
PHYSICAL RKVIK% A VOLUME 23, %UMBER 3

Many-body th'eory of core-valence excitations

MARCH 1981

A. Barth and L. S. Cederbaum

(Received 8 July 1980j

A many-body theory is presented based on an electronic Hamiltonian appropriate for describing core-valence

excitation processes. It is shown that the core polarization propagator satisfies a factorization theorem relating this

propagator to the product of two one-particie Green's functions, namely, a core Green's function and a valence

Green s function which is calculated in the field of a time-dependent core potential. A diagrammatic theory for this

valence Green s function is developed. The core-valence excitation energy is decomposed into relaxation and

correlation contributions up to second order. A physical interpretation of this decomposition is given and the

relationship between the analytical expressions and the various diagrams is pointed out. A general order analysis of

relaxation and correlation terms is performed making use of the factorization theorem. An illustrative model is

presented which allows an exact diagrammatic calculation of the valence Green s function with the time-dependent

core potential via the Dyson equation. The analogy between the spectral function of our model and the spectral

function of x-ray emission spectra of solids is discussed.

I. INTRODUCTION

The study of electron excitation processes has
been a famous subject over the last few years both
for experimentalists and theoreticians. Although
the main spectroscopic interest is focused upon
the valence region, the investigation of core pro-
cesses has gained an increasing importance, es-
pecially in connection with the development of syn-
chrotron light sources' and the extension of elec-
tron-energy-loss spectroscopy' to tbe high-energy
region. The progress in the development of ex-
perimental techniques has raised a great number
of problems concerning the interpretation of spec-
tra and thus stimulated the theoretical interest in
the subject. In the case of solids one usually
introduces a model Hamiltonian" which accounts
for the effects to be explained. For atoms and
molecules there exist computational methods
which permit a rather accurate description of the
experimental spectra. Besides semiempirical
procedures, the so-called ab initio methods' have
gained an increasing importance. The excitation
energies can, in principle, be obtained by per-
forming separate Hartree-Fock (HF} computations
for the initial and final state (ESCF). .This ac-
counts solely for the relaxation (reorganization}
effect of the orbitals caused by the rearrangement
of the electronic charge distribution upon the tran-
sition. Although this is the main contribution in
the case of core excitations, the corrections due
to correlation effects have to be considered, too.
Moreover, there are certain excited states which
cannot be evaluated in the simple HF scheme. To
overcome these shortcomings one usually im-
proves the numerical data by performing a config-
uration interaction (CI) calculation. Hitherto,

however, only a few CI calculations on core-va-
lence excitations have been performed. Owing
to various drawbacks, as slow convergence, dif-
ferent treatment of initial and final states, and
the size-consistency problem, ' the CI method is
not quite satisfactory. The Green's function for-
malism, ' "on tbe other hand, gives complemen-
tary physical insight into the excitation process by
calculating transition energies and line intensities
directly.

In the mathematical framework of the many-body
theory a description of excitations requires the
knowledge of the particle-hole or polarization
propagator. This is a special component of the
two-particle Green's function satisfying a rather
complicated multiple integral equation called the
Bethe-Salpeter equation s-ia, is, is In the present
contribution it is shown that in the particular case
of excitations originating from deep core holes
the polarization propagator satisfies an important
factorization theorem. In time-space the core
polarization propagator is equal to the product of
two one-particle Green's functions, namely, a
core Green's function and a valence Green's func-
tion with a time-dependent potential. The core-
valence excitation spectrum is then obtained by
convoluting these functions. We have thus re-
duced the problem of evaluating a two-particle
Green's function to the problem of calculating two
one-particle Green's functions. The factorization
theorem allows us to treat the core-valence exci-
tation as two independent processes, but at the
cost of introducing a time-dependent potential into
the Hamiltonian of the valence Green's function.

The general notations and equations required for
the analysis of core-valence excitations are pre-
sented in Sec. IIA. In Sec. GB the excitation en-
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ergy up to second order is decomposed into relax-
ation and correlation contributions. The connec-
tion of this analysis to a diagrammatic approach
is discussed. The Hamiltonian appropriate for
the description of core processes is introduced in
Sec. IGA. For this Hamiltonian the Bethe-Sal-
peter equation for core-valence excitations is
analyzed in Sec. GIB. In Sec. GIC the factoriza-
tion theorem is introduced and discussed in detail
and the valence Green's function with the time-de-
pendent potential is interpreted. This section con-
tains the main results of our analysis. In Sec. GI
D we discuss the diagrammatic theory for the va-
lence Green's function and derive the appropriate
Dyson equation. In Sec. IGE we return to the dis-
cussion of Sec. IIB and analyze the decomposition
of the core-valence excitation into relaxation and
correlation contributions up to second order for
the case of our Hamiltonian. The analytic expres-
sions are related to simple diagrams. An inter-
pretation of the various contributions is given.
An illustrative model is analyzed in detail in Sec.
IV. This model demonstrates in compact form
the main features of our analysis. The close re-
lationship of our theory to the theory of core-va-
lence excitations in solids is also discussed in
Sec. IV.

II. THE EXCITATION SPECTRUM

A. The particle-hole propagator

The excitation process is in general well de-
scribed by using Fermi's Golden Rule. Then the
excitation spectrum P(&o) as a function of ~ is giv-
en by"

P(~)™g|««1 ««1m[iii«y««( I«Q)0 if()] 5(&0 E )
f»r (1)

where v«z = («t
« ~o ~P&) are the matrix elements of

the external perturbation potential which induces
the transition process. The matrix elements are
taken between the orbitals of our chosen basis set

If the excitation is induced by photons the
perturbation potential reads

which is the scalar product of the external field
at the youth electron and the momentum of this elec-
tron. 5~p is the photon energy or the kinetic en-
ergy of the impact particle and E, is the excitation
energy. II«&~«(e} is the Fourier transform of the
particle-hole component of the two-particle
Green's functions-~s, xs-xs and g j.s a posj.tjve infini-
tesimal. The particle-hole Green's function con-
tains all the many-body effects and a calculation
of this function enables us to evaluate the excith-

tion spectrum. Thus the natural task will be to
derive an equation which determines the particle-
hole Green's function.

Restricting ourselves to the pure electronic
problem of a many-electron molecule the corre-
sponding Hamiltonian in second quantized notation
is given by

H=~ &fafaf+ ~ vf&afa&+ & ~ Vf»rafa&arar, .
fg 0 rt l

Here g„vf&, and V,», are the matrix elements of
an unperturbed Hamiltonian H„a one-particle po-
tential v, and of the Coulomb interaction between
the electrons

V,», = dr, dr, *; ry g r2 ry r2 pry, r, ~

The potential v can, in principle, include an ex-
ternal potentiaL fP«j is any orthogonal basis of
spin orbitals that diagonalizes H,. a«(a«) is a de-
struction (creation} operator for a one-particle
state.

Without loss of generality Hp ls assumed to be
the Hartree-Fock operator. In this case the gf
become the HF orbital energies and, if no exter'-
nal potential is included, vf& is given by

&««= —Q I'««, l«a)&a ~
- rt

Vfygarg —Vf»r Vg rI

n~ is the occupation number of the orbital «t ~ in
the HF ground state, i.e., «l~= 1 if «t ~ is occupied
in the HF ground state and g~= 0 otherwise. It is
also useful to define the quantity 8,=1-n,.

If Hp is chosen to be the spin unrestricted" HF
operator the formalism is the same in the closed-
and open-shell case. On the other hand, if H, is
the spin restricted' HF operator the choice of vf&
in the open-sheQ case is ambiguous. The following
discussion is restricted to the closed-shell case.

For a theoretical analysis of electronic excita-
tions we consider the particle-hole Green's func-
tion, ' also known as polarization or particle-hole
propagator. If the Hamiltonian is not explicitly
time-dependent this function depends only on the
time difference which we denote by I;. The parti-
cle-hole propagator reads (normalizing (4o ~4,) to
1)

iri „„(t)= (@OI &[a,(t)«««(t) a,a «j ~
eo),

where we have adapted the notation of Ref. 10. T
is called Wick's time ordering operator and a«(t)
= e' 'a, e ' ' denotes the destruction operator in the
Heisenberg picture. ~g,) is the exact ground state
of N particles. II(t} describes a particle-hole
propagation between the times 0 and t.
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()lt() I a))a) 14' )()P

Ianna;

I )lto)

(d+(s„"-E,) -ig (4)

where E, and E„"are the energies of the ground
and excited states and g is a positive infinitesi-
mal. II,»,((d) is a mermorphic function whose
poles are. the excitation energies and whose resi-
dues are the transition probabilities. Both terms
contain equivalent information but the poles lie on

To obtain a deeper insight into the physical
meaning of this function it is necessary to exhibit
explicitly its energy dependence. After inserting
a complete set ot N particle eigenstates ( ~4 f)) and
subsequent transformation to ~ space, the Leh-
mann representation is obtained, "

~ (4'() I aqa; 1)It„")(4', I a)tag 14 0)~l j)tl ~ (d (~)(t @ ) In this simple case the excitation energies are
just the differences between the &'s and the tran-
sition probabilities are 0 or 1, respectively.

We can define a new (Iuantity

tii;», (t, -t') =—(4()
~

T [aad~(t')a, (t)a~~a, ] ~.4()), (6)

which in analogy to the Dyson equation of the one-
particle Green's function, satisfies an equation in
time-space called the Bethe-Salpeter equa-

On8 12'15~18

different sides of the complex plane. The case of
noninteracting fermions is easily obtained,

IIiga((~) = 6;a6g~

8jÃj sfgj(,e--)a+tet~+( , e- )e- t)t)'

(-t)ll„„(t,-t') =tG, ,(t)tc„(-t')

+ Q fdt; fdeiGt (t —t)iG,t(t,—t')id,,e„,(t„t„t„t)( i)tt „, (t-t„,t., „-'
aBr6

This auxiliary function depends on two different times t and t and it is related to the polarization propa-
gator II(t) by

ll(t) = Iim II(t, -t') .t'~t

K is called the particle-hole scattering kernel" or amplitude" corresponding to the self-energy Z in the
one-particle case. The K matrix depends on four different times which can be combined to three time
differences, e.g. ,

I(.(t„t„t„t,) -=It:(t, - t„t, - t„t, - t,) .

Because of the complicated structure of the Bethe-Salpeter equation, it is clear that its Fourier trans-
formation cannot lead to an algebraic equation in ~ space, but rather to an integral equation. Introducing
the Fourier transformations as

G„(te)= fate" G„(t), ' (8a)

II't„(le', te") =- —i fdtd( I')e'" 'e' "'G, ,(t)G t(—t')— (6b)

= -t G„(~')G„(~"),

(Sc)

Xtt,(te', te", ) fd(tte -t )d(t -t )d'(t=, -t)e e, ,'' "' '

x e'" ~ '2K(»g(t) t3 t t2t t) t2)' (gd)

we finally arrive at the following integral equation:

tt(te', '- te)= te( 't,t'te- t)e(tetef ' tt(te„ te, - et, te' - te, )G(te„ te, —te)),
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The final result follows from

Il(&u) = 11(&o', (d' —(d) .d
2r (10)

Equation (9) is an integral equation in several di-
mensions and is, therefore, very difficult to solve
for any realistic physical system. In order to
proceed, the following simplifying approximation
of the particle-hole scattering kernel is common-
ly made:

+ g V+& &&n,n&(n„n&+ n„n)))C ()
= 0,

e, g

(14a)

and random-phase approximation (RPA). '0 The
coupled equations of the RPA are obtained by sub-
stituting K,»,((()) by its first-order approximation
—V, &~»~ and replacing II',», ((()) defined by Eqs. (Sb)
and (10) by its noninteracting form given in Eq. (5)
as

(()) —s(+ v.g)n)ngCa

K((o„(o,—(o, (o' —(o,) =K((o) . (11a) (~+ c~ —c~)n,n, c,

II((d) = II'(~) + II'(~)K((d) II(~) . (12)

This equation can be transformed to a non-Hermi-
tean eigenvalue problem. The zero eigenvalues of
II '((d) are the requested excitation energies and
the eigenvector coefficients yield the transition
probabilities

+[II'((o) ' —K((o}],~ ~C,~= 0. (13)

The simplest approximations for solving this set
of linear equations are the Tamm-Dancoff (TDA)

In time-space, this approximation corresponds
to18

K(tg —ts~ tg —t~, t) —t~}

=K(t, -t,)&(t, -t,)6(t, —t,). (Il.b)

Now the integration (10}can be performed and a
Dyson-type equation is obtained"

—g V+) &&n,n&(n nz+n nz)C ()=0.
N j5

If we restrict the indices i, n to particles and j,p
to holes, referring to unoccupied and occupied
states in the HF ground state, Eqs. (14) decouple
and we are led to the TDA equations

((() —s, + e&)n,n&C„+ g Vz«~, n,n&N n))C,))=0.
o~g

In the TDA only one particle-hole pair is present
at any instant of time whereas in the RPA no such
restriction is imposed. Consequently. only the lat-
ter contains a part of the ground-state correlation
energy.

A diagrammatic perturbation theory can be de-
rived for the polarization propagator via Wick's
theorem. This is done by transforming (3) into
the interaction picture"

)Il,&,(t)= g ) Jl dt, ' ' fdt (o ~T())'(t„,) 'H'(t„)aJ())a, ())a a, ) )e ),
tt

H'(t, ) = —' g V@,IV[a~(t, }a/~(t, )a,(t,)a„(t,)) .
g jk'l

(16)

~«0) is the HF ground state, H'(t, ) is the pertur-
bation operator in the interaction picture, and

N[ ] means normal product implicating that H,
is the HF operator. Our choice of the unperturbed
Hamiltonian H, provides a convenient starting
point for many-body calculations because Hp 'ls

explicitly diagonal and («, ~H'
~
«,}vanishes. Mak-

ing use of Wick's Theorem one obtains a pertur-
bation expansion for II(t) which can be expressed
in diagrams. This has been discussed by several
authors' '" "and we just present those results
here which we need for our analysis.

The graphical symbols we use are shown in Fig.
1. It is also useful to define the unperturbed one-
particle Green's function G~~,(t, —t,)

G))q(t), —t~)=(-i)~&))"[n)e(t, —t~)-n~e(t —t,)]e "&"~ 4).

I

To obtain an idea of how equations can be repre-
sented by diagrams, the Bethe-Salpeter equation
is shown in Fig. 2. The diagrams of II(t} can be
classified as connected and disconnected diagrams.
All diagrams of the polarization propagator are ob-
tained by iterating II(t, -t') in the Bethe-Salpeter
equation and performing the limit t'- t afterwards.

A

We introduce a new matrix X containing all topo-
logically distinct connected diagrams with four ex-
ternal indices (two incoming and two outgoing in-
dices} which cannot be separated into two pieces
by cutting a single particle (hole) line (reducible
diagrams). Then the K matrix contains all dia-
grams of K which cannot be separated into two
pieces by cutting a particle and a hole line at the
same time level (irreducible diagrams). Subse-
quently we give the rules to evaluate the pgth order
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iG; (t)

o )

IG; (t)

oskk oirl o k o o )&k o &rl

o J

i p( (t, ~)
FIG. 2. Graphical representation of the Bethe-Salpet-

er equation P).

0 &E k 0 ~l [

-(Tf..k((t, T)
I Jkl

(2) Multiply with a factor 2 '(-l)~(-i)' ' where
I' is the number of closed fermion loops in the
diagram, and q is the number of permutations of
two G' lines in the diagram leaving the diagram
unchanged.

(4) Integrate over all internal time variables and
sum over all internal indices.

jjkl i [k»

ICJC ICCJ

-i E;;(t,, t, )

The rules enable us to evaluate the particle-hole
scattering kernel in time-space. The Fourier
transformation of K is then obtained by using Eq.
(Sd). In order to arrive at the simplified form of
the Bethe-Salpeter equation (12) one has to use
Eq. (11b) where the 5 functions reduce the number
of independent time variables. The Fourier trans-
formation (8d} is then easily performed and the
result can directly be inserted into Eq. (12).

B. Analysis of the excitation energy in terms of
relaxation and correhtion contributions

t3

Kijkl(tI, t2, t3 tg)

FIG. 1. Definition of the graphical symbols.

contribution to the particle-hole scattering kernel
K in time-space.

(1) Draw all topologically distinct connected ir-
reducible diagrams with n(~1) interaction lines
V,&&»& and 2n —2 unperturbed Green's functions
G~o~, containing four external indices (two "in" and
two "out "}.

(2) Multiply the Green's functions and the inter-
action lines of a given diagram.

In a Green's function approach the excitation en-
ergies are determined directly. An alternative
approach is to evaluate the transition energies by
separately calculating the energies of the ground
state and the excited state. If both states are cal-
culated by an HF procedure the result is called
ASCF method. This approximation takes only the
reorganization (relaxation) of the orbitals into ac-
count. For an accurate calculation the incorpora-
tion of the correlation effects is also important
and has to be considered, too. This is usually
done by the configuration interaction (CI} method.
Thus, there are two corrections to Koopman's
theorem caused by the reorganization and the
change of correlation. A decomposition of the ex-
citation energy into these different terms is,
therefore, of interest. Our analysis of the excita-
tion energy is closely related to that of the ioniza-
tion energy which has been given by various auth-
Or S 22' 23
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Eo = &jnj+ ~»
HP

j x

—~ ~ Vu&v, n&n& -g V&„«„&n
j/gal

(1Va)

The HF ground-state energy and the HF energy
of the excited state which results upon excitation
from orbital x to orbital v, read

f ~ and Vjgt jg3 are the matrix elements of the HF
operator and of the Coulomb interaction between
the electrons calculated in the relaxed field. A

Rayleigh-Schrodinger perturbation expansion can
be made for e, and P„

zj= e + z"'+ c"'+.
j j

gjnj+ &
jAx

rr
Y jest' jg)n jng ~ Y j~ j )n j ~

jgAx fAx

(1Vb)

The HF operators for the excited state can be ex-
pressed, via that for the ground state which serves
now as the unperturbed Hamiltonian. The b,SCF
excitation energy can now easily be calculated up
to second order,

~ I V„r„&I' ~ I v. jr.»& I' ~ I V„r.,&
I'

Eg —E'j gvg &~ —6j E~ —E' j

I Vj r~) I 2~ Vjxf jx3 Vying jy)+ nj 2~ njng ~

jgx
6' j —Cx g C'g —6j

(18)

To find the correlation energy up to. second order ordinary Hayleigh-Schrodinger perturbation theory is
used. For the ground state the correlation part reads

2
c y v I Vjfral) IEo= —, Z njnyn~r ~

j&z& fj+ 6& 4'a —E

For the correlation energy of the excited state we obtain

(19a}

I Vjgras) I

njnynang+ g ~
jgag Cj+ Cg

—E'a —Eg oaf

I Vjyr. ax) I

I V~gr.ar ~ I
'

ngnan
C~+ Cg —Ca —Cg

I Vj~.a~ I'
n jna ~

+-&v —~x —~a
(19b)

The prime indicates that the hole indices do not include x and the particle indices do not include v. The
change of the correlation energy due to the excitation is now given by

I V grajl I I Vjgax) Id&, ,= 2
'

(n&HP, +H&n~, )+ ~ Z
'

(n,n&H~+H, H&n~)
par C++ Cg Ca Cs gg, 6 j+ Cg

—Ca —6x

I Vj,r.„a) I+ ~ . (S)Hg, + H)tip} ~

j a Cj+ C'~ —fx —Ca
(20)

The total excitation energy is obtained by adding the changes caused by correlation and relaxation effects

~E„,= ~E'„'„P,+~E„',.
In order to understand the meaning of the individual relaxation and correlation terms up to second order,

a diagrammatic analysis via the Bethe-Salpeter equation (9) is made. A look at Fig. 2 which is a graphical
illustration of Eq. (9) shows that II consists of an unlinked term II' and a linked term which is the multiple
integral in this equation. The unlinked term is just a product of two one-particle Green's functions, which
can be expanded individually up to second order and thus we obtain a contribution of zeroth and two differ-
ent contributions of second order. Next we consider the linked term. Since the E matrix is at least of
first order, II must be of zeroth order and II can be of order zero or one which yields a first and a sec-
ond-order term, respectively. If K is of second order both II and II are of zeroth order and we obtain
two other second-order terms. The summation of all these terms yields the polarization propagator up to
second order in the electron interaction.

Now we can use Eq. (10}, invert the polarization porpagator, and finally obtain

(21)
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where ZI2,.'(e,.) is the diagonal part of the 2nd order self-energy of the one-particle Green's function and K
is defined in Sec. IIA. There are six diagrams corresponding to Eq. (21) and they are shown in Fig. 3.
From these diagrams one obtains the following expression

I ~Vkr. &gi
'I 2

,= e, —e„-V q, + —,Q (n,n)n~+n, nqn„)
;gg, 6 + Ck —E ~ —6'g

xkf. QlJp' /2 $yVgf g~) f+ 2
— n,-n&nk+ n,-n&nk + ~ n,.n& -n&n&

gk 6g+fg-Ck —6„' ',.) g tg)-q, . -q„
Vv'trvJ3 +xilxi3 — 1 g l Vxv[ jgj l

( )
2

n ~ng n~n n n ~

u &S &~ &y ~V+ ~~ - &g —~P
(22)

The sequence of the last six terms in this equation corresponds to the sequence of diagrams shown in Fig.
3. In order to proceed we decompose Figs. 3(b), 3(c}, and 3(d) into time-ordered diagrams with distinct
restrictions on the summation indices. For Fig. 3(b} this decomposition is demonstrated in Fig. 4. The
corresponding analytical expression reads

(2)/ W 1 ~ I ~V&f th) ~ —— Y ~ ~VkCVJ] I — 1 ~ I ~VkKfj3 ~

n;n~ + ~ ink+ 2 ~ n n nk
gg 6V+ 6„—6

g
—E~ y g,g „Ck—&~ g~g~ CV+ Ek —6

g
—

&~

I V,k~;.j I2 2
I V»r. ;~& I

+ &k —f; —E„' + 2 n;ning, ~ (23)
CV+ Ck - 6;- Cg

k0 V

As can be seen by a short inspection, several contributions of Eq. (22} cancel, e.g. , the first subterm of
the last term in Eq. (22} is compensated by the first term in Eq. (23}. A closer inspection brings us back
to Egs. (18) and (20), but now we are able to relate the various sums in these equations to distinct time-
ordered diagrams. The detailed diagrammatic discussion and the physical interpretation of these diagrams
is postponed to Sec. IIIE, where we consider the case of core-valence excitations. Finally it should be
noted that Eq. (12) cannot be used here because the terms in Figs. 3(e) and 3(f) yield a wrong contribution
in this approximation.

III. THE CORE-VALENCE EXCITATION SPECTRUM

A. The Hamiltonian

In a theoretical treatment of the core problem
it is useful to take into account explicitly the spe-
cific features of deep core holes. Be@ause of the
energetic differences and strong spatial separation
of the core and valence orbitals i.t is, in general,
assumed that the Hamiltonian is core-valence sep-

I

arable. '4 This means that the core and valence
number operators N, and N„both commute with
this Hamiltonian. . The core-valence separable
Hamiltonian II,„ is obtained from the full electron-
ic Hamiltonian of Eq. (2) by omitting those terms
which contain a different number of core creation
and destruction operators a~ and a,. This has been
discussed in great detail in Ref. 24, and we shall
only give a short review here.

Assuming that the core orbitals are strongly lo-
calized at the atomic sites, the probability for a

v)k vlk VIE

V sk X

v aL

(c)

v)

"x

j vl

v&&

(e)

v 13
II' x

(X I

(a)

kox

v~
i3

v&
i, jox

(e)

Ij+v, k4x

{c)

FIG. 3. Feynman diagrams needed for the calculation
of the excitation energy up to second order.

FIG. 4. Diagrammatic decomposition of Fig. 3(b) ac-
cording to Eq. (23).
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H, =H, +H, + W'„+F„. (24)

hole propagation from P~ to p„ is very low even
in the case of nearly degenerate orbitals. In case
of degenerate orbiials one can make a linear com-
bination of the core orbitals and transform into a
basis of strongly localized orbitals. Thus we can
use a Hamiltonian with only a single core hole
present. This Hamiltonian reads

(25c)

does not preserve the spin of the core electrons
and is referred to as the spin-flip term. If F„
is neglected, the eigenfunctions of H„are no

longer eigenfunctions of S'. The last term W'„
contains the remaining (spin-preserving} core-
valence interaction

H, contains only core interactions and is given by

II,= e,(n, +n-,)+ V„„n,n-, tv„(n, +n-,), (25a}
W„= -(1-A.)g V,.„„,aim, +(c-v). (25d)

where ~,= a~a, is the core number operator of e
spin and n-, denotes the same with P spin. The
valence interaction term reads

H = Z +isi~*-Z ~ Z ~iariap4 ~~ps
)

+ 2 VOI, ga]agagaI y

jjkl
(25b}

where the indices i, j, k, and ] do not include the
core index any more. The operator

Because the spin-flip term contains only exchange
Coulomb integrals between core and valence or-
bitals it is small and can be neglected in many
cases of interest. The effect of the spin-flip term
can be incorporated subsequently in the calcula-
tion by using the eigenfunctions of the Hamilton-
ian H„=H, + H, + 8'„and diagonalizing matrices
of very low dimensions including only those nearly
degenerate states which are coupled via F„. In
the fol.lowing analysis we neglect the spin-Qip
term F„.

B. The Bethe-Salpeter equation

A calculation of the core polarization propagator can be performed, at least theoretically, by using the
Hamiltonian H„of Eq. (24) and solving the Bethe-Salpeter equation (9). In Ref. 24 it is shown that the
Hamiltonian H„ leads to a conservation of the core index at every vertex, (interaction line}. This means
that the core Green's function and the core-polarization propagator are. both diagonal in the core index.
Incorporating this result into the Bethe-Salpeter equation (9) we obtain for the core-valence excitation the
following equation:

(- i)n,.„.(t, -~) = iG„(t)iG..(-&)
+OO

+ g dtgdt$ dt's „dtiiG, (t-t, )i G„(t g T)-
Iv) ~o 0 t4

& iK.„,(t, -t„t,-t„t,-t,){-i)n„,.(t„-t,). (26)

It can be seen that the integration limits which in-
volve the core interactions (t, and t4) are re-
stricted to times between 0 and y while the other
integration limits (t, and t, ) have no such restric-
tion. The illustration of Eq. (26) can be obtained
from Fig. 2 by incorporating the conservation of
the core index. Thus, the only diagrams contri-
buting in pgth order to II„~, are those which con-
tain (n+1) or less successive core lines iG,'. No
additional core lines are allowed. This is valid
for both linked and unlinked diagrams.

Equation (26) is certainly very difficult to solve
because' it is still a multidimensional integral
equation in t space. If we use again approxima-
tion (11) many terms vanish, since the vilence
interactions carrying an external index (a or P)
are restricted to the same time interval as the
core interactions. In this case a Fourier trans--

I

formation to an algebraic equation in ~ space is
possible and we obtain

n„„(&)= n'„„(&)+g n'„,(&)K, ,(&)n„„(&)~

(2V)

If we substitute K,i,{&o) in Eq. (2V) by its first-
order approximation -V „~„and replace n'„~,(&o)

by the noninteracting case of Eq. (4) the Tamm-
Dancoff Approximation (TDA) is again obtained. The
(TDA) eigenvalue equation is Hermitian and reads

(& —s, + e,)R,C„+Q V),(~,)H,R C,=0, (28)

where i and e refer to particles. The dimension
of the corresponding matrix is very small and
equals the number of unoccupied HF orbitals. Be-
cause the core index always refers to a hole it is
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obvious that the time ordering of the correspond-
ing diagrams cannot be reversed. Thus, the ran-
dom-phase approximation is identical to the
Tamm-Dancoff approximation.

In E(I. (28) only a part of the valence relaxation
is considered. The use of G lines instead of G'
lines especially for the core Green's function in
II' would be an essential step in obtaining a more
sophisticated approximation. The exact core
Green's function takes into account the important
term due to the change of relaxation of the va-
lence electrons in the presence of a core hole.

C. Factorization theorem

A theoretical treatment of core-valence excita-
tions via the simplified Bethe-Salpeter E(ls. (27)
and (28) is not (Iuite satisfactory because of the
above-mentioned neglection of terms. We, there-
fore, return to the more general Bethe-Salpeter
e(luation (26). In the case of core-valence excita-
tions it can be shown by using the Hamiltonian
H„of E(I. (24) without the spin-flip term that the
polarization propagator satisfies an important
factorization theorem (for an analytical proof of
this theorem, see Appendix A)

(-i)II„„(t,-r)=ip„(t; v)iG„( 7), -
where G„(-v) is the core Green's function and

p,&(t; y) is a valence Green's function with a time-
dependent core potential. y is a parameter for
this function and corresponds to the core-hole
"lifetime" which should not be confused with the
natural lifetime.

The factorization t:heorem (29) states that the
core-valence excitation process can be decom-
posed into a product of two independent processes,
namely a core ionization and a valence attachment
in the field of the care potential. This decomposi-
tion i.s done at the cost of introducing an additional
time-dependent potential into the Hamiltonian de-
scribing the valence attachment. In addition to
the usual valence interaction potential between
the electrons we have a time-dependent core po-
tential which reads

(29)

(30)

where V, is just the Coulomb potential plus ex-
change of the core hole

I'~ = -Q ~~.().)('~&i &a~&i) -~ (31)
A, l

The physical interpretation of the factorization
theorem can now be expressed as follows. At
time 0 a core hole c and a valence particle j are
simultaneously created. The core hole propagates
through the system independently until it is anni-
hilated at time 7. This process is described by

where

(32)

For the description of the core-valence excita-
tions we create a core-hole valence-particle pair
at time 0 and annihilate- it again at time t. This is
equivalent to the propagation of a density distur-
bance from one point to another. A Fourier trans-
formation of Eq. (32) can formally be done,

II„~,(&)= (-i)
2

—p,&(~')G„((o' —(o),
d&~

(33)

where p,&(&u} is the Fourier transform of p,.&(t),

PP(tP)=, J&P PP(P) ~P (34)

In & space the core polarization propagator is de-
termined by a convolution of the valence Green's
function p,&((d) with the core Green's function
G„(~). It is important to notice that p,.&(~) has in
general a very complicated spectral representa-
tion. This becomes clear by looking at Appendix
C [see E(I. (C12)], where some properties of

p,&(t;q-) are derived. More useful, however, is a
glance at the example of Sec. IV where a Lehmann
representation for p(t) has been derived explicitly,
see E(I. (V2). Even in this simple three-level mod-
el, p(~) has infinitely many poles and the convolu-
tion of the twa one-particle Green's functions to
11(~) leads to a cancellation of almost all poles.

The core Green's function G„(-r) appearing in
the factorization theorem (29) has been discussed
in Ref. 24. Starting from the Hamiltonian H„(29)
without the spin-flip term E„a linked cluster the-
orem can be proved

G, (-y)=G,',(-v)e '"=ie(T)e""e ' (35)

the diagonal core Green's function G„(-y}. The
valence particle j, where j can refer to a HF hole
or particle, propagates through the system in the
field of the core potential (31). This potential is
turned on between the times 0 and y while the va-
lence particle j propagates between 0 and t. Thus,
the valence attachment process depends on two
different times t and y, whereby the latter has the
meaning of a parameter accounting for the change
in the interaction term while the core hole is
present. The physical information of interest are
the core-valence excitation energies and the cor-
responding intensities. These are contained in
the core polarization propagator II,,&,(t) which is
given by

II„I,(f) = lim II„&,(f, 7)-
&~t
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iG (t) (q «~ je&«ta e-&Htat jy«) (39)

This expression can be interpreted in the Schro-
dinger picture as follows. " Starting from the HF
ground state jeo"~& at t'= -~ the state propagates
until t'= 0 with a time-development operator in-
cluding only interactions bebveen the valence
electrons. In this way we obtain the ground state
j+o«~&. Next we create a particle in orbital p&.

The new state propagaies with the time-develop-
ment operator e '~' until t

jA)= e 'H'af jeo«~&.

On the other side, the HF ground state j@o«~& can
propagate from t'=+ until t'= 0 yielding again
the ground state j4o«~&. The system propagates
then with e '~' until t followed by the creation of
a particle in orbital p,

j» ate EHt jy«~&

C(-g) is the sum of all linked topologically non-
equivalent diagrams containing at least one core
interaction point. In ~th order the diagrams can
be drawn from s,(~1}interaction points and n,
=n-n, wiggly lines connected via (2n z-,)iG (va-
lence) lines. The wiggly lines and the interaction
points must be treated differently. Whereas the
time level of the core interaction points is re- .

stricted to the time interval (0, v), the time level
of a wiggly line is, as usual, between -~ and+~.

In Eq. (29) we have also introduced the valence
Green's function p,~(t; v) with a time-dependent
core potential. This function is rather unusual
and it is, therefore. , necessary to discuss it in
detaiL A Heisenberg representation of p,&(t; v')

has been derived in Appendix B

( )
&e«~(r) I T[a)(t)a~] iso &

(e,"( ) I e,"&

j%o«~& is the exact valence ground state developed
from the unperturbed ground state without the
time-dependent core potential being present.
j% o«( v)} is the corresponding state developed in

the field of the time-dependent core potential. The
operators in the Heisenberg picture are defined by

a,(t) = U,'(t)a, U,(t), (3'I)

where U,(t) is the general time-development op-
erator which in the special case of a time-inde-
pendent Hamiltonian is identical to e '~'.

Equation (36) can be compared to the usual defi-
nition of a one-particle valence Green's function'

( )
&e«~l T[a,(t)a,'] Ieo«~&

(38)sj (g« I g«~)

Normalizing the ground state (4o«~ j% «~& = 1 and
considering only the time ordering t ~ 0 we obtain

The Green's function iG,~(t) is identical to (8 jA)
which is just the probability amplitude that the
state of the system at t, when a particle in p~
was added to the ground state at 0, is the state
with one particle in p, added to the ground state
at time t." The other time ordering (t ~ 0} can be
interpreted in the same way.

In complete analogy we can discuss the Green's
function p,&(t;r) of Eq. (36). Starting from the HF
.ground state

j 4,"~& at t'= -~ the state propagates
until t'= 0 with the time-development operator in-
cluding, in addition to the interactions between the
valence electrons, the time-dependent core poten-
tial of Eqs. (30) and (31). During this time inter-
val, however, the core-interaction potential is not
switched on and thus we obtain the valence ground
state jeo«~& again. Then a particle in orbital QJ
is added to the system. This state propagates
with the general time-devleopment operator U,(t}
until t

where (40}

U (+ao ao}—g
x. dt's' '-' dt„T V t~ '''V t„

~00 ~00

(41)
is the time-development operator which includes,
in addition to the usual interaction potential be-
tween the valence electrons, the time-dependent
core potential of Eqs. (30) and (31). Obviously
all theorems which have been proven for the usual
time-development operator without an explicitly
time-dependent potential remain true for the gen-
eral operator U, (T„T,) (Ref. 10) especially the
Gell-Mann and Low theorem and Wick's theorem.
Hence it follows that p,~(t; y) is a one-particle

jA&= U,(t)aJ je«.&.

On the other side, the HF ground state j@~~& can
propagate from t'=+ until t'= 0 where the time-
dependent core potential is switched on between
the times 0 and z yielding the ground state
j%o«~(v)&. The system propagates with U,(t} until
t and then a particle is created in orbital p,

j»= a', U, (t) je."(v)&.

The Green's function ipse(t; r) is identical to
(B jA) which can thus be interpreted analogously
to iG,.&(t) as a probability amplitude. "

It is also useful to interpret the valence Green's
function p,&(t; v) in the interaction picture [Eq.
(A18) of Appendix A]

(e,« I T[U,(+~, -~)a,(t)a)] I C,«'&

&e,"I U,(+,— ) I c,"&
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Green's functions which can be interpreted in
terms of diagrams. In Fig. 1 me have introduced
the required graphical symbols. Two types of
interactions can appear, namely the usual valence
interaction miggle V]g(»] and the core-interaction
point V,-,gg, ) Starting from the noninteracting HF
valence ground state ~e,"~) at f'= -~ the system
can perform aQ kinds of interactions V,~,», be-
tween the valence electrons during its propagation
until t'=0. Then a particle is created in P~ and
between 0 and r both types of interactions V,&&~„

and V, fy ) can appear, i.e. , during this time
interval the system contains the additional core
potential. At f'= t, a particle is annihilated in p,.
and from t'= z on again only the valence interac-
tions V,&&»& are permitted. In the limes t'=+
the noninteracting ground state

~
Co~) is again ob-

tained. Thus it is clear that although the time
dependence of the core potential leads to a math-
ematically complicated theory for the valence
Green's function p, &(t; y} the diagrammatic inter-
pretation remains both simple and illustrative.

D. Diagrammatic analysis of p(t; r)

(43)

In Sec. IIIC we have introduced the valence Green's function p„(t;y) with a time-dependent core poten-
tial. The knowledge of this Green's function together with the core Green's function G„(-y) enables us to
calculate the core-valence excitation spectrum. It is, therefore, important to derive an expression mhich
allows us to calculate the valence Green's function p,&(t;7) systematically. From E(l. (36) it is clear that

p,&(t;y) can be written as

ip,~(t;v) = (eo" ~T[U,(+,— )a,(t)aJ'] ~e,"~)~, (42)

where the index L implies that we have to consider only linked terms (linked cluster theorem"). Equation
(42) is readily visualized as a perturbational expansion of p,&(t; z),

ip, ~((; r) Q) I=dt; dt„(e,"
~

[)p(t, ) ' v(t„)a(t)a, ] ~e,
")~,nt M Oo

where V(t, ) includes, in addition to the usual
interaction potential between the valence elec-
trons, the time-dependent core potential of Eqs.
(30}and (31). Wick's theorem enables us to eval-
uate the exact valence Green's function p,~(f; 7) as
a perturbation expression involving only wholly
contracted operators a„(t),a„(t) in the interaction
picture. Since our potential is explicitly time-de-
pendent, we have to pay attention to the integra-
tion limits. Although E(I. (43) allows us to calcu-
late the various contributions to p,z(t; v ) in each
order of the perturbation theory in a straightfor-
ward way it is much easier to use a diagrammatic
approach. The diagrams of p„(t;z) are readily.
obtained from the diagrams of 1I„~,(t, -z) by pro-
jecting out the core Green's function G„(-y), i.e. ,
via the use of the factorization theorem (29}. The
diagrammatic perturbation expansion of p,~(t; 7)
up to second order is depicted in Fig. 5. The dia-
grams are not time ordered. It is important to
note that in a calculation of p,l(t; r} via a pertur-

I

bation expansion, mhere we calculate the contri-
bution of each diagram individually, we may a pri-
ori substitute y by t in each diagram. The core-
hole "lifetime" is then equal to g.

Obviously the function p,~(t; r) consists in zth
order of all linked diagrams with g,(~0) core-
interaction points and n, = n -n, (~0) valence inter-
action wiggles starting mith a G line and ending
with a G' line. We may thus write

p(~(t; t)= G,~(t)+ Q J dt)dt2G) (t —t~)
o~g

x z~~(t„ t„.T)G~,(t,) .
(44)

A

The self-energy part Z introduced in this way con-
tains all the diagrams of p with the tmo external
G' lines removed. As an illustration we sham

A
three examples of time-ordered diagrams of 5
in Fig. 6. Figures 6(a), 6(b), and 6(c) result

I

Js

il
+ $l + q~ +

t& igi
II

t &kj
I

FIG. 5. Diagrammatic expansion of p(t; 7).

(0) (b) (c)
FIG. 6. Three time-ordered diagrams of Z. The time

axis is shown on the left.
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6(a), is equal tofrom the second, third, and fourth diagram shown
on the right-hand side of the equation in Fig. 5,
respectively E.ach of the diagrams Fig. 6(b} and
6(c) is, however, only one of the twb possible
time-ordered diagrams obtainable from a non-
time-ordered diagram of second order.

Using Fig. 1 and the corresponding explication
in Sec. IIA a translation of these diagrams is eas-
ily performed. The first-order diagram, Fig.

I

g(;)V„„,,.V „,{„)(.t. t),f d,tG,'(t —t, )' G(t, '-t )8( —'t )8(t,')B'(t, —t). ' ,

i V(Gg~, )e(7' t-))e(t))i5(t~ —t2) .
Figure 6(b) yields the following contribution:

pi V,,g 8)iG(dtd(t, —t,)i VNBL)8)

x e(~- t,)e(t,)e(T t,)e(t, t,) .
Finally we obtain for Fig. 6(c),

z,~(t, t'p v) = z,~(t p
t', r)+ Q Jl dt, dt, z, (t p t, ;~)G'~(t, t,)z~, (-tap t'p r) + ~ ~ ~ .

agP

Inserting this into Eq. (44) we finally obtain for p,&(t; v) the following Dyson equation:

t

It is clear that the time restriction of the core potential complicates the problem of evaluating the dia-
grams. Analogously to the usual textbook procedure for time-independent potentials we can derive a Dy-
son equation also for the Green's function p&&. We first define the proper (or irreducible) self-energy
part 3 by the sum of all those diagrams of Z that cannot be separated into two pieces by cutting a single
free Green's function line. For example, Figs. 6(a) and 6(c) contain irreducible diagrams and consequent-
ly belong to Z, while Fig. 6(b} is reducible and does not belong to Z. It follows from these definitions that
the self-energy Z consists of the sum of all possible repetitions of the proper self-energy Z (Ref. 10}

p„(t;~) = G'„(t) +Q Jt dt~dt~G ) (t - t, )Z z(t„t, ; r)p+(t;, v) .
fMyB

(46)

This is an integral equation for the valence Green s function p,&(t; r) where we have to bear in mind that,
in general, the irreducible self-energy Z depends in a complicated way on the core hole "lifetime". The
time dependence of Z does not only occur through the time difference t, —t„but involves also combina-
tions of t~ and t2 with z. In Eq. (46), the limit z t can only be performed after the calculation of p&&(t;v).
In the field of the external core hole potential, it is not possible to convert Eq. (46) into an algebraic
equation in {d space as can be done for the commonly used Dyson equation.

The irreducible self-energy'can be decomposed according to

Z, ,(tp t', ~) = Z f,(tp t', r)+ Z"„(t-t'), (4'I)

where Z" contains all the diagrams of Z without any core-interaction points and Z~ contains the diagrams
with at least one core interaction. For example, Pigs. 6(a} and 6(c) belong to Z» and Fig. S(b} belongs to
Z". Obviously Z" depends only on the time difference t —t'. It can now be shown that Eq. (46) is equivalent
to the pair of equations

G)~(t}=G,~(t)+ Jl dt)dt, G) (t —t~)Z„"{)(t~—t2)G~~(t2),
eg

(4Sa)

p„(t;r)=G„(t)+P Jdtdt G,.{t t)Z„",(t„t;,t)p„(t;-, t), .
e~g

implying that we may determine p,~(t; r) in two steps. At first the Green s function G,~(t) is evaluated.
This is just the usual Green's function involving only the valence electrons and their interactions. An
actual calculation of G,~(t) may be performed in {t) space. Then p z(t; r) is evaluated in t s.pace via Eq.
(4Sb}.

There is an alternative decomposition of Z, namely,

Z„(t, t', ~) = Z'„(t, t', r)+ Zs, (t, t', ~). (49)

(50a}

is that part of the irreducible self-energy containing all the diagrams exhibiting core interaction points
only, while Z contains the rest. In this case the Dyson equation (46} is equivalent to the following equa-
tions:

pgt(t T') G~t(t)+g f dt dt G~ {t t )2 g(t t T')p„(t;r)',
e, g
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py(t ) pg(f T).I fdt ct p .(t', , 1;—v),E"„()„t;v),p„(t;r), (50b)
a, a

In Eq. (50a) we have introduced p, ,(t; r) containing all diagrams of p,&(t; q. -) without any valence interaction
wiggle. p, &(t; y) has already the correct analytical time structure exhibited by the exact function p,~(t;g).
The diagrams of the self-energy part Z" can be visualized as diagrams containing only valence interaction
wiggles, but the Green's function lines connecting these wiggles have to be interpreted as p lines. Thus,
we obtain the diagrams of Z~ from the diagrams of Z" by substituting all G lines by p' lines.

It is clear that all equations for p, &(t; r). are very complicated to solve at least for most realistic physical
systems. To illustrate the principle of working with these equations we consider here a simple case and
substitute Z,&

by its first-order contribution -V,,&z,» where i,j refer to particle indices (for another ex-
ample, see also Sec. IV). In this case we can obtain for g„.an equation depending only on t by using Eq.
(46) and performing r- t first:

t

p,j(t) = G)I(t) -Q dt, G,. (t - t, )V,) (),)p)),(t,) .
e, g. 0

This equation can easily be transformed to ~ space and finally leads to the following set of Hermitian
eigenvalue equations for the poles and residues of p

(51)

(52)((d —c,)n, C., +Q. V„, „n,n C =0.

This low-level result reminds us of the TDA equation (28). Ths core-valence excitation energies of Eq.
(28) are just the electron-attachment energies obtained as eigenvalues of Eq. (52) shifted by the core or
bital energy q,.

E. Analysis of the core-valence excitation energy

The core-valence excitation energy is a special case of the general excitation energy in Sec. IIB and i.t
is obtained by using the Hamiltonian H„of Eq. (24) instead of the full Hamiltonian (2). Performing the
same procedure as has been described in Sec. IIB we obtain for the hSCF energy up to second order the
following expression:

sQp ~ I Viv[ jv] I
' V I Vic[jc] I

'
i j&c ~j ~i iAv j

I Vve[ ie] I ( ~Vie[ je]Vf v[ iv]
ni n in j ~

Ev —E'i ij Ej —6';
(53)

Correspondingly the correlation energy is given

by

vj[kl] &IVE, ,= 2
'

njnoHl
ill C'v+ Cj —EP —6i

I Vvj[al] I'
+ 2 ~ njnInl p

jIt.l Cv+ Cj
(54)

where the prime indicates that the summation ex-
cludes the core index c and the valence index v.
The total core-valence excitation energy is again
given by

These results can also be obtained from the gen-
eral expressions for the excitation energies Eqs.
(18) and (20) by setting x —= c and taking into account
the core-valence separability. If we simply set
~-=c in Eqs. (18) and (20), which corresponds to
the use of the full Hamiltonian (2}, we obtain the
exact second-order core-valence excitation ener-

gies. Then it is easily shown that the only relaxa-
tion term which is neglected in Eq. (53) is given
by

I Vjv[cv] I'
nj ~

j~c ~j ~e

The matrix elements Vj [ ] appearing in the nu-
mery, tor of this expression are small due to the
weak overlap of the valence orbitals with the core
orbital. In addition, the denominator is always
rather large because of the great energetic dif-
ference between the valence. orbital j and the core
orbital c. For the correlation energy it can be
seen that the use of H„(24} leads to the neglect of
the following terms

I I V I'ij[A'c] I
—, Z

'
(n,.n,n, + np, n, )

ga &i+ &j —&a —&c

~I I Viv[ck] I

+Z
' (n,n, +n,n,},

g ~ +g
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FIG. 7. Time-ordered diagrams of the core-valence
excitation energy ~~ „. (a)-(h) represent relaxation
terms and (i) and (j) represent correlation terms.

where the argument for neglecting these sums is
the same as above. Therefore, we can draw the
following conclusion: If H„of Eq. (24) is used
instead of the full Hamiltonian (2) then several
terms are neglected. These terms yield very
small contributions reflecting the accuracy of II,„.
in describing core-valence excitation processes.

A diagrammatic analysis can easily be per- --:
formed by using the same arguments as in Sec.
II B. In this way one can relate the analytical ex-
pressions to simple physical processes. All
time-ordered diagrams contributing to b,E, , up
to second order are shown in Fig. V. They can
be interpreted as follows. Figure V(a) represents
the first-order core-valence interaction V, g

containing the Coulomb interaction between the oc-
cupied valence-orbital v and the nonoccupied core-
orbital plus the corresponding exchange term.
This contribution shifts the zeroth-order excita-
tion energy E, —e, to lower energies. In first or-
der the particles and holes remain "static" which
means they remain in their unperturbed stationary
states (frozen orbitals). But in reality their mo-
tion is perturbed by the ionized or attached elec-
tron. Thus they act in a "dynamic" rather than a
static way, i.e. , in a time-dependent fashion. The
simplest processes showing this effect appear in
second order.

Let us consider the neutral system and create a
core hole. Then the orbitals reorganize in the
field of the core hole via particle-hole excitations
(j-i). This process corresponds to Figs. 7(c) and

V(d). Next we attach an additional electron to the
orbital v in the neutral system. Then this orbital
is occupied and the other orbitals relax in the
presence of this electron via particle-hole excita-
tions (joe-i} This re.organization is described

by Fig. V(b) and is equal to the first sumof Eq.
(53}. The term with j= c is missing due to the
choice of our Hamiltonian. Next we consider the
case where the core electron c is excited to the
valence-orbital v. This means the core-hole and
the valence-particle are simultaneously present in
the system. Figures V(e)-V(h} correspond to this
process. Due to the presence of Fig. V(e} the re-
laxation of the valence-orbital v is subtracted
again. Then the reorganization-of all orbitals ex-
cept v in the presence of the core-hole [Fig. V(c)]
is equal to the second sum of Eq. (53). The relax-
ation of the valence-orbital v in the presence of
the core hole is incorporated in our calculation by
Fig. V(f) describing the simultaneous propagation
of the particle v and the hole c. v and c interact
with one another leading to excitation v-i tv.
This means the valence-orbital v does not relax as
an occupied orbital because the two contributions
of Figs. V(d) and 7(e) canceL The orbital v re-
laxes, however, as an unoccupied orbital [Fig.
V(f)] and the corresponding analytical expression
is given by the third sum of Eq. (53). It should be
noted that the choice of the Hamiltonian H of Eq.
(2) instead of H„of Eq. (24) leads to completely
analogous arguments for the relaxation of the
core-orbital c.

In addition to the reorganization of the orbitals
in the presence of the core-hole or the valence-
particle, respectively, we have an interference
term describing the orbital relaxation when a
core-hole c and a valence-particle v are simul-
taneously present. While in Fig. 7(b) the particle-
hole pair is both created or annihilated by the
interaction with the electron in orbital v leading to
a term which is quadratic in the valence interac-
tion(V, ), and in Fig. 7(c) this happens via the
core interaction (V,) there is an additional inter-
ference term (V,V,) represented by Fig. V(g) and
V(h). This can be visualized as follows: In Fig.
V(g) an electron is excited from orbital j to orbi-
tal i by the interaction with the electron in the va-
lence-orbital v (V,). This particle-hole pair prop-
agates through the system until it is annihilated by
the interaction with the core hole (V,). Analogous-
ly, in Fig. 7(h) the particle-hole pair is created
by the core potential (V,) and destructed by the
interaction with the electron in orbital v (V,).
Both diagrams correspond to the same analytical
expression. .The interference term is given by the
last sum of-Eq. (53}. Hence, it is clear that the
interaction potential describing the orbital relaxa-
tion is given by the sum of the valence interaction
V, and the core interaction V,.

In addition to the above-discussed reorganiza-
tion terms there are two terms accounting for the
exchange -of the correlation energy illustrated by
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Figs. V(i) and '7(j). Owing to the occupation of the
orbital v there is a term which takes into account
the additional pair correlation energies. It is
represented by Fig. V(j) and is equal to the second
sum of Eq. (54). Hence, in the case of core-va-
lence excitations the lowest order correction to
the ground-state correlation energy occurs in sec-
ond order while for core ionizations it occurs in
third order. In addition, there is a term account-
ing for the changes in the remaining pair corre-
lations due to reorganizations (pair relaxation).
This process corresponds to Fig. '7(i}. The ana-
lytical expression is given by the first sum of Eq.
(54). Finally it should be mentioned that the ap-
proximation of Eq. (11) is not applicable because
Figs. V(e), V(g), and V(h) yield a wrong contribu-
tion in this case.

A general decomposition of higher order dia-

grams can be performed using the factorization
theorem for the core polarization propagator.
The one-particle Green's function G consists of
an unperturbed term G', a relaxation term g, and
a correlation term K,

G= G +A+K.

According to this decomposition the core-polari-
zation propagator can be written as

ll= (G,'+ R, +K,)«(G,'+ R, + K,),
where the product * means either a simple pro-
duct (unlinked diagrams) or a connection via the
core potential (linked diagrams}. The indices c
and v refer to core and valence, respectively. II
can now be written as the sum of a zeroth-order
term (HF), a relaxation term and a correlation
term according to

II= G, ' G, +(G,«R, +R,' G, +R,"R,)+(G,«K, +K, ' G, +R,«K, +K,«R, +K,«K„),

where the dot denotes a simple product (unlinked
diagrams). The diagrams of R, leading to un-
linked diagrams of II are at least of second order,
whereas for a linked diagram of II they can be of
first order. Analogously, X, must be at least of
second or third order to yield unlinked or linked
diagrams of fI, respectively. The diagrams of
R (or K,) yield, on the other hand, unlinked as
well as linked diagrams of II if they are of at
least second (or third) order. This order analy-

I

sis is illustrated in Table I. In the last column
we have listed some examples of second-order
diagrams. Higher-order diagrams can now easily
be constructed from Table I as, e.g. , the third-
order diagrams of II originating from (R, R«,)~
which is drawn in Fig. 8. It is seen that several
new classes of diagrams have to be considered if
the analytical decomposition of the core-valence
excitation energy is extended beyond second-or-
der.

TABLE I. Decomposition of the core polarization propagator into the various relaxation
and correlation parts.

Contribution
to II

Reorganization and
correlation

Linked and
unlinked

Order
(&~)

Examples (second order)
(see Fig. 7)

Gc 'Gov

6~0«R,

R «G

Rc + Rv'

HF =0

(a), (e), (f), (g), (h)

(c), (d)

Gco +Kg

Kc 'Gv~

Re*Ex

C
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"c
1P C

+ ~ +

1I C

FIG. 8. Example of diagrams of II which belong to
(8 +R„)z .

IV. AN ILLUSTRATIVE EXAMPLE

H„= E,n, +4,n +E„n„

In order to illustrate the factorization theorem
we present an exact calculation of the core polar-
ization propagator for a simple model. Consider
a system consisting of a core orbital (tt„an occu-
pied valence orbital (tt„and an unoccupied orbital

Our Hamiltonian readsM

where a = (a'+ 4V'}"'.
The diagrammatic approach to this problem is

not so easy to carry out. This is not at all sur-
prising. The many-body techniques have been de-
rived for the approximate solution of "many-state"
problem, s involving large numbers of electrons for
which the configuration-interaction method is not
attractive or even inapplicable. The diagrammatic
solution of a simple "two-state" system is ex-
tremely complicated in comparison to the quad-
ratic equation arising in the configuration-inter-
action approach. The diagrams of II up to the 4th
order in V are shown for our model system in

Fig. 9. Ne may proceed by introducing the core-
interaction points into the diagrams. In this way
most of the diagrams become unlinked such that we
can draw the expansion as a product of two sums
of linked diagrams. This factorization is demon-
strated in Fig. 10 and leads to the factorization
theorem (29}:

—Vg(l -n, )(aiba~+ aiba~),
a, g

(55)
(-i)11„,„,(t}= ip (t)iG,.(-t), (59)

where the limit z to t has already been taken and

where c(, P denote the spin indices. The second
term describes the interaction between a particle
and a hole due to the core hole potential. Obvi-
ously this Hamiltonian contains no ground-state
correlation.

Let us now consider the case of core-valence
excitations. The excited state is described by
the two configurations

p„„(t)= lim p„„(t;i ) . (60)

The function p„„(t;i.) is an element of the matrix
p(t; i.) which satisfies the Dyson equation (46)

p(t;|)=G'(tl+ fdt, fdt G'(t t)E(t„t;t-)p(t;, t),,

(61)

~1&= 2 "'(a„'.a,.+ a„',a„) ie.&

(56)

where the quantities represent 2x 2 matrices

p (t;i.)p,„(t;i.) '

.P„.(t;i.)P (t;1.) . '

where ~4,) denotes the noncorrelated ground state.
Since the configurational space is very limited,
the configuration-interaction approach is rather
useful and the solution of our problem is obtained
by diagonalizing the following matrix:

'G.'(t) 0
G (t) 0 GO(t}

z(t,-, t,) = 6(t, -t,)e(T t,)e(t,).
(5'I)A -V -g, + g„+6

6 denotes the zeroth-order particle-hole excita-
tion energy z„-z,. The ground-state energy E,
= 2g, + 2q, has been subtracted from the diagonal
elements. The corr esponding transition probabil-
ities are identical to the squares of the first ele-
ment of the eigenvectors. Thus, the core-polari-
zation propagator II„,„,(&o) reads

p, „(t;r)= fdt G (t —t )PB(v—t )G(t )p (t; r)' . „

(68a)

This yields a coupled set of integral equations.
Since we are interested in the function p (t; i.) we
have to solve the following equations:

p„„(t;~) = G'„(t)

+ dt, G„t—t Ve w-t 8 t p,„t;7',

( )
(a+a)/2a

(d+ e, —e„—-'(a —b, )+iii

(a —n)/2a
(u+ e, —e„——'(a+a)+iiI ' (58)

(68b)

Equations (68a} and (63b) can be combined to the
integral equation
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11C
1PC 1FC 1/C

+)L

1PC
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+JE pic &I +
~lC

1PC
1IC 1FC, ~~C 1PC 1FC

IP C 1/ C

lFC

IIC

1PC

i)C+ ic+

1l C

1/C IQ l&C
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18 C
1/C . 1/C

iP C

1lC

~&C

1/ C

jlC

dE

+ ii iiC +
j

1F C

1FC

/C +
FC

1IC

iFC

'C

/C

'IPC

FIG. 9. Diagrammatic expansion of H„~«(t, -7) up to fourth order for the model.

t T

p„„(t;r) = G„(t)+ V' dt, dt, G„(t —f, )
0 t~

x G.'(f, f,)p„„(f;,7),
(64)

where we have restricted ourselves to y ~ t. The
solution of Eq. (64) has been given in Ref. 24 and

is obtained by converting it into a differential
equation. The final result reads

p (f' y) = e j&so+~u&j/Q (&)&jaj/2+If (&)e-jaj/2] (65)

where the coefficients K,.(z) are determined by in-
serting Eq. (65) into the integral equation (64).
When z-t, Eq. (60) reads

1r C

+ )i
E ~ ~ ~

JL&j

C
Q inc

1

X ~~ + "~
~

+ ~~ c

c 1)Q

&P C 1

+ &FC I +

1r C iP C

FIG. 10. Demonstration of the factorization theorem. The introduction of the core interaction point (see Fig. 1) en-
ables us to write the diagrams of & as products of two one-particle Green's functions. In the core Green's function we
have used the interaction wiggle to demonstrate the difference to the other Green's function.
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ip (t) = Qae &&so+en&t/ [(a+ t&)e"'/'+(a t-s}e '"/']
(66)

It is obvious that the rather simple dependence of
p„„(t;y) on the variable t has been destroyed by the
coefficients Kt(t) which originate from the time-
dependent core potential. p„„(t) has indeed a very
complicated analytical structure.

The core Green's function G„(t) is obtained by
using the linked cluster theorem~ (35)

G (t)=ie(-t)e "c'ec"' (6V)

The explicit calculation has been performed in
Ref. 24. The final expression for the core Green's
function reads

~ r i e~ttl +~ g( -a+ )e ~ + f(,-~- )t ~ &(,-a)t I (68)

A trivial a,lgebraic manipulation shows that the core Green's function can be factorized according to

i G (-t) = -e(t) ~

et& e~c+ /a2)t+ et(sc ~- a/nt &[(a+t )etat/2+ (a t, )e tt/a2-]'a+a a-h.
cc

& 4a2 . 4a2 (69)

where the second factor in brackets exactly cancels the denominator of p„„(t). The core polarization prop-
agator is now given by

(t) ie( a+ e &( - sc&en&&)a/2]t + et(so-en-&a+a &/ n&t
acne i, 3a 2a

(VO)

A Fourier transformation recovers E(I. (58).
It is interesting to convert E&l. (59} to «) space

and insert the transformed Green's functions.
While the Fourier transformation of the core
Green's function is trivial, the valence Green's
function p„„(t) has a rather complicated spectral
representation The .denominator of E(l. (66) can
be converted to

tt/n I-
a+4 a+4 j

Next we expand the term in brackets and obtain
for p„„(t)

ip„„(t)= e(t)

( I}n
~

-&t&soeenea)/nean3t
&a-a "
&a+ t&

The Fourier transformation yields

p (&d) —I/&d (V3)

for (d-~. Obviously nearly all poles must cancel
when p„„(&u) is convoluted with G„(«&) to obtain the
polarization function Il„,„,(&d). This is guaranteed
by the sign change. It is interesting to note that

(-I)"
f

a+ 6 „.0 M —
~ g, + g„+a - an+ ig

Thus, we have found that already in this simple
model the valence Green's function p„„(t) has in-
finitely many poles with alternating pole strengths
converging to zero with increasing )t. p„„((u) sat-
isifies the following relation

ec ( t ) ( +)ne tant (V4)

which can formally be compared to the theory of
Chang and Langreth4 on deep-hole excitations in

solids. Their spectral function possesses a simi-
lar structure given by

@(t) exp(pe tat)(l c&e lat} 1

Physically, the processes described by Chang
and Langreth can be described as follows. A

high-energy photon impinges on a solid exciting
a core electron which then escapes. We consider
first the propagation of the core hole. The modi-
fication of the spectral density of the deep hole
left behind when the photoelectron is excited is
called an intrinsic effect and is represented by
the exponential in Eq. (V5}. The second effect con-
cerns the propagation of the excited photoelectron. .

Its energy loss via inelastic scattering processes
during the propagation is called extrinsic effect
and is represented by the second quantity in paren-
theses. This leads to the formation of satellites.
The strength of each successive satellite associated
with the extrinsic effect falls off geometrically

.and is equal to a", where o. is the probability that
in a given interaction the electron emits a plas-
mon. The overall propagation is described by

I

the cancellation of poles via the product in t space
occurs in cu space via the compensation of infinite
sums.

Our model spectral function has been found to
have the structure

Ii(t) ec & t&(I+ -~e-tat)-1
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~(f) and represents an interference between the
intrinsic and extrinsic effects.

In our theory we consider the excitations of core
electrons to valence orbitals in atoms and mole-
cules. The propagation of the core hole is dis-
cussed first. The modification of the spectral
density of the deep hole upon excitations is de-
scribed by the core Green's function which is
mainly given by e ' ". We may call this an intrin-
sic effect. If the boson approximation is applic-
able it has been shown that C(-f) is indeed given
by an exponential function in complete analogy to
the theory of Chang and Langreth. The other pro-
cess taking place in our system concerns the
propagation of the valence electron. This electron
interacts with the other valence electrons and
with the core hole. This is described by the va-
lence Green's function p(t) with the time-dependent
core potential which is mainly given by the quan-
tity in brackets in Eq. (V4). Except the different
sign of 0, this quantity is formally identical to the
corresponding term in Eq. (V5) and we may call it
an extrinsic effect. It leads again to the formation
of satellites. The strength of each successive
satellite falls off geometrically but is identical to
(-u)". Hence we have alternating probabilities to
excite satellites accounting for compensation (ab-
sorption) effects which are notpresent in the case
discussed by Chang and Langreth. The final re-
sult is again an interference between intrinsic and
extrinsic effects but because of the alternating
sign of a a cancellation of nearly all poles occurs.

V. CONCLUSIONS

Theoretically the core-valence excitation spec-
trum can be determined using the full electronic
Hamiltonian and solving the Bethe-Salpeter equa-
tion for the particle-hole component of the two-
particle Green's function. The solution of this
multiple integral equation is, however, a com-
plicated problem. It is shown that the physical
concept simplifies considerably when a Hamilton-
ian is employed which has been derived" by mak-
ing explicit use of the deep core hole properties.
In this case a factorization theorem can be proven
for the particle-hole propagator decomposing it
into a core Green's function and a valence Green's
function. Hence we have reduced the problem of
evaluating a two-particle Green's function to the
problem of evaluating two one-particle Green's
functions. The core ionization and the valence at-
tachment can be treated independently, but at the
cost of introducing a time-dependent core potential
into the Hamiltonian of the valence Green's func-
tion. The latter function satisfies a Dyson equa-
tion whose self-energy part contains in addition

to the usual interaction potential between the va-
lence electrons the time-dependent core potential.
Although the introduction of this time-dependent
core potential into the valence Green's function
leads to a complicated mathematical theory, the
interpretation of this function in terms of diagrams
remains both simple and vivid.

The self-energy can be decomposed into a part
containing only core interactions and a part con-
taining the rest. According to this decomposition
the original Dyson equation is equivalent to a pair
of Dyson equations. The first of these equations
determines a valence Green's function containing
only core interactions and hence possesses al-
ready the correct analytical time structure ex-
hibited by the exact valence Green's function. It
contains the main part of the reorganization and
serves as the unperturbed Green's function in the
second Dyson equation. It should be noted that the
presence of the external core potential makes it
impossi. ble to convert the Dyson equations to sim-
ple algebraic equations in ~ space.

The core-valence excitation energy has been
decomposed into relaxation and correlation terms
up to second order. These different contributions
can be interpreted in terms of diagrams relating
them to simple physical processes as, among
others, relaxation of the orbitals in the presence
of the additional core hole or valence particle, re-
spectively. It is interesting to remark that in sec-
ond order the entire correlation energy originates
from the additional particle in the valence orbital.
The existence of the core hole leads to a modifi-
cation of the valence correlation energy in third
order. A general order analysis of the core-va-
lence excitation energy in terms of diagrams has
been performed using the factorization theorem.
In this way one can extend the decomposition of
the energy into relaxation and correlation contri-
butions beyond second order.

Starting from an exactly soluable model Hamil-
tonian considering only certain reorganization ef-
fects due to the core potential, the core-polariza-
tion propagator has been evaluated explicitly via
the factorization theorem where the core Green's
function and the valence Green's function have
been calculated separately. It is shown that in
time-space the valence Green's function is equal
to a quotient of exponential functions. A spectral
representation has been derived and it is clearly
demonstrated that the simple ~ dependence of the
usual Green's function is completely destroyed.
Even in the case of our simple model this function
has infinitely many poles with alternating pole
strengths. Nearly all of these poles cancel when
this function is convoluted with the core Green's
function. Thus, our model represents a simple
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physical picture of the processes involved in the
core-valence excitation processes. It has also
been shown that our theory of core-valence ex-
citations of atoms and molecules is closely re-
lated to the theory of x-ray emission spectra of
solids.

From the preceeding discussion of the core-va-
lence excitation it is clear that although the physi-
cal concept has been simplified by the factoriza-
tion theorem an explicit calculation is by no means
a trivial problem. Anyway, our analysis yields
an insight into the nature of the physical processes
arising in connection with excitations from deep
core orbitals. The excitation is split up into a
core ionization and a valence attachment. Since
these processes are not completely independent,
this separation leads to the introduction of the
time-dependent core potential into the Hamilton-
ian of the valence Green's function. Although the
valence Green's function is difficult to determine
for any realistic physical system, our analysis
is a first step towards a solution and the next
task will be the derivation of an appropriate ap-
proximation for this function. As has been
shown~ the core Green's function is also con-
nected with the valance Green's function p(t; T}.
The linked cluster theorem states that the core
Green's function is given mainly by the exponen-
tial function of a quantity C(t). This function C(t)
is related to the valence Green's function p(t; T)
and in the case of our model Hamiltonian (55) it
is simply given by. an integral over a product of
two valence Green's functions. Therefore, the
knowledge of the valence Green's function p(t; T}

is of importance for any further consideration of
the core problem.

APPENDIX A

. {4t() I T [U(T2t Tl)a,(T}aj(t}&jja,] 14o )
(4o I U(T„T,) I C() )

~CoN) is the ground' state of H„O is an operator
0 in the interaction picture

O(t) B(AptOe (Apt (A4)

and U(T„T,) is the time-development operator
AP

U(r T ) —B(HOT2e (Hov(T2"Tl)e (HoT1 (A5)

After some straightforward algebraic manipula-
tions we can eliminate all core operators from
{AS) and we obtain for the time ordering T, & T
& t & 0& T, the following expression for Q,:

In this section an analytical proof of the factor-
izatlon theorem Eq. (29) discussed in Sec. IIIC is
presented. We consider the Hamiltonian (24)
without the spin-flip term

H, =H, +H +W (Al)

H p=g„g tt is our unperturbed Hamiltonian. The
function li«, (t, T) o-f Eq. (6) can be written as' "

II„„(t, T) =-lim Q,(T, T, t, -T), (A2)
~~&)0~ g ~+00

where

q,(r„r„t,-T)

(jftNv1H- jHv(T2 )e tv(Bv+Vl)(v t )&j.e j(Hv+Vl)t&jts (HvT11@Nv)
(T2 r t T} te

( N (H (T T ) N )(e, le " ' lc, )
(Asa)

and for the other time ordering T, & t& 7 &0& T»
(C, N 1e (Bv(T2 t)g B (Hv&tm)H j(Hv+Vl)(B'te (HvT11C Nv)

{ N -iH&T T )-'(4p l 8 I @p~)

~4oNv) denotes the ground state of the unperturbed valence electron operator Ho=pi ejtt j (to c), H, =Ho+ V„
and V, is given by

(AV}

(Asa)

(ASb)

V, = —. V„)),) a~a~ -n]&,) .
$j

Next we introduce two time-development operators for the valence electrons, one (U,) for the ground
state and one (U,}for the core hole states,

U (T T ) e(HOT2e-(Hv&T2 Tl)e-iHOTl-
P Rx 1

U (T r ) e (BQT2B j (Hv+vl ) (T2 Tl)e iHoT1-
2& 1

Using these operators we can rewrite (A6a) and (A6b) as

(@pv 1 Up(T2 T}Ul(T t}&jj{t)U) (t 0)(it Up(0 Tl) 14p v)

(c,"1 U,(r„r,) 1 e, )
(A9a}
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(T T t ) ...&eo IUO(r„t)a, (t)Un(t, r)U, (~, 0)~1Un(O, T1) leo~)

&e,
" IU,(r„r,) le, )

(A 9b)

where 0 is again an operator in the interaction
picture given now by

v(t, ) = v,(t,)+ v, (t,)e(~ t,)e(t,). (A12)

0(t} eilfotoe-1snt (Alo} It is obvious that the following relations hoM:

We proceed by defining the operator U,(T",T'}
via the expansion

( i)n r"
U(r" T')-g

nl
+II

dt T[v(t, ) v(t„)],

U,(T„7')= U,(T,v),

U, (~, o) = U,(~, o),

Uo(0, T,) = U,(0, T,) .
The operator U,(T",T') is a time-development

operator for the time-dependent perturbation

v(t) = v, + v, e(T t)e(t) .

where
(All) Using this operator we can combine Eqs. (A9a)

and (A9b},

&eo& I Uv(T2, t)a1(t)U, (t, )AU, (0, T,) I eo&)

&e,
"

I U,(r„r,) Ie,")
...&e," I r[U,(r„r,)n, (t)nJ] ie,")

&e~ IU,(r„r,) Ie,")

G„( &) = l1m q,(r„r„-&),
g y ~ ~oo

& g 2~ +oo

and Q, can be written as'4

(A 14)

(e," I U,(r„r,) I e,")

Correspondingly the core Green's function reads"

(A19)(-i)H„„(t,-~) =ip„(t;v)iG„(-7).
/

The core polarization propagator ll„,,(t) is ob-
tained from Eq. (A19) by taking the limit 7 - t

l

which will be shown to be a valence- Green's func-
tion with a time-dependent core potential. The
function H„&,(t, -q.) satisfies a factorization theo-
rem

Thus, defining a new quantity Q, by

. Q,(rn, T1, t, r)-
Qy(T2% Tls tf r) 1 ~ (T T )2y ly

II 1,~,(t) = lim II,,1,(t, -v)
T~ 0

= -ip, ,(t)G„(-t). (A2o)

. we finally obtain

)
. (e IT[U,(T, T)a;(t)a;] leo )

&e,
" IU,(r„r,)le, &

(A1V}

which introduces a new Green's function

&eo~lr[U, (r„r,)a1(t)ng] Ien~)
iP-1 t~ T = llm'1"-"~ '2-'" &e, ~

I U,(r„r,) I e,"~)

(A 18)

This factorization implies that the core-valence
excitation process can be decomposed into two
different simultaneously occurring processes,
namely a core-ionization process and a valence
attachment in the field of the core potential. The
physical meaning of this decomposition is dis-
cussed in detail in Sec. IGC. Finally, it should
be noted that a reversal of the time variables
(t- -t, -7 - y) leaves II invariant and thus leads to
the same results.

APPENDIX 8

ln this section we derive the Heisenberg representation for po(t; ~). We start from the defjnit1on bf
p,1(t;y} in the interaction picture derived in Appendix A (A18)

&C 8'~
I T [U~(+~, -~)a1(t)ay] I Co v}

&e,
"

I U,(+,— ) I e,")
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where all quantities have been defined in Appendix A (with 7 ~ 0). We consider the time ordering t~ 0 and
write

(40& I Uv(+~ 0)Uv(0 t)a»(t)U»(t 0)a»U»'(0, -~) 14',"~&

(c,"I U,(+,o)U,(o, — ) I e,")
(B2)

Defining the states

(~,".( )
~

=(e,".~U,(+,0),

ie,"&= U,(o, — ) ic,".&,

we can write

(B3)
( )

(e,Nv(r) I T[a»(t)a»] 14',"~&

(@,'( ) I+o &

(Bs)

The analogous expression can be derived for the
other time ordering t ~ 0 and finally we arrive at

(eg"~(T) I U, '(t)a» UT(t) a» I eo ~&

ip, ~ t;r =
(+N ( ) 1@N&&

and in the Heisenberg picture,

( )
(e,"~(r) I a»(t)a» I e,"~&

(yo v(g) 1@0v&

(B6)

(
&4 gT) IU (o, t)a»(t)U (t, o)a»le" & (B4

&e,"( ) le,"&

It should be noted that if the time-dependent poten-
tial is neglected, the above defined states ~4,"~(v)&

and ~4,"~& become identical. In the Heisenberg
representation the operator g, is given by

a,(t) =- U,(o, t)a (t)U,(t, o)

= U (t 0)e» o a»8» 0 U~(t, o)
-=U,'(t)a, U,(t), (B5)

where U, (t) = e»HO»U, (t, 0).-This leads to the fol-
lowing expression in the Schrodinger picture:

APPENDIX C

In this section we derive analytical expressions
for p»(»t; z) and p»»(t) which exhibit explicitly their
time dependence. We start from Eq. (B1}of Ap-
pendix 8 and consider here only the time ordering
E, q&0. Let us first consider the case t&7 and
define l@~~&= U,(0, + }14O &. Then we obtain

(e," I U,(0, ~) u, (~, t)a, (t)U,(t, O)n,'I+N.
&

&e,.l U,(o, ~)U,(., o) 1+,N.
&

(cl)
We introduce the complete sets of eigenstates
(~4'g) and ( ~4'g) which satisfy the following Schro-
dinger equations:

fI„I~„&=Z„l~g,

(a,+ v, ) i4„&=a„i4$.
Inserting the eigenstates ~4„& into Eq. (Cl) we ob-
tain

ip»»(t;T)=pc „(T)(e„~U(o,t)a,(t)U (t, o) ~e„" "&Q(„""~a»~4' ),
n, m

where Co„(z} is defined by

(e,".I U,(0, ~) U,(~, 0}I e„.&
(40 v I UD(0, r) U,(r, 0) 140 v&

(c2)

Using the definitions of the time-development operator Uo(t, t,} and U,(t, t,}, respectively, which are given
in Appendix A, we obtain 4

i p„(t; ~)=Q c,„(r)(eN~ ~e
"H~'"~ "a»e """"»"~e ."&8 '

~aJ ~eoN&,
n, m

ip„(t;g)=Q e» .' '"C,„(7)-&e„".~la» ~e„."&&@„""~a»t ~@,
"&.

n, m

(c4)

(c5)

This equation shows explicitly the time dependence
of p»(t;r»). The functions Co„(r) contain only the
core hole "lifetime". Thus, the dependence on I;

and y has been separated, (+N~ I
H»H~TH»»H~+V»)v I+N~&c.„(~)=

(gN 1»H »»(l» +Fg)T 1@N &

(cv)

It is also important to exhibit the y dependence of
the coefficient C,„(~). Using Eq. (C3) we obtain

p(t; r) =+Co„(y)f„(t). (c6)
This leads to the result
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e t &e p y @p-y )~(+ttt
~ +N

)c,„(~)=-
+ 1(ip"'I @~')I'ettep'-ea'~'

(C6)

ip„(t;v)=Q e" "e "'"(efv ~at ~e„" "&&„„(7)

x(@X+1~ t~@N) (C9)

Ã +1 -+v+1
t (@ v @ )t (+tt&+1

~

@IV&+1)

C„(y)=
Q ~ (y v

~ y v) ] e
'

p v-
t. v

A

(C10)

In the limit z- t both Eqs. (C5) and (C9) must lead
to the same function p,,(t), i.e. ,

ptt(t)= lim p0(t;7)= lim ptt(t;r) (Cll)

Indeed, both Eqs. (C5) and (C9) lead to

Analogous equations are obtained for the case y ~ I;,

(C12) is, therefore, equal to the core-polarization
propagator. Next we consider the denominator.
(4f~' ~4,"v) is the overlap matrix element between
the valence ground state j@p~t) and the excited
state ~4,"~) which is calculated in the presence of
the core potentiaL Hence, ~4'fv) is identical to a
state with a core hole. The energy difference
E,"~ -E~~ is the corresponding ionization potential
of the core electron. The denominator is, there-
fore, equal to the core Green's function.

Obviously, in the limit z tending to t the simple
time dependence of Eqs. (C5) and (C9) on f and ~
has been destroyed. The complicated analytical
structure of pt&(t) on f originates from the time-
dependent coefficients Cp„(t) and C„„(t), respec-
tively. Although a formal spectral representation
of p.&(t) can be derived we will not do it explicitly.
We can separately transform I; and 7 to ~ space
by introducing the Fourier transform of pt&(t; r) by

t (tt Ev-e Ev)t
~
g ttv+1 I+gv) ~.

(tp ~ tp &g}- df d& eiu'tet(u'-a»v'p (f. &)jj jj

(C13}

This expression can be interpreted as follows.
Let us first consider the numerator.
(4'g~" ~att ~@p v) is the overlap matrix element be-
tween the valence ground state ~+p"~) (without core
potential), with an additional electron created in
orbital j, and the excited state ~gf ~") which is
calculated in the presence of the core potential.
This is identical to the probability amplitude for
a core-valence transition. Correspondingly, the
energy difference Eo"~-E v" is just the core-va-
lence excitation energy. The numerator of Eq.

Then pt&(&d) is given by

p,.t(a)) = p,,(td", &u' —pt) . (C14)

Using Eq. (C6) we obtain the final result

P(&)=Q f C „(Id' —Id)f t& ), (C15)'

where Cp„(td) and f„(&o) are the Fourier transforms
of Cp„(z) and f„(t), respectively. For the other
time ordering (7 & t) one obtains an analogous re
suit.
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