ESE results in the en-
ergy range from 0.01 to 1.0 Ry. However, the
HFEGE and AAFEGE models generate cross sec-
tions that are consistently above (HFEGE) or be-
low (AAFEGE) their ESE counterparts, as shown
in Fig. 1. This behavior indicates that for this
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system the HFEGE potential is too weak and the
AAFEGE too strong. This is consistent with the
observation that changing I from I (HFEGE) = 0.564
E„to I (TFEGE) = 0.0'll E„deepens the (attractive)
exchange potential and improves the results.

Orthogonality was not considered in these earlier
papers. In Fig. 1, we show Z, cross sections for
the OHFEGE and OAAFEGE approximations.
These were determined by using the indicated FEG
potentials and imposing orthogonality of the Z,
continuum orbital to the bound 10. MO of H, .
(Since this is the only bound MO in this problem,
orthogonality constraints cannot be imposed in the
other electron-molecule symmetries. ) The
OAAFEGE results in Fig. 1 further support the
conclusion of paper I that, although this potential
does have the correct asymptotic energy depen-
dence, it is simply too strong in the short-range
region, where exchange effects are most impor-
tant. Evidently„ the AAFEGE potential is too
strong (for electron-molecule systems studied to
date") for orthogonalization to correct its defi-
ciencies. We shall not consider this potentia. l fur-
ther.

Orthogonalization does improve the results of
calculations in which the HFEGE is used. How-
ever, the improvement is not as great for the
e-H, system as for the others discussed below.
The remaining difference between the OHFEGE
and ESE cross sections in Fig. 1 may be an indi-
cation of the inadequacy of the approximation that
the two-electron H, molecule be treated as a free-
electron-gas. This assumption seems less prob-
lematical for molecules such as N, and CO, which
have more electrons.

8. e-N„scatter}tng

Shape resonances are common features of low-

energy electron-molecule collisions cross sec-
tions. ' Scattering at energies near these reso-
nances is particularly sensitive to the exchange
interaction, because the scattering function is con-
centrated in the short-range region. The II shape
resonance is found in the ESE eigenphase sums
for e-N, collisions'~'" at an energy of 3.90 eV
as shown in Fig. 2. Eigenphase sums" in the II,
symmetry calculated with the HFEGE potential
are shown by the solid curve in this figure. This
model does produce the II resonance, but at too
high an energy. The HFEGE resonance is also a
bit wider than the ESE width of 1.33 eV.

As mentioned in Sec. II, there is no bound m, MO
in the ground state of N, . Hence the OS morsel in
the II, symmetry reduces to the static approxima-
tion tcf. , Eg. (5)]. Eigenphase sums in this ap-
proximation, labelled S in Fig. 2, do not show a
resonance in this energy range.

3.0

2.5—

2.0 —.

O

E
V)

l.5—
na

l.0—

0.5—

0.0 i

0.0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 O.S

Energy ( R y )

FIG. 2. Eigenphase sums for the II~ resonant sym-
metry of the e-N2 system. The ESE resonance energy
is 3.90 eV. For the TFEGE, I= 0. 215 E„ in Eq. (4);
for the HFEGE, I=0.573 E„(from Ref. 51). In this
symmetry, the OS method reduces to the static approxi-
mation (dashed curve). (ESE results are from Ref. 9.).

Except very near the resonance energy, the dom-
inant contributions to the e-N, cross sections in
the SE approximation come from scattering in the
Z. , Z„, and, to a lesser extent, G„symmetries. "
In order to evaluate the OS, HFEGE, and OHFEGE
approximate treatments of exchange, we have com-
pared the sums of the total integrated cross sec-
tions" in the nonxesonpnE symmetries for these
three models with the corresponding ESE cross
sections. The results, which are graphed in Fig.
3, show the OS and HFEGE cross sections to be
too large at low scattering energies. As the ener-
gy increases, the HFEGE results come into better
agreement with their ESE counterparts, while the
OS cross sections remain too large. The OHFEGE
model consistently yields cross sections that are
in excellent agreement with those of the ESE cal-
culations (see also Ref. 54).

Eigenphase sums in these nonresonant symme-
tries for selected energies are presented in Table
II. These results are all converged to better than
0.05 rad. For each model, we also give the per-
centage differences between the approximate SE
5,„and the ESE result (from paper II). Notice
that the OHFEGE eigenphase sums are within -1%
of 5,„(ESE)except in the H„symmetry, winch
contributes very little to the scattering except at
higher energies. The error introduced by using
the OS method increases with energy. This is il-
lustrated in Fig. 4, where OS, HFEGE, and
OHFEGE Z, eigenphase sums are compared with
5,„(ESE),the latter being indicated by crosses.

In an earlier study of e-H, scattering, "an ex-
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nance lies below the ESE energy.

ln general, this sort of adjustment of th
exchan ge potentials is not a practical

n o e model-

since ESE results
c ica procedure,

For the e-N s
results will not always be avail blia e.
, system, the sensitivity of the r

particular interest because one
cannot ortho onalig 'ze in the resonant symmetry.

Energy (By} OS HFEGE OHFEG'E ESEb

0.01 2.839 2.826 2.875
~u
II -0.0003 -0.0014 -0.0024

2.874
3.119

0.10

1.50

1.00

Z~ 2.209
2.904

-0.141

Z,
~u 2.198

-0.676

0.639Z„1.698
II„-1.010

2.204
2.901

-0.104

1.411
2.260

-0.506

0.953
1.865

-0.747

2.322
2.942

-0.090

1.519
2.339

-0.487

1.031
1.926

-0.737

2.3'll
2.937

-0.075
(

1.524
2.316

-0.455

l.043
1.908

-0.694

' Additional scattering calculations were carried out at
, and 0.75 By. See Figs. 3 and 4.

From Bef. 10.
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rad. } at this ene's energy is obtained with

See also Fig. 2.
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C. e-Co collisions

The CO molecule is isoelectronic with N„and e—
N, and e-CO scattering share many common fea-
tures. For example, a II shape resonance is found
in e-CO collisions. " In ESE calculations, ""this
resonance occurs at 3.54 eV with a width of 2.07
eV.

However, CO is a polar molecule, with a, per-
manent dipole moment p, = 0.267 Debye (D). This
fact has a pronounced effect on the behavior of
electrons in collisions with CO targets. " A sec-
ond important difference between N, and CO is
that the electronic configuration of the latter in-
cludes a bound MO in the resonant electron-mole-
cule symmetry (II). Therefore, the effects of
orthogonalization, in the OS and OHFEGE methods,
can be studied in the sensitive resonant symme-
try.

Eigenphase sums in the II symmetry are graphed
in Fig. 6; selected results are presented in Table
III. The HFEGE model does produce a II-shape
resonance, but, like the e-N, II, HFEGE reso-
nance, it occurs at too la.rge an energy. When the
OHFEGE method is used, the resonance is closer
to the ESE resonance, but is still about 0.75 eV

2.0

TABLE'III. Selected~ eigenphase sums (modulo 7t) for
e-CO scattering in the static-exchange approximation.
The models of exchange used are described in Sec. II.

Energy (Ry) OS HFEGE OHFEGE ESE

0.25

0.49

0.64

1.865
-0.138

Z 1.029
-0.344

Z 0.146
-0.455
-0.268

II -0.365

1.560
-0.094

0.750
—0.075

0.004
1.382

-0.323
1.618

1.993
-0.060

1.259
0.019
0.505
1.471
0.157
1.660

1.284

0.542

0.193

Additional scattering calculations were carried out at
k =0.16, 0.30, 0.36, and 0.40 Ry. See Figs. 6 and 7.

From Ref. 10.
See Fig. 6 for comparison to ESE results.

too high. The OS procedure does not produce a
resonance in the II symmetry in the energy range
below 10.0 eV.

To calculate cross sections for comparison with
experimental data, one must go beyond the SE ap-
proximation and take account of induced polariza. —

tion effects. ' In earlier studies" of e-CO colli-
sions in which orthogonalization is used to approx-
irnate exchange effects, the polarization interac-
tion is included approximately by adding to the
static potential a polarization potential of the form

V,.;(T) =
(

— ', — ',)', (ssse)) G(s); (8)

l.5—

4P

O

CL

Clo 0.5—
4J

00—

-05
0

OS

I I I I I

O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Energy ( Ry )

FIG. 6. Static-exchange eigenphase sums for the
resonant II symmetry of e-CO scattering. The ESE
results, from Ref. 10, show a resonance at 3.54 eV.

where ep and e, are the spherical and nonspheri-
cal polarizabilities of the target molecule and 0 is
the azimuthal angle of the scattering electron re-
ferred to the internuclear axis. This semiempiri-
cal form includes a spherical cutoff function, which
is usually taken to be of the form C(r) =1
—expI —(~/x, )'], where ~, is an adjustable cutoff ra-
dius. For example, in his orthogonalized static-
exchange-polarization (OSP) calculation of e-CO
scattering Chandra" used r, =1.605ap to position
the II resonance at the experimentally determined
energy of 1.75 eV. This cutoff radius is well with-
in the cha. rge cloud of the molecule. " The results
of Fig. 6 suggest that the "polarization potential"
in this study is actually attempting to include long-
range polarization effects a:zd mock the attractive
short-range effect of exchange. It is by no means
clear that a potential of the form of (8) is suffi-
ciently flexible to do all this. Moreover, there is
the danger that such strong polarization potentials
will completely dominate the exchange effects that
the OS procedure does incorporate. This prob-
lem may explain the difficulty Gianturco and
Thompson" found in trying to choose a cutoff ra-
dius for an OSP calculation of e-CH, scattering.
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Of course, the same problem obtains in the e-N,
system. For example, Chandra and Temkin, "in
their OSP study using the OS method, used x,
=1.592a, to position the II, resonance at 2.3 eV.
(By way of contrast, using the HFEGE potential in
an earlier OSP calculation, "we required x,
=2.341a,.) However, the significance of the e-CO
case is that here it is possible to orthogonalize.
The results of Fig. 6 indicate that this procedure
alone is simply an inadequate approximation to
the exchange interaction.

The other important e-CO symmetry in the en-
ergy range of interest here is the Z symmetry.
The eigenphase sums in Fig. 7 and Table II show
that in this case the OS approximation is superior
to the HFEGE model. The OHFEGE procedure
gives results that agree with the ESE eigenphase
sums to within the accuracy of the two calcula-
tions.

D. Electron collisions with other polar molecules

CO is somewhat unusual among polar mole-
cules because of its small dipole moment. " Elec-
tron scattering from LiH (g=6.0 D), HC1 (p, =1.198
D), and LiF (p, = 6.58 D) have also been studied

I.8—

l.4—

l.2—0

using approximate treatments of exchange. ""
We shall consider these cases briefly in this sec-
tion in order to widen the range of systems em-
braced by the present study.

The role of exchange in e-I iF scattering has
been discussed by Collins and Norcross" and
Collins et al." The latter paper is particularly
germane to our concerns here. In it, the authors
show that spurious Z- and II-shape resonances ap-
pear in approximate SE calculations in which the
HFEGE potential is used. These resonances dis-
appear when orthogonality conditions are imposed
on the HFEGE model.

A similar phenomenon occurs in e-I iH scatter-
ing in the 5 symmetry. Eigenphase sums for this
symmetry calculated using the S, OS, HFEGE, and
OHFEGE models are given in Table IV 2nd com-
pared with 5,„(ESE)in Fig. 8. Collins et al."
have suggested, as one possible explanation for the
appearance of this spurious feature, that the
HFEGE potential, when combined with the static
contribution, produces an approximate SE poten-
tial which is too weak to bind the Z I iH- state,
leaving it in the continuum and producing a spuri-
ous shape resonance. This bogus feature vanishes
in the OHFEGE model, which produces results in
excellent agreement with those of the ESE cal-
culation. The eigenphase sums determined with
the OS model are uniformly too small. -

It is interesting to note that the OHFEGE method
is more successful for the e-LiH system (Fig. 8)
than for e-H, (Fig. 1). This may be surprising,
since in both cases a FEG approximation is used
to represent a target with few electrons. The in-
adequacy of this approximation for such mole-
cules, which is apparent in the e-H, results dis-
cussed in Sec. IIIA, may be obscured in e-I iH

l.0—
CA

0.8—
lQ

O

06—
lD

4l

TABLE IV. Selected' static-exchange eigenphase sums
(modulo ~) for e-LiH scattering. The models of exchange
used are described in Sec. II.

OS HFEGE OHFEGE ESE

0.2—

0.0—
OHFEGE

-0.4 l l

0.0 O. I 0.2

OS

HF(GE

0.5 0.4 0.5 0.6 0.7 0.8 0.9
energy ( R y )

FIG. 7. Eigenphase sums for the P symmetry of the
e-CO system. The crosses are ESE results from Bef.
10.

0.01

0.10

0.25

1.00

4.829
II c

Z 3.108
rr

2.209
0

0.973
rr

2.378
0.439
1.817
0.575
2.067
0.732
1.488
1.143

5.093

3.380

2.541

1.560

5.107
0.454
3.400
0.674
2.604
0.896
1.562
1.300

Additional scattering calculations were carried out
at & =0.04, 0.16, 0.49, and 0.81 By. See Figs. 8 and 9.

From Ref. 10' It is not possible to orthogonalize in the ~ symmetry.
See Sec. IIID.
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5.0
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CL
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4J

e —LIH X

An interesting contrast to the polar systems
considered thus far is afforded by e-HCl, which
has been studied by Collins et al." Eigenphase
sums in the Z symmetry for this system are given
in Fig. 10, As Fig. 7 showed for e-LiH scatter-
ing, this graph illustrates the inability of the OS
method to accurately mock exchange effects. In
contrast to the other polar systems studied, the
e-HCl nonoxthogonalized HFEGE eigenphase sums
are in very good agreement with those determined
from the ESE calculations. In this case, then, the
model-exchange potential alone seems to be a good
approximation to exchange, and, as noted by Col-
lins et al. ,

""imposition of orthogonalization in
addition to the local exchange potential leads to a
small improvement in the results. " (Riley and
Truhlar" found a similar result for electron-atom
collisions. )

l.o— IV. CONCLUSIONS

I

2.0
0.0 I I

0.0 ~.0 4.o 5.o
E (eV)

'FIG. 8. Static-exchange eigenphase sums for e-LiH
scattering in the Z symmetry. The OS, HFEGE, and
OHFEGE results are compared to those of an ESE cal-
culation (+) and of a calculation in which a purely static
potential was used (8) (from Ref. &7).

scattering by the strong long-range dipolar (~ ')
potential.

We have calculated 0 eigenphase sums for e-
LiH using the HFEGE model; these results appear
in Fig. 9 and Table IV. Since the electronic con-
figuration of the ground state of LiH is 1o'2o', it
is not possible to orthogonalize in the II symme-
try.

The approximate treatments of exchange that
have been introduced thus far are all, to some de-
gree, ad hot.". Consequently, systematic studies of
their accuracy for a diverse range of electron-
molecule systems are needed if an assessment of
their relative merits is to be made. Such an as-
sessment can provide the foundation for the appli-
cation of these methods to more complex systems.

We have considered three approximate ways to
handle the exchange interaction: the orthogona-
lized-static (OS), free-electron-gas (HFEGE), and
orthogonalized-free-electron-gas (OHFEGE)
methods. The results of the approximate static-

3.0

OHFEGE

HFEGE

l.6
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2.0—
O
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I.O
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0.8I
a 0.6
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LLI /
/
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/
/
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Energy ( R y)

FIG. 9. Eigenphase sums from ESE and HFEGE cal-
culations of e-LiH scattering in the II symmetry.

I

4.0 5.0

I
(

I
o.o I

0.0 I.O 2.0 3.0
Energy (eV)

FIG. 10. Z eigenphase sums for e-HCL scattering in
the static (S), ESE(t), and model-exchange approxima-
tions (from Ref. 18).
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exchange calculations discussed above for e-H„
e-N„e-CO, e-LiH, e-LiF, and e-HCl scattering
span a wide variety of "small-diatomic" systems
and provide a basis for some conclusions regard-
ing these models.

In comparison with ESE results, we find the OS
method to be consistently in error, especially at
scattering energies above a few tenths of a Ryd-
berg. In addition to the well-known inability of the
OS procedure to incorporate any exchange effects
in resonant symmetries for systems such as e-N„
where there is no bound MO for orthogonalization,
this method also fails to produce a resonance in
e-CO scattering, where orthogonalization is pos-
sible in the resonance II symmetry. The present
results suggest that orthogonalization alone is an
insufficient representation of the exchange inter-
action for electron-molecule collisions.

The HFEGE model potential is more successful,
producing resonances in the proper symmetries
and generally yielding results in qualitative agree-
ment with those of ESE calculations. In some
cases, like the Z symmetry in e-HC1 scattering,
the HFEGE results are excellent.

However, in every case studied, the OHFEGE
method gave superior results to any other proce-
dure. In most cases, the agreement between the
OHFEGE and ESE eigenphase sums is within the
numerical accuracy of the calculations (typically
-2/0). Examination of 6,„ in the various models
reveals that orthogonalization acts like a strength-
ening of the approximate static-HFEGE potential.

There are instances in which even the OHFEGE
method is unable to reproduce the ESE results.
Thus, in resonant symmetries (e.g. , II for e-CO),
which are very sensitive to the short-range part
of the electron-molecule interaction, this method
does not produce the correct (ESE) resonance en-
ergy or width. In some "high-order" nonresonant
symmetries (e.g. , II„ for e-N2), the OHFEGE is in-
adequate. This may have little effect on low-en-
ergy cross sections, which are largely determined
by lower-symmetry contributions (cf. Fig. 3). Fi-
nally, if it is impossible to orthogonalize in an im-
portant resonant (e.g. , II, in e-N2) or nonresonant
(e.g. , II in e-LiH) symmetry, the OHFEGE method

reduces to the HFEGE model potential.
Compared to an exact treatment of exchange, the

OHFEGE method is not particularly difficult to
implement. (In this regard, we should note that
calculation of the HFEGE potential is straightfor-
ward and very efficient" once the target charge
density has been calculated. This quantity is
needed anyway for determination of the static po-
tential. ) Scattering calculations using the
OHFEGE procedure required roughly an order-of-
magnitude less computer time" than our (itera-
tive) ESE calculations. In many cases, fewer chan-
nels mere required for convergence in the
OHFEGE procedure than when the HFEGE poten-
tial alone was used. "

A logical extension of the present study would
be the consideration of the HFEGE and OHFEGE
methods for low-energy electron collisions with
polyatomic molecules, such as CO, and H,O, for
which ESE results are not currently available. Of
course, the results of this research in no way pre-
clude the possibility that some other approximate
treatment of exchange may be superior to those
considered here. We hope that this paper mill
provide a foundation for this line of inquiry. .
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