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Self-phase modulation in long-geometry optical waveguides
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We calculate the effect of self-phase modulation of a pulse propagating in a long-geometry waveguide. Our
calculations go beyond the usual theory, which does not take into account the envelope time variation in the
nonlinear term of the wave equation. We show that for long waveguides with relatively small group-velocity
dispersion but finite nonlinear coefficient n „the pulse will develop a sizable asymmetric frequency and temporal
spectra.

Self-phase modulation was first observed by
Shimuzu' when a modulated spectrum appeared
after self-focusing had taken place in a liquid-
filled cell and was explained as phase modulation
due to the intensity-dependent refractive index.
It has since been observed' in the absence of self-
focusing or self-trapping and at low powers by
using liquid-filled glass fibers.

Recently, some measurements of frequency
broadening of mode-locked laser pulses due to
self-phase modulation in single-mode silicacore
fibers have been reported. ' A study of the de-
velopment of the broadened spectrum in these
results showed the output spectrum to be asym-
metric. In Ref. 3 it was assumed that an asym-
metric incoming. pulse shape was responsible for
the observed asymmetric spectrum. The authors
were able to generate, for short samples, in their
computer calculations, an asymmetric spectrum
similar to the observed one. However, for long
samples the computed spectra and the observed
one are in discrepancy. We believe that corrections
to the commonly used theory of self-phase modula-
tion may be responsible for this discrepancy. In
this paper we intend to address ourselves to this
point.

We present calculations for the- frequency
broadening due to self-phase modulation which
show an asymmetry in the output spectrum for

where n2 represents the nonlinear part of the
refractive index

n((o, E) =n((o)+n, (E)',
with n, =n(~0), where v, is the frequency of the
electric field and 5~ is the linear displacement.

We write the electric field in terms of a slowly
varying envelope

E(z, t) = eA(z, t) expi(qz —~, t), (2)

where q is the propagation constant and find' that
A(z, t) obeys the equation

symmetric initial pulse. Comparison with results
of Ref. 3 is difficult to make at present, firstly
due to large asymmetry of the incoming pulse and
secondly due to dispersion effects which will be
discussed later in this paper. We thus limit our-
selves to the development of the theory and deter-
mine the realistic conditions under which com-
parison between theory and observation is easy to
make.

We limit ourselves to a one-dimensional wave
propagation of an optical pulse propagating in a
glass characterised by a nonlinear refractive index
n. The electric field E(z, f) is given by the wave
equation"

O'E I 8'D 2n, ago 9'
2 2 Bt2' 2 gt2

, +2iq —-q'+ 'k,'+2ik, k,' —-(k,"+k,k,"),
~

A(z, i)= ', ' e'"o', (~A~'Ae '"o'),

ek 8'k
(4)

Qp 4dp

In Eq. (2) we retain only the first and second time derivatives of A. Here we make the usual assumption
that our dielectric is weakly dispersive. This is an extremely good approximation for SiO, glasses for our
operating frequency which is much smaller than the electronic resonance frequency and much larger than
the ionic resonance frequency of SiO,.

To first order we take q=kp as for the plane-wave situation, and identify kp to be the reciprocal of the

l266 1981 The American Physical Society



SELF-PHASE MODULATION .IN LONG-GEOMKTR Y OPTICAL. . . 1267

group velocity v . Thus we are left with the following equation:

82

~;, +2ik, , +—2ik,k;, -(k +k, k;) „, ,[A(z, f)= ";"' e'"", ([A['Ae-'""). (5)

In treating self-phase modulation one usually replaces the right-hand side of Eq. (5) by -2(n, /no)kQA
~

'A

as the dominant contribution, assuming that vpT»1. Here T represents the width of the pulse. How-
ever, as we shall see shortly, this assumption is correct only for short enough samples. For long sam-
ples, as for the case of self-phase modulation in optical waveguides, we have to consider the corrections
arising from the time derivatives of ~A~ 'A. We will treat this effect perturbatively and thus will retain
only the first-order term, i.e., the first derivative of ~A (

'A. Equation (5) is therefore approximated by

2 k, 2ik, k, —, —(k +k, k;), ,&IA(, t)=- ' k', (A('A- 'k, ()AI'A).

We now make a coordinate transformation to a moving coordinate system defined by

$=z, r=t-z/v .
Equation (5) transforms to yield

{
P 8 8 Bz

To further simplify Eq. (7)we realized that without
the dispersion (k,")and the nonlinearity (n, ) the solu-
tion for A. is given by an arbitrary function'of &, say,
E((z —v~t)/z), where z is the length of the pulse.
It then becomes obvious that while 8/8$ and k,'8/
87' are of the order of g, the term kp is prop-
ortional to X,'. We can now use the slowly changing
envelope approximation which required g to be
much larger than Xo so that (8/8$ —2kos/Bv) A is
neglected relative to kP, i.e., the effects of back-
scattered radiation are neglected. This implies
that the changes in A per wavelength are extremely
small. This condition is compatible with our
suggested experimental situation, where changes
in A are only observed after the pulse propagates
hundreds of meters in the guide. We next define
the constants

O. =--k" X= ~ k y= (8)
Sp C

and obtain our final equation
.. 8A 8'A, . 8
i + n 2

—+ X (A )
'A+iy —({A)

2A) =0.
ay s~' aw

and find that g and e are the solutions of the cou-
pled equations

&8 =
8

— &~ 8 ~
+'&'a

se 8'y fee't ', eg
(11a)

and

ay ey aa 8'a, sy
=2m +ng z +3yg'

8v' 8v' . 8T 8y
(11b)

It was not found possible to solve Eqs. (11) exactly
and a perturbative method was utilized to obtain
approximate expressions for g and 8, exact in
X but in power series in e and y. Let

8=8 +y8 +Q.e'+ ~ ~ ~,

4=4.+r4&+&0 +" ~

Substituting in the Eqs. (11), we:obtain

(12a)

(12b)

In order to solve the above equation, we separate
the real and imaginary parts of A by writing

(10)

«.+y&+ &')
I,
e'+r, ' +~, I=et „:-n&,

l 8
'-I +~(t'.+3rt'. g, +3~0'.e) rp'. „'-

I

(13a)

8
(4.+rg, + ~4')

Comparing successively increasing powers of y and a in Eqs. (13) one gets

(13b)
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eo= ~&&o ~

238 0

e, ] 4o 2 ~2)2(2 s
~

4o
~ g

~o
6~2 s 0 ( sT) 0 sTR

Combining the above results with Eqs. (10) and (12), the solution for A(g, ~) is obtained as

A(g, r)=I(, —SCyrg '- —('warl, Sf —'
[ +0,

0 Isa csl

(i4)

where g, = P,(r).
Eq. (14) represents the solution to Eq. (9), correct to the lowest order in y and o.. The function g, dep-

ends on r only and represents the initial amplitude of A. , i.e., when the pulse enters the waveguide. For
simplicity, we take the initial pulse to be a Gaussian wave form represented by

q, =A, exp ( r'/T') .-
Substituting Eq. (15) in Eq. (14), the expression for A($, r) takes the form

(is)

2~'z
A(~ )=A i '~'A' ''""' ' 1 8

'
o + T2 oe + T2

—
T2 )I

8" A'
&&expi ~,Xe 2(&2/ Z2~ & +p 0 2~+/ +2~ + IwQ

& & & 7 Igp -2(&2/ 22)'

(16)

Using Eq. (2), the expression for the electric field can be rewritten as

g(t. , ~) =ee' Woe 't "Of "g ~ dT A(g, r)e'(" "0

where A($, v) is given by Eq. (16). It is apparent that most of the contribution to the frequency spectrum
in the expression for the electric field comes from the self-phase modulation term ih Eq. (16). Thus,
except for a factor in the amplitude, the expression for E($, &o) with the frequency spread is given by

E (g, (o) = &A, e"'o' '"o""s ) t I'dr

where

Xn ( 7' 2 "a ~ 2r'
&-expi ~ ~ + yg2e-2« / +& y

-~~ g -2« /~ &+ 4 2 j I y2 ~2 -2(&2/T2)

(18)

In the above expansion, terms proportional to n arise from the dispersion effects and are seen to give
rise to a symmetric modulation of the phase. 'The term proportional to y, however, is proportional to
7' and thus results in asymmetric phase modulation.

To analyze the expression in Eq. (18) we note that in our problem we have two fundamental lengths, the
nonlinear length $0= (XA,') ' and the dispersive length (, = 7'/

~
c. ~, and also the dimensionless parameter

aroT. We rewrite Eq. (18) in terms of these parameters as
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T4112z'4& z/rz~ 1+ —8
3 l, I 2)

z&zm/r'&+ —
l T i

(18)
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