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Self-phase modulation in long-geometry optical waveguides
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We calculate the effect of self-phase modulation of a pulse propagating in a long-geometry waveguide. Our
calculations go beyond the usual theory, which does not take into account the envelope time variation in the
nonlinear term of the wave equation. We show that for long waveguides with relatively small group-velocity
dispersion but finite nonlinear coefficient #,, the pulse will develop a sizable asymmetric frequency and temporal

spectra.

Self-phase modulation was first observed by
Shimuzu' when a modulated spectrum appeared
after self-focusing had taken place in a liquid-
filled cell and was explained as phase modulation
due to the intensity-dependent refractive index.

It has since been observed? in the absence of self-
focusing or self-trapping and at low powers by
using liquid-filled glass fibers.

Recently, some measurements of frequency
broadening of mode-locked laser pulses due to
self-phase modulation in single-mode silicacore
fibers have been reported.® A study of the de-
velopment of the broadened spectrum in these
results showed the output spectrum to be asym-
metric. In Ref. 3 it was assumed that an asym-
metric incoming pulse shape was responsible for
the observed asymmetric spectrum. The authors
were able to generate, for short samples, in their
computer calculations, an asymmetric spectrum
similar to the observed one. However, for long
samples the computed spectra and the observed
one are in discrepancy. We believe that corrections
to the commonly used theory of self-phase modula-
tion may be responsible for this discrepancy. In
this paper we intend to address ourselves to this
point.

We present calculations for the frequency
broadening due to self-phase modulation which
show an asymmetry in the output spectrum for
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symmetric initial pulse. Comparison with results
of Ref. 3 is difficult to make at present, firstly
due to large asymmetry of the incoming pulse and
secondly due to dispersion effects which will be
discussed later in this paper. We thus limit our-
selves to the development of the theory and deter-
mine the realistic conditions under which com-
parison between theory and observation is easy to
make.

We limit ourselves to a one-dimensional wave
propagation of an optical pulse propagating in a
glass characterised by a nonlinear refractive index
n. The electric field E(z, f) is given by the wave
equation®-®
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where n, represents the nonlinear part of the
refractive index

n(w,E)=n(w)+n, |E|?,

with n,=n(w,), where w, is the frequency of the
electric field and _ﬁL is the linear displacement.
We write the electric field in terms of a slowly
varying envelope
E(z,t)=2A(z,t) expi(gz — wyt), 2)

where ¢ is the propagation constant and find® that
A(z,t) obeys the equation
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In Eq. (3) we retain only the first and second time derivatives of A. Here we make the usual assumption
that our dielectric is weakly dispersive. This is an extremely good approximation for SiO, glasses for our
operating frequency which is much smaller than the electronic resonance frequency and much larger than

the ionic resonance frequency of SiO,.

To first order we take q =&, as for the plane-wave situation, and identify & to be the reciprocal of the
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group velocity v,.

Oat

Thus we are left with the following equation:
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In treating self-phase modulation one usually replaces the right-hand side of Eq. (5) by —2(n,/n,)k2|A|%A
as the dominant contribution, assuming that w,7> 1. Here T represents the width of the pulse. How-

ever, as we shall see shortly, this assumption is correct only for short enough samples.

For long sam-

ples, as for the case of self-phase modulation in optical waveguides, we have to consider the corrections
arising from the time derivatives of |A|24. We will treat this effect perturbatively and thus will retain
only the first-order term, i.e., the first derivative of |A|24. Equation (5) is therefore approximated by
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We now make a coordinate transformation to a moving coordinate system defined by

t=z, T=t-2/v,.

Equation (6) transforms to yield
9 . 9
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To further simplify Eq. (7) we realized that without
the dispersion (k) and the nonlinearity (»,) the solu-
tionfor A is given by an arbitrary functionof 7, say,
F((z - v,t)/Z), where Z is the length of the pulse.

It then becomes obvious that while 8/9¢ and 258/
97 are of the order of z1, the term k&, is prop-
ortional to A;!. We can now use the slowly changing
envelope approximation which required z to be
much larger than A, so that (8/8& - 2k}8/97) A is
neglected relative to kA, i.e., the effects of back-
scattered radiation are neglected. This implies
that the changes in A per wavelength are extremely
small. This condition is compatible with our
suggested experimental situation, where changes
in A are only observed after the pulse propagates
hundreds of meters in the guide. We next define
the constants
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In order to solve the above equation, we separate
the real and imaginary parts of A by writing

A=pet? (10)

and find that  and 6 are the solutions of the cou-
pled equations
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It was not found possible to solve Eqs. (11) exactly
and a perturbative method was utilized to obtain
approximate expressions for ¥ and 6, exact in

a=-%kl, A= r2 koy Y= 20, (8) A but in power series in @ and y. Let
no c
and obtain our final equation 0=0,+7y0,+ab +--- (12a)
aaaé +aaaé +XA|%A+iy o= (|A|74)=0. Y=dor vt ap b (12b)
(9)J Substituting in the Eqs. (11), we:obtain
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Comparing successively increasing powers of y and @ in Eqgs. (13) one gets

Y= z/)o("') ’
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Combining the above results with Eqs. (10) and (12), the solution for A(£, 7) is obtained as

2
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where ¥, = (7).

Eq. (14) represents the solution to Eq. (9), correct to the lowest order in y and @. The function ¥, dep-
ends on 7 only and represents the initial amplitude of A, i.e., when the pulse enters the waveguide. For
simplicity, we take the initial pulse to be a Gaussian wave form represented by

Po=A,exp (-7%/T?). » (15)
Substituting Eq. (15) in Eq. (14), the expression for A(£, 7) takes the form
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Using Eq. (2), the expression for the electric field can be rewritten as

E(E, w) =gt kot ~(wot/vg)) J-dT A(E,T)ei(w‘wo)‘r’

where A(¢,7) is given by Eq. (16). It is apparent that most of the contribution to the frequency spectrum
in the expression for the electric field comes from the self-phase modulation term in Eq. (16). Thus,
except for a factor in the amplitude, the expression for E(£, w) with the frequency spread is given by

E(, w)=2A0e“"0"“"0“"g’)deT , @

where
F=expi{(w— Wo)T + ENAZ e 27/ 7'2’[1 8£y1' A2/ TH 4 52 (1 12 )A2 ~ats2/ TZ] 2;2(1 (1— 2;::)}
(18)

In the above expansion, terms proportional to a arise from the dispersion effects and are seen to give
rise to a symmetric modulation of the phase. The term proportional to y, however, is proportional to
7 and thus results in asymmetric phase modulation.

To analyze the expression in Eq. (18) we note that in our problem we have two fundamental lengths, the
nonlinear length £,=(AA2)™" and the dispersive length &, =72/ ] a | , and also the dimensionless parameter
woI'. We rewrite Eq. (18) in terms of these parameters as
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Here L,=w,T&,/16 and L,=(¢,£,)*/2 The effect
of the linear dispersion can be omitted in many
cases since it is easy to make £, > £,. The cor-
rection terms depend on L, and L,. The L, term
is the correction arising from the finite duration
of the pulse and is the only term that contributes
in our theory to asymmetric spectrum. To ob-
serve the asymmetric effects we want the L, term
to be the dominant correction. We thus need L,

to be larger than L,. We found it not to be the case

in the situation of the experiment in Ref. 3, which
makes comparison between theory and experiment
rather difficult at present.

We note that the ratio p=L,/L, should be,

. ideally, smaller than unity for our purposes.. Here

1 c2k. k" 1/2
P= ‘iF( 2”o”on)
is independent of T and becomes small either at
high beam intensity or for vanishingly small dis-
persion, i.e., kY ~0.

It must be remembered that the expansion ob-
tained above is a perturbation expansion and is
expected to be valid only when the parameters of
the problem are appropriately chosen to ensure
that the higher-order terms are successively
smaller than the leading terms. Also, in order
that the asymmetric effects are measurable, the
dispersion effects should be small enough so that
the shape of the pulse is not greatly distorted.

The dispersion effects can be reduced by op-
erating at a frequency where the dispersion is
negligible® as has been recently demonstrated.
Thus, in Eq. (17), the integrand reduces to

«
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FIG. 1. | E(¢,w)| is given in arbitrary units, as a
function of (w—wy)T. The dashed curve represents the
spectrum obtained by dropping the term proportional to
v in Eq. (19) while the solid curve represents the actual
spectrum using the parameters given in the text.
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In order to make an estimate of the asymmetric
effect, we calculate the value of the coefficient
Bgy‘rAs/Tz, using values that can be attained in the
laboratory. Taking £=1km, 7~T=5 ps, n,

=1.4 x10' esu, and 4,=500 S V/cm,” we cal-
culate 8£yT A2/T%~0.25. Thus the effect of the
asymmetric term compared to 1 is about 259 for
the parameters chosen above and should be ex-
perimentally measurable.

In Fig. 1 we show a plot of |E(£, w)| as a func-
tion of (w - w,)T around w=w,, for the above pa-
rameters. For comparison purposes, the sym-
metric spectrum, obtained by dropping the y-
dependent term in Eq. (19), is also plotted. The
effect of the ¥ term in causing asymmetry in the
spectrum is quite evident.

We point out, finally, that not only is the spec-
trum defined by |E(£, w)|? asymmetrical, but the
intensity spectrum given by

I(5, w)=FT |E(£, )| *=FT |A(£,2) |2

is also asymmetric. (FT stands for the Fourier
transform.) In the case for which a=0, we ob-
tain for the intensity spectrum

1(5, )= FI‘[Af,e'z"z/ ,2)(1 L2 gz e T,)]

(20)

. The asymmetrical part of the integrand is prop-

ortional to ¥ in Eq. (20) and contributes to the
asymmetrical intensity spectrum.

In conclusion, we have shown that self-phase
modulation in optical waveguides, under realistic
conditions, will result in asymmetrical power and
intensity spectra.
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