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Cross sections for resonant vibrational excitation of N, by electron impact
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%e report the results of a theoretical study of resonant vibrational-excitation of N, by low-energy electrons. The
vibrational-excitation cross sections were calculated using ab initio fixed-nuclei resonance parameters in the
complex-potential or "boomerang" model of Dube and Herzenberg. The electronic resonance energy and decay
width were extracted from several ab initio calculations of the 'lI shape resonance of N, . The good agreement
between the present cross sections and those obtained recently with the 8-matrix technique indicates that the
assumptions underlying the complex-potential model are valid for the case of N, ('ll, ). The present results also
show the sensitivity of the computed vibrational-excitation cross sections to the fixed-nuclei resonance parameters
employed in the calculations. The differential vibrational-excitation cross sections at 90' and the total integrated
cross section which we have obtained agree reasonably well with the available experimental data.

I. INTRODUCTION

It is well known that the scattering of low-energy
electrons by molecules is often dominated by nega-
tive-ion shape resonances. In most cases, such
resonances lead to relatively large cross sections
for vibrational-excitation and dissociative attach-
ment, and therefore play an important role in
electrically excited gas lasers, various dis-
charges, and electron transport through the upper
atmosphere. The 'II, resonance of N, is perhaps
the most widely known example: The resonant
vibrational excitation of N, between 1 and 5 eV has
been studied extensively both experimentally' ' and
theoretically.

During the past ten years several theoretical
methods have been proposed for calculating direct-
ly resonant vibrational-excitation cross sections of
simple molecules: The complex-energy or "boo-
merang" method, ' ' the energy-modified adiabatic
approximation, ' a many-body harmonic oscillator
approximation, ' the vibrational close-coupling
method' ' and, most recently, the 8-matrix tech-
nique 'x'2 All of these methods, except the vibra-
tional close-coupling approach, utilize some form
of the Born-Oppenheimer approximation for sep-
arating the electronic and nuclear motions. As a
result, the vibrational motion of the nuclei is
described in terms of electronic parameters (po-
tential-energy curves and decay widths) which de-
pend parametrically on the internuclear distance,
and which can be extracted, in principle, from ab
initio, electron-molecule scattering calculations
done with fixed nuclei. Nevertheless, all previous
applicationS of the boomerang model to vibrational
excitation, ' '" as well as to dissociative attach-
ment, ""have used a semiempirical approach in
which the electronic resonance parameters are
adjusted to obtain agreement with a portion of the

experimental data. For example, Dube and Her-
zenberg' determined aparametrized complexpoten-
tial curve for Ns ( fir) from the energy dependence of
the differential cross section for the v = 0- 1 ex-
citation at 90'.' Once the adjustable parameters
were fixed, they computed absolute cross sections
for excitation of the v =1, 2, 3 levels of N, and ob-
tained satisfactory agreement with the available
'experimental data. Other calculations" "used
similarly determined resonance parameters.

On the other hand, ab initio calculations of the
resonant vibrational-excitation cross sections for
N2 had mixed success. Purely fixed-nuclei calcu-
lations" provide excitation cross sections without
any structure, and the neglect of target polariza-
tion usually yields a resonance position which is
-2 eV too high. " The vibrational close-coupling
calculation of Chandra and Temkin'" gave cross
sections in which vibrational structure appeared at
the right scattering energy. However, their close-
coupling expansions were apparently not fully con-
verged" and consequently their vibrational-excita-
tion cross sections are only qualitatively correct.
More recently, Schneider, LeDourneuf, and Vo Ky
Lan" obtained good agreement with experimental
cross sections by using the Born-Oppenheimer ap-
proximation combined with an A-matrix approach. "
The electron scattering from a fixed target was
treated using the static-exchange potential of a
polarized N, molecule, whereas the vibrational
motion of the N, compound state was described by
an R-matrix formulation. ' This calculation clear-
ly demonstrated for the first time that a properly
chosen ab initio method is capable of providing
accurate cross sections for resonant vibrational
excitation of diatomic molecules by electron im-
pact.

In this paper we show that equally accurate vi-
brational-excitation cross sections can be calcula-
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ted using the complex-potential or boomerang mod-
el' with electronic resonance parameters deter-
mined ab initio. To our knowledge, this work con-
stitutes the first application of this model to vibra-
tional excitation where the required complex poten-
tial-energy curve of the negative-ion shape reso-
nance was derived from ab initio fixed-nuclei
electron-scattering calculations. In addition, we
studied the validity of the assumptions underlying
the complex-potential model for describing vibra-
tional motion, and examined the dependence of the
computed excitation cross sections on the accuracy
of the electronic resonance parameters employed
in the calculations. Our results show that, in the
case of N, ('ll, }, the assumption of a local reso
nance width I'(R) is justified. We also confirm the
previous finding" "that polarization of the target
molecule must be properly described in order to
obtain the correct magnitude and energy depen-
dence of the vibrational-excitation cross sections.
We show that the detailed structure of the computed
cross sections is rather sensitive to the potential-
energy curve (resonance energy) of the negative-
ion compound state. ' On the other hand, the width
of the resonance controls mostly the overall mag-
nitude of the cross section. A comparison of the
calculated and the experimental total cross sec-
tions".' for N, suggests that the boomerang model
provides a vibrationaily elastic (v =0-0), 'll, par-
tial cross section which is much less satisfactory
than the corresponding inelastic cross sections.

In the remainder of the paper, Sec. II contains a
derivation of the complex-potential or boomerang
model for vibrational motion, and Sec. III de-
scribes the fixed-nuclei electronic resonance
parameters (energies and widths) which were used
in the present calculations. In Sec. IV we present
the computed vibrational-excitation cross sections
and compare them to some previous theoretical
and experimental results. Finally, Sec. V sum-
marizes our conclusions.

II. COMPLEX-POTENTIAL OR BOOMERANG MODEL
FOR RESONANT ELECTRON-MOLECULE

SCATTERING

Shortly after resonances of molecular negative
ions were discovered, the complex-potential or
boomerang model was introduced'" to describe
the motion of the nuclei during electron-molecule
collisions. Originally, the model was adapted
from the Kapur-Peierls theory of resonant scat-
tering. ' By using the Born-Oppenheimer separa-
tion of electronic and -nuclear motions, the model
assumes that the incident electron is captured into
a quasistationary state of the molecular negative
ion 4'„(r,R), where r represents the electronic co-

ordinates and 8 is the internuclear distance.
Since the electron can autodetach, the resonance
state has a finite lifetime g/I'(R), where F(R) is
called the electronic resonance width. Vibrational
excitation of the nuclei is enhanced if the electron
is trapped for at least one vibrational period.

In the following, we give a brief derivation of the
differential equation which governs the relative
motion of the nuclei in order to identify the major
assumptions underlying the model. Using formal
resonance scattering theory, " one can show that,
for vibrational excitation e,-- v&, the "resonant"
part of the T matrix is given by

T„„=(PQ PHQP'„), (l)

where the operator Q projects onto the resonance
state, and Q+P =l, QP =0. The total molecular
Hamiltonian H has the form

H(r, R) =H„(r,R)+K+,

(4)

where

1
E4 pgp

Now we assume that thexe is a single isolated
electronic resonance state with a normalized wave
function $„(r,R) and energy c„(R)=(g„(r,R)H„(r,R)
x P„(r,R)), where the bold parentheses imply inte-
gration over only the electronic coordinates. If we
define

Q=g (r, R))(g„.(r, R},
then

(6)

Qg, = 4„(r,R)5„,.(&), (&)

where the function g„(R) describes the relative
motion of the nuclei in the negative-ion compound
state. Next, we assume that the Born-Oppenheim-
er approximation is valid both for the resonance
state $„(r,R} and for the nonresonant scattering
solutions PP'„. Consequently,

[K„,Q] =[K,PJ =0 (sa)

QK„P =PK„Q = 0 . (sb)

where E~ is the kinetic energy operator for the
nuclei, and H„(r, R) is the electronic Hamiltonian
for fixed internuclear distance B. The "nonreso-
nant" scattering solutions PQ'„satisfy the equation

(E —PHP)P4'„= 0 (s)

and have the usual boundary conditions. The reso-
nant wave function QP satisfies the equation

(E —QHQ)QP'„= QHP(PP'„+G&PHQP ),
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Equation (8b) implies that the coupling between the
resonance and the background continuum is due to
electronic interactions only. By multiplying Eq.
(4) with g„(r,R)*, then integrating over the elec-
tronic coordinates, and using Eqs. (V) and (8), we
obtain

[Z ~„(R) Z„]~„(%)= (y~.,Py„' )

+ (P,H„PGpPH„P, )$„(R).
(9)

To simplify Eq. (9), one can use the spectral re-
presentation of G~ implied by Eqs. (3) and (5):

[E-,(E)-Ew (, ([[ =U „Rw+E fdE ' —"fd, R'U".„R')(., R'
0

—(iw) Q Uw. {R)fd%.'U" (8 ). ( (.5,')'. . (10)

In Eq. (10), 5'fdE implies a principal value inte-
gral and the sum v runs over the open vibrational
channels.

The matrix element

Us„(R) = (g„(r,R)H„Pdtds„(r, R))

represents the coupling between the resonance
state and the nonresonant solution Pgs„asso-
ciated with energy E and vibrational state v.
Th'e quantities U~„and U~„are called the entry

Egg Evy
and exit amplitudes, respectively. "Equation (10)
is exact within the Born-Oppenheimer approxima-
tion, and it determines the nuclear wave function
g„(R) associated with the resonance state. 'R Un-
fortunately, it also contains a complex nonlocal
integral operator because of the presence of the
nuclear kinetic energy operator in G~ [Eq. (5)].

In order to simplify Eq. (10) further, several
additional assumptions are necessary. First, we
assume that the adiabatic nuclei approximation" "
is valid for the nonresonant part of the electron-
molecule scattering. As a result, Pga„can be
written as a product of electronic and nuclear wave
functions, i.e.,

Py;„(r, R}=y; (r, R)X„(%).

The fixed-nuclei electronic-scattering function
satisfies the equation

[PH„p)R)P —Rk„]JR (r, R) =0

with E=&k„'+~ where W„ is the energy of the vth
vibrational-rotational state of the target molecule.

I

The corresponding nuclear wave function X„(R) is
a solution of the equation

[K„+eo(R) —W,]x„(R) = 0, (13)

where c,(R) is the usual Born-Oppenheimer elec-
tronic potential-energy curve of the target. " By
substituting Eq. (11) into the expression for Us„(R)
we obtain

U „(R)=()I)„(r,R)H„)' (r, R))X„(R).

At fixed internuclear distance R, the resonance
width for ejecting an electron with energy &k„' is
given by

(14)

Using Eqs. (14)—(16) in Eq. (10), we obtain the
result

I'(R, k„)=2m ~($„(r,R)H„)' (r, R})~'. (l5)

In order to simplify 'the nonlocal integral opera-
tors appearing in Eq. (10), one needs to assume""
that the electron kinetic energy 2k'„ is large com-
pared to the spacing between vibrational levels
4R'= O', —W„or. alternatively, that the electronic
matrix element in Eq. (14), and the width I'(R, k„),
depend weakly on the vibrational quantum number
v. Thus, in the resonance region, one can replace
Rk'„by the local electron kinetic energy —R'k„'=a„(R)
—e,(R). If the closed vibrational channels make a
negligible contribution to Eq. (10) (because of un-
favorable Franck- Condo n factors }, then one can
perform the sum over v to yield

gX„(R)XR(R ) =5(R -R ). (16)

[E- ) —wE(w2)2„(R) =(2 (rE)E„t)' trE))E, (R) w((2w)
' f rwdE ', ——'{U(Ek')) („(R).

t

Further, if the resonance wave function is domi-
nated by a single partial wave [e.g., I = 2 in case
of Nm ( 11~)] then the electronic entry amplitude can
be expressed in terms of the width:

((I)„(r,R)H, g' (r, R))=e' 2( )(2w) '~'I'(R, k, )'~' (18)

where 5, (R) is the background phase shift for fixed
nuclei. Finally, if 5, (R) is a slowly varying func-
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tion of R, one can incorporate the phase factor
e'~ into $„(R) and obtain the nuclear Schrodinger
equation of the boomerang model

[E—K„—E„(R)+—il (R, k„)]$„(R)
=(2v)-'"I (a k )'"X (%) (19)

where we have again replaced the incident momen-
tum 0, by the local fixed-nuclei momentum k„.

For convenience, the fixed-nuclei electronic
"shift" is incorporated into the real part of the
local complex potential a„(R)—~il'(R, k„) which
determines the dynamics of the nuclei in the nega-
tive-ion compound state. Our main result, Eq.
(19), is essentially identical to the formula used
by Dubs and Herzenberg [see Eqs. (2.31) and (3.1)
of Ref. 6]. Once the vibrational wave function of
the resonance state $„(R) is determined, the
transition amplitude for vibrational excitation can
be calculated from the expression

T = (2v) '~' J)dRX*(R)I'(R k )'~'$ (R) (20)

which is obtained from Eq. (1) by using Eqs.
(6)-(8), (11), (14), and (18). To emphasize the
physical assumptions underlying the complex-po-
tential model, we summarize the approximations
required in the derivation of Eq. (19) as follows:

(1) The Born-Oppenheimer approximation is
valid for the single isolated resonance or com-
pound state.

(2) The nonresonant background scattering can
be described with the adiabatic nuclei wave func-
tions.

(3) The electronic coupling between the reso-
nance state and the background continuum must be
approximately independent of the ejected electron
energy.

(4) The energetically closed vibrational channels
make a negligible contribution to the effective po-
tential.

(5) The background scattering is dominated by a
single partial wave, and it is independent of inter-
nuclear distance in the Franck-Condon region.

III. CALCULATION OF FIXED-NUCLEI RESONANCE
PARAMETERS FOR N2 ( Ilg)

In the complex-potential or boomerang model,
the vibrational-excitation cross section is calcu-
lated using the vibrational wave functions X„(R)of
the target molecule and the corresponding function

(R) associated with the negative-ion resonance
fP.

state. In the case of N„ the former are deter-
mined by the electronic potential-energy curve
c,(R) of the 'Z' ground state of N, [see Eq. (13)].
On the other hand, the functions $„(R) are deter-
mined by the complex potential e„(k) -~—,'fi'(R, k„),

where a„(R) and I'(R) are the electronic potential
curve (including the shift) and the width, respec-
tively, of the 'll resonance [see Eq. (19)]. In the
present work, three different sets of c,(R), f„(R),
and I'(R) were used to test the sensitivity of the
vibrational-excitation cross sections to these elec-
tronic parameters. However, in each case, the
parameters were extracted from ab initio fixed-
nuclei calculations of N, ('Z~) and N, ('ll ).

A. R-matrix calculations of e-N2 scattering

Recently, Schneider, LeDourneuf, and Vo Ky
Lan" reported fixed-nuclei R-matrix calculations
of e-N, scattering. The electron-molecule inter-
action was represented by a static-exchange poten-
tial; however, the polarization of N, was accounted
for by constructing the potential from molecular
orbitals, which were obtained from "stabilization
self-consistent-field (SCF)" calculations" of
N, ('Il, ). This procedure allows for the distortion
of the molecular charge distribution in the pre-
sence of the extra electron captured into a m, or-
bital. For each internuclear distance R, the reso-
nance parameters &„and I' were extracted by fit-
ting the energy dependence of the 'll, eigenphase
sum 5(E) to the Breit-Wigner formula2~

6(~) —5, =tan ' I'/2 )

The background phase 60 was fitted to a second-
order polynomial in &. 'The resulting resonance
energy and width {set I) are plotted as a function
of R in Figs. 1 and 2, respectively. Figure 1 also
shows the potential-energy curve of the ground
'Z' state of N, which was obtained" using a single-
configuration SCF wave function constructed from
contracted Gaussian orbitals.

B. Stieltjes-moment theory calculations of N2
resonance parameters

One direct method for calculating electronic
resonance parameters is the Stieltjes-moment
theory technique. " The resonance state $„(r,R) is
obtained as a square-integrable solution of an
approximate Hamiltonian, and then I (R) is calcu-
lated from the "golden-rule" formula, Eq. (15),
using a discrete basis set representation of the
background continuum.

Some time ago, one of us (A.U.H. ) reported"
N, ('Il, ) resonance parameters which were calcu-
lated using this technique along with a frozen-core
description of the resonance state. The ground
state of N2 was represented by a single-configura-
tion SCF wave function. The wave function of the
'll, resonance was constructed from a 'Z~ core,
consisting of the frozen molecular orbitals of N„
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FIG. 1. Potential-energy curves of N2( g~) and
N2 ( II~). Solid lines: 8-matrix calculation with polar-
ized core (set I from Bef. 11); dot-dashed line:
Stieltjes calculation with frozen core (set II from Bef.
30); dashed lines: Stieltjes calculation with polarized
core (set III, present work).

2.0

and an optimized m orbital describing the captured
electron. The km, background continuum was re-
presented by 14-16 symmetry adapted molecular
orbitals. Since in this approximation the polariza-
tion of N, was ignored, the calculation was essen-
tially equivalent to a static-exchange treatment of
the e-N, interaction, and the calculated resonance
energies and widths" compared favorably with

those obtained in other static-exchange calcula-
tions. ""The resonance parameters a„(R) and
I'(R) obtained with the Stieltjes technique and the
frozen-core model (set II) are also shown in Figs.

and 2.
One advantage of the Stieltjes method is that

electron correlation and polarization effects are
easily incorporated into the calculation of the res-
onance parameters, since the method relies on
square-integrable basis functions exclusively. In
the present work, we also calculated resonance
wave functions which were represented by linear
combinations of configurations among which we
include all single excitations from the 20, 2o„,
lm„, and 30 core orbitals to the unoccupied orbit-
als. Our one-electron basis consisted of 9o„9o„,
197t, and 6m„orbitals, and the total number of
configurations was 193. The nonre sonant 'lI back-
ground continuum was again represented by simple
products of the frozen 'Z' core and the nm orbitals
(n = 4, .. . , 19). This model allows for the distortion
and spin polarization" of the N, target while the scat-
tering electron is close to the molecule, i.e., while it
is captured in the m, resonance orbital, but no polari-
zation is included for nonresonant scattering. The
resulting resonance energies and widths (set III) are
plotted as af unction of 8 in Figs. 1 and 2, respectively.
As Fig. 2 shows, our configuration-interaction
treatment of target polarization yields widths that
agree well with the widths obtained in the R-ma-
trix" and T-matrix ' calculations which utilized
the static-exchange model along with the stabiliza-
tion-SCF procedure ' instead. To facilitate the
presentation and the discussion of the computed
vibrational-excitation cross sections in Sec. IV,
Tat:ke I summarizes the three sets of fixed-nuclei
electronic resonance parameters employed in our
work.

1.5—
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1.7 1.8

a j
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IV. CALCULATED CROSS SECTIONS

Here we compare our calculated cross sections
for N, to some previous theoretical and experi-
mental data. We also examine the effects of tar-
get polarization and the dependence of the cross
sections on the various fixed-nuclei electronic
resonance parameters employed in the complex-
potential model.

FIG. 2. Electronic width of N2 ( II~) as a function of
internuclear distance. ~ R -matrix calculation with
polarized core (set I from Ref. 11). 1 Stieltjes calcu-
lation with frozen core (set II from Ref. 30). o Stkeltjes
calculation with polarized core (set III, present work).
& T -matrix calculation with polarized core (from Bef.
33). o semiempirical results of Dube and Herzenberg
(from Ref. 6).

A. Effects of polarization

Previous theoretical studies' ""of e-N, scat-
tering already established that polarization of N,
by the incoming electron must be accounted for in
order to obtain resonant behavior of the vibration-
al-excitation cross section in the experimentally
observed energy range, 1.5-4.5 eV. Our results
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TABLE I. Summary of fixed-nuclei electronic resonance parameters of N2 ( II~) used in the
complex-potential model. Energies and widths are in eV and R()= 2.068 bohr.

Type of calculations
Target

polarization &„(Ro)'

Set I

Set II

Set III

R-matrix"
stabilization —SCF on N2

Stieltj es—imaging~
frozen N2 core

Stieltj es—imaging~
configuration interaction

No

Yes

2.15

4.13

2.23

0.34

1.14

0.40

~ Resonance energy relative to the energy of N2 at 2.068 bohr.
" Schneider, LeDourneuf, and Vo Ky Lan, Ref. 11.

Hazi, Ref. 30.
~ Present work.
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FIG. 3. Effect of target polarization on the 0-1 and
0 —2 vibrational-excitation cross sections. Solid lines:
Results obtained with polarized core (set I); dashed
lines: Results obtained with frozen core (set Ig.

I

fully confirm this conclusion. Table I clearly
shows that the resonance energy and the width of
the N, ('lI ) state calculated without polarization
(set II) are much larger than the corresponding
parameters obtained by including target distortion
(sets I or Ill). For internuclear distances between
1.7 and 2.4 bohr, the potential-energy curve of
N, obtained with the frozen-core model is too high
in energy by I.7-2.0 eV (see Fig. I), whereas the
corresponding width is too large by 0.4-0.5 eV
(see Fig. 2). Figure 3 compares the integrated
vibrational-excitation cross sections for the 0-1
and 0-2 transitions in N, which were calculated
with resonance parameters I and II. In the frozen-
core static-exchange model the excitation cross
sections are enhanced only for electron energies
above 3.5 eV and show no substructure, in contrast
to the experimental results. "On the other hand,
when the distortion of the target molecule by the
incoming electron is included in the ab initio cal-
culation of the resonance parameters, the excita-
tion cross sections exhibit the characteristic sub-
structure in the experimentally observed' energy

region between 1.5 and 4.5 eV and also have the
correct magnitude. '"

It is worth emphasizing that the way we treated
target polarization in our calculations is quite
different from the usual procedure of employing a
semiempirical dipole polarization potential"- "
which behaves asymptotically like a/x' In the.

single-excitation-configuration-interaction calcu-
lation (see Sec. III 8), it is the short-range distor-
tion of the molecular charge distribution which is
explicitly included by allowing the individual mole-
cular orbitals to relax in the presence of the tem-
porarily captured w electron. The stabilization-
SCF procedure" "accomplishes essentially the
same effect. Neither of these two methods takes
into account the long-range dipole polarization po-
tential. Recently, Levin and McKoy" have also
argued that short-range distortion of the target
should be the most important effect for scattering
channels exhibiting shape resonances. The real-
istic resonant vibrational-excitation cross sec-
tions, which have been obtained for N, in the pre-
sent ab initio calculations and in Ref. 11, support
this argument.

B. Comparison of complex-potential model and
and R-matrix results

One of the primary objectives of our study was to
test the validity of the physical assumptions under-
lying the complex-potential or boomerang model.
%'e have done this by comparing in detail our cal-
culated cross sections for the vibrational excitation
of N, to those obtained recently with the R-matrix
method" "in which neither the existence of a
local resonance width I'(R), nor the weak depen-
dence of the nonresonant scattering on internuclear
separation were explicitly assumed. To make the
comparison meaningful, we computed the boomer-
ang cross sections using the resonance parameters
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FIG. 4. Comparison of vibrational-excitation cross
sections obtained with the complex-potential or boom-
erang model and with the R -matrix method. Solid lines:
R -matrix calculation of Schneider, Leoourneuf, and
Vo Ky.Lan {Ref.11); dashed lines: Boomerang calcu-
lation with ab initio resonance parameters (set I).

(set I) which were extracted from the fixed-nuclei
R-matrix eigenphases" (see Sec. IlIA).

Figure 4 compares the calculated vibrational-
excitation cross sections for the O-v, v=1 —4
transitions in N, . The absolute magnitudes of the
cross sections, as well as the number, the shapes,
and the relative positions of the peaks given by the
two methods agree closely. The agreement is
especially noteworthy for the higher cross sec-
tions, e.g., the unusual shapes of the 2.2 eV peak in
the 0-2 and 0-3 cross sections are faithfully
reproduced in both the boomerang and R-matrix
calculations. We conclude from these results that
the assumption of a local resonance width in the
complex-potential model is justified for the 'll
resonance of N, .

The largest differences between the two calcula-
tions are found fog the 0-1 cross section, but the
origin of this discrepancy is not understood. Pos-
sibly it is due to neglecting the dependence of the
nonresonant background m eigenphase on inter-
nuclear distance in the boomerang model. This
eigenphase certainly contributes to the vibration-
ally elastic, e.g. , 0- 0 cross sections, but its
role in vibrational excitation is not at all estab-
lished. Alternatively, the differences in 0- 1
cross sections may be due to using slightly differ-
ent Morse potentials to represent the N2 potential-
energy curves in the two calculations. As the re-

suits of the following section will show, the de-
tailed structure of the computed cross sections is
quite sensitive to this particular resonance param-
eter.

C. Dependence of the cross sections on the fixed-nudei
resonance parameters

8
p~ ]
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l g if sl
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3 4 2
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FIG. 5. Comparison of vibrational-excitation cross
sections calculated with the boomerang model using
different sets of ab initio resonance parameters. Solid
lines: Results obtained with set I; dashed lines: Results
obtained with set III.

Before the recent ab initio studies of resonant
vibrational excitation of N, were completed, Dube
and Herzenberg had argued' that extremely accu-
rate resonance parameters of the temporary nega-
tive ion would be required to obtain vibrational-
excitation cross sections which had the right mag-
nitude and which had peaks at the correct energies.
Furthermore, they asserted that only semiempiri-
cal procedures, employing adjustable resonance
parameters, could meet this strict requirement
and be practicable. Although our work clearly
shows that using ab initio fixed-nuclei resonance
parameters in the complex-potential model can
provide satisfactory vibrational-excitation cross
sections, it seems worthwhile to investigate the
dependence of the computed cross sections on the
accuracy of the electronic resonance energy and
the width.

Figure 5 compares two sets of vibrational-excit-
ation cross sections which were calculated with the
boomerang model for the 0 T and 0-3 transitions
employing different sets of fixed-nuclei resonance
parameters. In one case we used the potential-
energy curves and the resonance widths extracted
from the fixed-nuclei R-matrix calculations" (set
I). In the other case we used the results of our
configuration-interaction study (set III). However,
both sets of electronic resonance parameters in-
cluded the effects of target polarization. Figure 5
shows that, although the two sets of cross sections
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have very similar magnitudes, the corresponding
individual peaks are shifted relative to each other
by about 0.15 eV. This shift is due solely to small
differences in the potential-energy curves obtained
in the present and the previous" calculations. As
Fig. 1 shows, the two fixed-nuclei calculations
which take into account target polarization predict
essentially the same energy difference between the
minima in the potential-energy curves of N2 and

N, . However, the curves of both N, and N, re-
sulting from the R-matrix study are tilted slightly
toward smaller internuclear distances. These
results indicate that the detailed structure in the
computed vibrational-excitation cross sections is
sensitive to the potential-energy curves of both N,
and N, , as Dubs and Herzenberg' had found ear-
lier.

We also checked the dependence of the cross
sections on the resonance width by doing two cal-
culations with the same potential-energy curves
(set I) but with different widths (sets I and III). In
this case, the peaks in the cross sections occurred
at the same energy but had slightly different mag-
nitudes. This confirms the expectation that the
resonance width mainly determines the size of the
vibrational-excitation cross sections. Of course,
when the width becomes too large, the detailed
structure in the cross section disappears (see
Sec. IVA).

Finally, it is worth noting in Fig. 2 that the
width derived by Dube and Herzenberg in their
semiempirical study' differs from those obtained
in the various ab initio calculations" "in two re-
spects, it is about 50%%uo larger at R =2.068 bohr,
and it has a substantially smaller, negative slope.
Nevertheless both the semiempirical and the ab
initio resonance parameters produce realistic
vibrational-excitation cross sections when used in
the boomerang model. This suggests that there
may not be a unique set of fixed-nuclei resonance
parameters which give 'correct cross sections, and
that caution should be used in extracting molecular
resonance parameters directly from experimental
data.

D. Comparison with experimental results

Here we compare our calculated cross sections
for N, to experimentally determined absolute cross
sections: The differential cross section for vibra-
tional excitation' at 90', and the total cross sec-
tion for the ground vibrational state. ' Since all
the theoretical cross sections presented so far
have been integrated cross sections, we briefly
discuss the calculation of differential cross sec-
tions in the complex-potential or boomerang
model. Dubs and Herzenberg' showed that, for

resonant vibrational excitation, do/dQ has the
simple form

' ~=g(8)u, ~, (21)

where o, z is the integrated cross section and g(8)
is the normalized angular distribution, independent
of energy. In the case of N, ('ll, ), a single partial
wave (d wave} dominates the resonant scattering
and g(8) takes the form

g(8)=(4w} ' —'„' (1-icos'8+~4 cos'8}. (22)

Until recently the correct normalization of the
vibrational-excitation cross sections for N, was
quite uncertain, as different experiments"
yielded results which differed by as much as a
factor of 4. However, the most recent theoretical
works all favor the normalization implied by
the latest experiments of Wong gt a/. ,

' who mea-
sured the absolute differential cross sections at
90' for the 0- 1 and 0- 2 transitions. Figure 6
compares the differential cross sections calcu-
lated with the fixed-nuclei resonance parameters
(set I) to the experimental results. Although the
overall magnitudes of the experimental and the
computed cross sections compare favorably, the
relative heights and the positions of the peaks are
not quite the same. But considering the sensitivity
of the computed cross sections to the electronic
potential-energy curves, which we have demon-
strated in Sec. IVC, the agreement between theory
and experiment is satisfactory. The present ab
initio calculations confirm the normalization of
the experimental data of Wong et al. '

It is clear from Fig. 6 that the higher peaks in
the computed cross sections are shifted to higher
energies relative to the experimental ones. This
is probably due to the single-configuration SCF
representation of the X'Z,' state of N„employed
in all three ab initio calculations (see Sec. III).
It is known" that SCF calculations on the electron-.
ic ground state of N, yield only 50-55/~ of the true
dissociation energy, and that they predict incor-
rect vibrational frequencies and anharmonicities.
There is every reason to believe that using a more
accurate description of N, ('g,'), (for example, a
multiconfiguration-SCF wave function) in the
fixed-nuclei calculations would yield improved
vibrational-excitation cross sections.

In order to calculate the total cross section for
the ground state of N„we have summed the 0- g
cross sections up to g =10, and included a con-
stant, 10 L' cross section to represent the contri-
bution of the nonresonant symmetries. " Figure
7(b) compares the total cross sections obtained in
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FIG. 6. Comparison of theoretical and experimental differential cross sections for vibrational excitation of N2 at 90 .
Solid lines: Boomerang calculations with resonance parameters (set I). Dots: Experimental data of Wong et el. (Ref.
3).

this way to the experimental data of Kennerly, '
which agree well with the earlier results of
Golden. " The computed cross section is clearly
much too large for energies less than 3 eV. Es-
sentially the same difficulty plagued the semi-
empirical calculations of Dube and Herzenberg
(see Fig. 5 of Ref. 6).

By comparing our individual cross sections to
those obtained in the g-matrix calculations" we
find that the discrepancy is due solely to the vi-
brationally elastic 0- 0 cross section, which is
predicted to be too large even when the correct
ab initio resonance parameters (set I) are em-
ployed. We believe that the difficulty arises be-
cause the 7-matrix formula in the boomerang
model, Eq. (20), does not have the correct energy
dependence near thresho1. d, i.e., as k&-0. ln the
case of N„ this defect does not affect appreciably
the vibrational-excitation cross sections because
they are negligible for energies less than 1.5 eV,
but it leads to a significant overestimation of vi-
brationally elastic cross sections at low electron
energies. To verify this hypothesis, we have re-
calculated the total cross section using an energy-
modified 0- 0 cross section which was computed
with the following exit amplitude:

(2w)"'(y„(&,R)e., g, (&,R))

=r(R, k„)"', k, &k„(23a)
= I'(R, k ) ( ~k/k, ) i k &k

(23b)

The expression in Eq. (23b) is somewhat arbi-
trary, but its threshold behavior is appropriate
for a w channel. As Fig. 7(a) shows, the agree-
ment between theory and experiment is much more
satisfactory when the energy-modified 0- 0 cross
section is used. These results indicate that, in
the case of N„ the original boomerang model"
yields vibrationally elastic cross sections which
are much less satisfactory than the corresponding
excitation cross sections.

V. CONCLUSIONS

We have used the complex-potential or boom-
erang model" to calculate cross sections for the
resonant vibrational excitation of N, by low-energy
electrons. The electronic resonance parameters
required in the model were extracted from ab
initio fixed-nuclei calculations of the Q, resonance
state of N, , with no adjustable parameters. We
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have examined in detail the physical assumptions
required to derive the complex-potential model
for describing the motion of the nuclei in resonant
electron-molecule collisions. The good agree-
ment between the present vibrational excitation
cross sections and those obtained by Schneider,
LeDourneuf, and Vo Ky Lan in their g-matrix
calculations" indicates that the assumption of a
local energy-independent resonance width I'Q) is
justified in the case of N, ( ii ). Since the cross
section formula in the complex-potential model
does not have the correct energy dependence near
threshold, the model overestimates the vibration-

FIG. 7. Comparison of theoretical and experimental
total cross sections for the e =0 level of N2. Solid lines:
Boomerang model using ab initio resonance parameters
(set I); dashed lines: Experimental results of Kennerly
(Bef. 2). (a) Theoretical results obtained with an energy
modified elastic (0 —0) cross section, {b) theoretical
cross section contains an unmodified elastic component.

ally elastic cross sections.
We have also shown that, in order to obtain

realistic vibrational-excitation cross sections
showing the experimentally observed structure,
the electronic resonance parameters must be cal-
culated in such a way as to account for the short-
range distortion or polarization of the N, target.
By comparing the cross sections calculated with
different electronic resonance parameters, we
have found that the positions and the relative
heights of the peaks in the cross section are rather
sensitive to the potential-energy curve of the tem-
porary negative ion. On the other hand, the mag-
nitudes of the computed cross sections are con-
trolled mostly by the fixed-nuclei resonance
width.

Our differential vibrational-excitation cross
sections, calculated at 90, confirm the normal-
ization of the experimental data of Wong et al.'
The total cross section calculated with an energy-
modified 0- 0 cross section agrees reasonably
well with the experimental data' "available for
the ground vibrational state.
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