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The long-wavelength, backward mode of the free-electron laser is shown theoretically to be absolutely unstable for
sufficient system length and applied magnetic-field strength. Finite-length one-dimensional particle simulations also
show the mode to be absolutely unstable when the theoretical criteria are satisfied. The broad parameter regime in
which a free-electron laser can produce the desired forward-propagating short-wavelength radiation, yet be stable to

the backward mode, is calculated.

1. INTRODUCTION AND SUMMARY

In the free-electron laser, coherent electromag-
netic radiation is efficiently produced by passing
a relativistic electron beam through a static rip-
pled magnetic field. The rippled field (wave num-
ber k,) couples the plasma beam and electromag-
netic modes, causing an instability which produces
forward propagating (in the beam direction), short-
wavelength electromagnetic radiation at & ~2y%,
where v=[1~(,/c)?]™/2and v, is the beam veloc-
ity. The free-electron laser, which is easily tun-
able from varying the beam ¥, can produce radia-
tion from microwave to visible wavelength and has
immediate applications in many areas of science
and technology. It is under experimental study at
several laboratories including Stanford,! TRW,?
NRL-Columbia,® and many experiments are in the
planning stages.

In addition to the short-wavelength forward
mode, there is also a long-wavelength mode (&
=~ _1p, for ¥ > 1) which propagates backward, i.e.,
the group velocity v.m=dw/dk is opposite -the beam
velocity. Unlike the short-wavelength mode which
is convective in nature, i.e., grows as it propa-
gates along the beam, the backward wave can be
absolutely unstable due to an automatic feedback
between the radiation and the beam. In this paper,
the criteria for this mode to absolutely unstable
are derived. The instability occurs for
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provided v, v, <0 where L is the system length,
T, is the infinite system growth rate
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where w,, and &, are the frequency and wave
number of the backward mode, w; =4mne?/m and
w,=eB/mc, where m is the electron rest mass
and B is the strength of the ripple field. Thus the
backward mode is absolutely unstable only if the
system is long enough or the rippled field strong
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enough. Results are also presented from a one-
dimensional finite-length relativistic computer
simulations which also show the mode to be abso-
lutely unstable provided Eq. (1) is satisfied. This
absolute instability has also been observed experi-
mentally.*

If the backward mode is absolutely unstable, it
will grow to such a size that the beam is disrupted
and the laser cannot produce the desired short-
wavelength radiation. Thus it is important in the
design of new experiments, as well as in the inter-
pretation of existing experiments, to understand
when this instability occurs. In this paper, we al-
so present the broad parameter regime (e.g., v>3
for ck,> 2.5w,e)' where a system can be designed
to be long enough to produce the desired short-
wavelength radiation, but be short enough to be
stable to the long-wavelength backward mode. For
real experimental devices, multidimensional and
geometric effects can influence the conditions but
will not eliminate the necessity to consider this
mode. Finite-length 1D particle simulations which
show the short-wavelength mode growing convec-
tively to saturation are presented in a subsequent
paper.®

The organization of this paper is as follows. In
Sec. II, the criteria for the backward mode to be
absolutely unstable are derived analytically. In
Sec. III, results from a one-dimensional particle
simulation code are presented which show the
backward mode to be absolutely unstable when the
theoretical criteria on length and/or pump strength
are satisfied. In Sec. IV, we calculate the param-
eter regime in which a free-electron laser can be
operated so that the forward short-wavelength ra-
diation is produced and yet the system is not un-
stable to the backward mode. The conclusion of
this work is discussed in Sec. V.

II. THEORETICAL CRITERIA

The criteria for the absolute instability of the
backward mode, Eq. (1), are derived from the
coupled equations describing a free-electron laser
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where A, =~(B/k,)(5 coskyx +% sink,x) is the rip-
pled field vector potential, Ou(x,?) is the perturbed
electron density, and 0A, is the perturbed magnet-
ic vector potential, where L refers to perpendicu-
lar to the beam direction (V,=v,%). Fourier ana-
lyzing Eq. (3) in space and time yields the usual
dispersion relation for a free-electron laser for
an infinite system

2 2 2
D, (@, k)D (@, k — ko) =II:_?, -“’5;% , @)
where D, (w, k)= (0 - kv,)? - w2,/7° is the usual dis-
persion relation for the electrostatic plasma beam
modes, and D, (w,k) =w? - c%? - w3 /7 is the usual
dispersion relation for electromagnetic modes. To
lowest order in the coupling constant, solutions to
Eq. (4) occur when

D,(w,k)=0=D,,(w,k -k, ()

which gives the matching conditions
kp=kon+ko, (6)

where w,,%, is a solution to the uncoupled plasma
beam modes dispersion relation D, (w,, %,) =0 and,
similarly, D (w..,%,.)=0. Figure 1 plots the so-
lutions to Eq. (5). The two unstable solutions to
the coupled dispersion relation occur approxi-
mately at the two intersections, corresponding to
the matching conditions, Eq. (16). For y>1, the
short-wavelength solutions occurs at %, =k,@v,/
¢) -v,/c). From Fig. 1, it can be seen that for
this solution (2>%g), both the plasma mode w,(k)
and the electromagnetic mode w, (k) propagate in
the same direction (dw/dk is positive for both).
However, for the long-wavelength solution [%,,
=—ko(v,/c)(1 +v,/c)™* <k, for ¥> 1], the group
velocity of the electromagnetic mode is negative
and this propagates in the opposite direction from
the plasma mode as can be seen in Fig. 1. The in-
finite system growth rate I, defined in Eq. (3),

is calculated by iterating around the zero-order
solutions to Eqs. (5) and (6). To include the effects
of finite system length on the free-electron laser,
Egs. (3) are expanded about the solutions to Egs.
(5) and (6) allowing for a slow variation of the
mode in space and in time to allow for both con-
vective and absolute instabilities:

on(x,t)=N(x,t) exp[i(k,x — wy)] +c.c.,
0K, (x,1) =A(x, 2) explilhynt = wout)]+ c.c. ,

w,:wem,

)

where %,, k., w,, w,, are again the solutions to

Egs. (5) and (6) and c.c. stands for complex conju-
gate. Substituting Eqs. (7) in Eq. (3), multiplying
by exp[-i(k,x — w,)] and averaging over the fast
time and space scales of the zero-order solution®
yields
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where A“=A ~iA, and v, =c%,,/w,, is the group
velocity of the electromagnetic mode and v, is the
group velocity of the plasma beam modes. These
can be put in the form

(E% sai)a =F,a,, )

where I'j(k) is the infinite medium growth rate
[Eq. ()], a,=N and

: 2
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Following Ref. 7, finite effects are included by re-
placing I', with I'(x) where

0, x<0
I(x)= T,, 0<x<L (10)
0, x>L

where L is the system length. Laplace transform-
ing Eq. (9), defining

w=ka

o

Ko -, "

FIG. 1. Graphic solutmn to the coupled dlspersmn re-
lation, Egs. (4) and (5), w em =c 2(k — Ieo)2 +w,,e /v and
(wp — kv,,)2 =w},/v%. Forward-propagating unstable solu-
tion is the intersection at short wavelengths, &2 >k,.
Backward-propagating unstable mode occurs at long-
wave-length (k <kg) intersection.
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=—2[6(x) - 8(x — L)] ¥, +Cyy. (11)
where C,  denotes the initial-value contribution.
This set of equations (11) has been analyzed by
Nishikawa and Liu (Ref. 7) with the results that for
absolute instability (Rep >0), a necessary condition
is that there be a “potential well” in Eq. (11), i.e.,
I'3/v v <0,which implies that v,v,,<0, e.g., the
phase velocities of the two coupled modes must be
directed oppositely. For most parameters (see
also Ref. 8) this condition is satisfied by the back-
ward-mode solution. The dispersion relation is
obtained from Eq. (11) by requiring the solutions
for x<0 and x> L to vanish at x=+% and requiring
the solution for 0 <x<L to be pure oscillatory in
space. Matching the solutions at the boundaries
and integrating Eq. (11) to obtain the jump condi-
tion on the derivations, yields the dispersion re-
lation

tanKL = -K/K,,

where
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We obtain the threshold condition for absolute-in-

Unstable

08|

l—lll_
o (2]
o
o
T

1

()
0.4 - Stable

FIG. 2. Critical length for absolute instability of the
backward mode, L., normalized to its asymptotic value
for y>>1L, (defined in text).

stability taking p =0 in Eq. (11) and obtain the cri-
tical length for instability (L > L, for instability)

L, =7 (|0 g0| }/ 2/ 4T . (13)

The critical length for instability L, is plotted in
Fig. 2, normalized to L, its asymptotic value for
Y>1, .

v ko\Y 2

1:c=-sz7/4(c—°) , (14)
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obtained from the solutions to Egs. (5) and (6) in

the limit w?>w32 /7.

1. SIMULATION RESULTS

One-dimensional finite-length relativistic parti-
cle simulations have been performed which verify
that the backward mode is absolutely unstable for
systems with sufficient length and ripple strength
such that L>L_ . The code, which is based on that
given in Ref. 9, is described in a separate paper.®
To illustrate the absolute nature of the instability,
Fig. 3 shows the longitudinal electric field, E_ at
times w,t=105, 115, and 125 from a simulation
with L =25.6 v, /wl,e =50/ky, ¥=1.9, w, = 0.828w,,,
and ck,=2.36w,,, The field E, grows exponentially
in time at each spatial location with the same
growth rate I'=0.076w,,, and thus the instability
is absolute and not convective. The unstable mode
had k,=0.7k,, in agreement with the backward-
mode solution to Eqs. (5) and (6). The theoretical

twpe=1o5
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FIG. 3. Longitudinal electric field vs x at time twp
=105, 115, and 125 showing the absolute nature of the
instability.
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critical length for instability for these parameters
is L =43.5/k,, yielding L=1.5L_ and thus the the-
ory predicts the system to be unstable.

To verify the theoretical threshold further, it is
~also necessary to show that a system is stable if
its length is less than the critical length. Indeed,
in another simulation with the same parameters
as above, but with half the system length (L =25/
k,), no instability was seen. Since the parameters
are the same, the critical length for instability is
still L =43.51%,. Thus our simulation verifies that
for systems with length less than the critical
length, no instability occurs.

Figure 4 plots the tranverse (E,) and longitudinal
(E,) fields at two instances of time to show that the
two modes are, in fact, propagating in opposite
directions. The parameters for this simulation
were ko Ax=0.098, L =1024Ax=100.4/%,, y=1.6,
w,=0.6w,,, and ck,/w,,=2.55. From Fig. 4(a),
the wavelength of the transverse mode is calcu-
lated to be &, =0.23k,, which is exactly the theo-
retically predicted value. The mode is propagat-
ing in the negative x direction, opposite the beam,
with a phase velocity v,/c =-1.740.2. This is in
excellent agreement with the predicted phase ve-
locity for the mode v,/c =w,,/ck = (%2, +w},
Y)Y%/ck,,=-1.66 [Eq. (5)]. From Fig. 4(b), the
wavelength of the plasma mode is calculated to be
k,=0.178k, and thus &, +k,,=1.01%, and the match-
ing condition is well satisfied. The phase velocity
is in the beam direction, as it should be, with vp/c
=0.54+£0.04. This is also in excellent agreement
with the theoretical value v,/c >w,/ck,=(kv,

- w,,/v*?)/ck,=0.52. The simulation showed
these modes to be absolutely unstable with a
growth rate I'=0.09w,,. The critical length for
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FIG. 4. (a) E, vs x at tw,,=110 and 111 shows back-

ward propagation of electromagnetic mode. (b) E, vs x
at the same times show propagation in beam direction.

absolute instability for these parameters is from
Eq.(13), L,=40/k,. Thisis muchshorter thanthe
system length L=100/k, and so instability was
predicted.

IV. PARAMETER REGIME FOR STABLE OPERATION

Because of the great difference in growth rates
of the forward and backward modes for large 7, it
is possible to design a system which is long enough
for the short-wavelength forward mode, which is
convectively unstable, to grow to saturation but
short enough to be stable to the absolute instability
of the backward mode. One-dimensional finite-
length simulations have been performed which
show that the forward mode grows convectively
with growth length L, ~c/T,, where I is the finite
system growth length, and saturates by trapping
[koLg=w,,/w (2v* %k /w,)* ? for ¥ >1]. The re-
sults, which are discussed in a separate paper,®
indicate the mode saturates in roughly 6 or 7
growth lengths. (The backward mode is also ob-
served in these simulations, but because of its
small growth rate, it is generally at a low level
when the forward mode reaches saturation by
trapping. However, if the simulation is continued,
the backward mode ultimately grows to such an
amplitude that it disrupts the beam, preventing
the continued production of the desired mode.)
Thus, afree-electron laser should have length L;
=L . to saturate the short-wavelength mode.
Therefore a system of length L that satisfies L,
>L>L_ should be able to operate in a steady-state
mode. Figure 5 plots 7., the critical ¥ where
Ly(y.)=L,(v,)as a function of ck,/w,, using Eq. (5)
and (6) to calculate I'y for both modes (the criteria
are independent of w,/w,,). From the figure one
sees that for ck,>2.5w,, and Y>3, it should be
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FIG. 5. Plot of the v at which L,, the necessary length
for a free-electron laser, equals L, the critical length
for absolute instability, L is the growth length of the
short-wavelength radiation.
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possible to operate a free-electron laser in a
steady-state mode. It should also be possible to
use a free-electron laser as an amplifier. In this
case a shorter length than 7TL; should suffice.
Therefore, for reference, a curve of v, for L,(v,)
=3.5Ls(y,) is also shown in Fig. 5.

V. CONCLUSIONS

In conclusion, results from both theory and com-
puter simulations show that for sufficient system
length and/or rippled magnetic-field strength, the
free-electron laser is absolutely unstable to the
long-wavelength (|%|<|k,|), backward-propagating
electromagnetic mode. If it is unstable, because
of its absolute nature, it will grow to such an
amplitude that the system no longer produced the
desired short-wavelength radiation. However,
there exists a broad parameter regime where one
can design a free-electron laser long enough to
efficiently produce the short-wavelength radia-
tion, yet short enough to be stable to the absolute
instability of the long-wavelength mode. The ab-

solute instability is only a problem when operating
the free-electron laser in a steady-state mode.
If it is operated for a short time (short time com-
pared to the absolute instability growth time), the
short-wavelength mode can still grow and dominate
the system because of its much faster growth rate.
We also note that a free-electron laser might be
designed so that the cavity does not support the
long-wavelength mode or selectively absorbs it
when multidimensional effects are included. How-
ever, its existence must be considered in the de-
sign of these devices.
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