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Long-range behavior of electronic wave functions. Generalized Carlson-Keller expansion
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The long-range behavior of symmetry-restricted multiconfigurational self-consistent-field orbitals is given by
2',."~-(k, , + r 'A, , ) rv~e r', where the common orbital exponent g comes from the eigenvalue g'/2 of an
"ionization potential" matrix P, which may be thought of as being calculated with mixed-symmetry {N —1j-
electron functions extracted from the N-electron wave function. Here u is a "symmetry" index, a is a "component"
index, and i is a "serial" index. The k,.—,and AI—,from the "key" orbitals y,-', are derived from eigenvectors ofg .
The corresponding key rt- is obtained from the screened nuclear charge and from g by V- = (Z —N + 1 —g)/g,
while the other V, satisfy rJ & rJ- —Ier(aa) —1, where ler(aa }is the smallest I such that 1, (8$) couples a to a.
The Carlson-Keller "theorem" —the diagonal expansion of the N-electron wave function on its p- and IN —pj-
electron natural eigenfunctions —is generalized for symmetry-restricted natural eigenfunctions. Distinct symmetry-
coupled parts of the wave function can separately but not simultaneously be put in diagonal form.

I. INTRODUCTION

Recently there has been a revival of interest in
the long-range behavior of electronic wave func-
tions. ' " It is now well established (sometimes
even rigorously} that closed-shell Hartree-Fock
(HF) orbitals, "' unrestricted natural orbitals, "
ground-state helium natural radial orbitals, "' the
exact charge density, v~'"' and the exact wave
function'"" are governed by formulas of the form,
x"e ~", where g is related to the ionization poten-
tial, and g depends both on f and on angular mo-
mentum or similar group-theoretical quantum
numbers. There is, however, an important class
of electronic wave functions not yet asymptotically
analyzed —namely, the (symmetry-restricted)
multiconfigurational self-consistent-field (MCSC F)
wave functions. which are perhaps the most useful
currently for ab initio calculations. One purpose
of this paper is to derive the asymptotic behavior
of MCSC F wave functions, which can encompass
the Hartree-Fock wave function, "the exact wave
function, '""and those in between.

In their derivation of the asymptotic behavior of
unrestricted natural orbitals, Morrell, Parr, and
Levy' leaned heavily on the Carlson-Keller "theo-
rem, "'4 whose content is the simple internal
structure of the wave function when expressed in
terms of its p-electron and (N -p}-electron
natural eigenfunctions. A second purpose of this
paper is to- generalize the Carlson-Keller theorem
to the case that the p-electron and (N -p)-electron
eigenfunctions are restricted to have correct
symmetry properties. The generalized Carlson-
Keller theorem does not play so key a derivational
role here, but it helps one to understand some of
the subtleties.

II. SYMMETRY-RESTRICTED NATURAL ORBITALS
AND NATURAL EIGENFUNCTIONS

Although not essential, natural orbitals" and
natural eigenfunctions" facilitate deriving the
asymptotic properties of MCSC F orbitals. This
section contains an exposition of the properties of
symmetry-restricted natural eigenfunctions. The
notation and ideas are basic to the next two sec-
tions.

Unrestricted natural orbitals" (NO) character-
istically ignore symmetry. As simple a two-elec-
tron wave function as A(ls2P)+B(3d2P) has a
mixed-symmetry natural spatial orbital A(ls)
+cB(3d). As is apparently well known to practi-
tioners of NO computational procedures for
MCSCF wave functions, ""the complication of
mixed symmetry is easily avoided by redefining
the density matrix to be an average over degener-
ate wave-function components to make it invariant.

Let C denote the symmetry group of the-R-elec-
tron Hamiltonian H, and let 4„(s= 1,2, . . . ,N, )
be degenerate wave functions of H transforming
under G according to the N, -dimensional irreduci-
ble representation D"' of G. The symmetry-re-
stricted (SB) N-electron density matrix is defined
by

Fans'( 1,2, . . . , ¹ 1', 2', . . . , N')
Nty

= —g e.,(1,2, . . . ,N) +;,(1',2', . . . ,N ) .
N. ..

From is„"', p-electron symmetry-restricted den-
sity matrices are found in the usual way by inte-
grating over N -p electrons:
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f
1 8~~'(1, 2, . . . ,p; 1', 2', . . . ,p') = )I dr~ ~dr~, ~ ~ d7'„I'8'g&(1, 2, . . . ,p, p+ 1, . . . ,N; 1',2', . . . ,p', p + 1, . . . ,N) .

(2)

rs(PR) = nf(p) Xf(p) X(p) (3)

Note that the occupation numbers n,'~' do not de-
pend on the component index.

In the Als2p+ B3d2p example above, is the
direct product of the space and spin rotation
groups. The SRNO's are (1s&), (lsp), [(2p„n),
(2pp), m= —1,0, 1], and [(3d„o.), (3dp), m=
—2, -1,. . . , 2]. The corresponding occupation
numbers are ri"' =n'"= —'A' n"' =ri"' = ~(A'1$+ 1402 y 2Pffte 2&m0 6
+B ) and ri"' =ri"' = &B'.

Sd ~e SC~O 10
In the case of SBNO's, the occupation numbers

of o.'and P spin orbitals are identical. The spatial
parts are SB spatial NOs whose occupation num-
bers are twice those of the SRNO's.

Apart from being invariant under C, the I'~~'

have the usual normalization and expectation-
value properties of non-SR r ~'

(4)

(5)

I's„"' and consequently all I's~„' are invariant .under
We ca11 their eigenfunctions, which transform

irreducibly under 0, symmetry-restricted natural
eigenfunctions (SRNE} and, in th'e p = 1 case, sym-
metry-restricted natural orbitals (SRNO}.

To label p-electron SBNE's, X ~'„we use three
indices: a symmetry-unrelated index i (like prin-
cipal quantum number), an irreducible represen-
tation index o,'(like "l"), and a component index
a (like "m"). The 1'8'~' have a diagonal expansion
on the SBNE's,

N N

((x (P &x (N-0 &

)) de& sx (P & x (N-0 & (10)

Here the vector-coupling (Clebsch-Gordan) coef-
ficients have been denoted by d~~~ and normalized
by

The ((X ~&X&f ~&)) is essentially a "configuration"
wave function.

Next let i and j vary. 'The contribution of all
& && p configurations is a sum over i and j:

I

The s and d SRNO's are (1s) and (3d), but the p
SRNO's are neither (2p) nor (2p+ 3p). Yet these
are what appear as co-factors of (ls) and (3d} in

This example is more than a counter example;
it reveals the nature of the generalization. The
(sp) and (pd) contributions to &1' can separately be
put into diagonal form, but not necessarily simul-
taneously, and not necessarily by the SBNO's de-
rived from +.

To reveal more precisely the p && (N -p) struc-
ture of +„, let us analyze its expansion in pro-
ducts of SRNE's. First fix in andjP Th.e N

x N~ simple products,

Xg'a'.X,'g, "=X ~~.(1,2, . . . ,p)X,'g,"&(p+1,p+ 2, . . . ,N)

(a = 1,2, . . . ,1&t; b = 1,2, . . . ,N~), (9)

can contribute to+„only if D' xD contains
D"'. In that case the. linear combination with as
symmetry is completely determined by group
theory" and normalization:

~'"'=g gc . ((x'."xg ")) (12)
IH. SYMMETRY-RESTRICTED GENERALIZATION

OF THE CARLSON-KELLER EXPANSION

The Garison-Keller expansion" is the "diagon-
al" expansion" of + on products of p-electron and

(1V P)-elec—tron unrestricted NE's:

4 =pc, X,"&(1,2, . . . ,p)X,'" "(p+1,p+ 2, . . . ,Ã),

(6)

~N,
n =n (7)

EP
Such a decomposition is in general not possible in
the SR case as the following simple, schematic,
two-electron example shows:

N N
&eeg (p) (EW }

cfeft3 d~Q XfeaXfgg
f a

(13)

Qt.ed]
e g

Ne
~oem' (0) (N+)~Cgefy ~ ~~& XgeaXf@ ~d

a

(14)

(15)

where the CI coefficients c;~q depend on the con-
figuration label imp, but not on the component la-
bels s, a, b.

Finally, the expansion for 4„is a sum over all
couplings [uP] that lead to o:

O' =A(1s 2p)+ B[3d(2p+ 3p}]. (6) The c, ~~ are related to the ri,'~& in Eq. (3) via
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Focus now on a single 4~, '. The "unrestricted
Carlson-Keller theorem, " applied mutatis mutan-
dis to Eq. (12), implies that 4(,~' can be put into
diagonal form by its SRNE's,

Q(+j)l — cL+j )((X(p&(+j lx(N j)(+-jj)})
erg

' i i' ig

N

~r. o) de~AX (0)(N03X (N-0) f.+83
sab Xiea Xigb

i a b

(16)

IV. ASYMPTOTIC BEHAVIOR OF SYMMETRY-
RESTRICTED MCSCF NATURAL ORSITALS

The r"e ~" asymptotic behavior of the SRNO's
has three distinct aspects: the form itself, the
connection of q to 5 and to the symmetry indices
n, and the connection of 2 g' to an ionization poten-
tial calculated in a basis derived from O'„. The
fir'st two are easier to establish than the third,
which we can demonstrate directly only for cer-
tain MSCSF wave functions. We proceed in three
stages: First we set up equations to determine the

X,"'„second we characterize the r"e ~" form, in-
cluding the specification of q, and third we grapple
with the ionization-potential connection —the gen-
eralized Koopmans theorem.

A. Equation for SRNO's

'The basic equation governing SR-MCSCF orbi-
tals is that M = 0(i 6&1(„i') for any variation of the
orbitals that preserves the SR-MCSC F form.
Suitable variations are unitary trans formations
(or orthogonal, if realness is a required con-
straint for the specfic MCSCF wave function), and

when applied to (+„iHi%',g in the density-matrix

The X ~', ~' are linear combinations of the X ~',

(the transformation is independent of the compo-
nent index a). In general, the X(~)( ~) will be dif-
ferent for each possible P and from the SRNO's

Only if there is a single symmetry P that
couples & into o in the MCSCF wave function will

X,'~',~ ~' be the same as X,(~', .
In summary, the generalized Carlson-Keller

expansion is as follows: an N-electron wave func-
tion 4„has the "diagonal" decomposition into
products of p- and (N-l))-electron functions,

N(g

ciao~ ~ d'~sX""~"X'"'"I
s b Xiaa Xigb

a, g a

(18)

The Xi(i')t~i" and X.' ~' N~' are SRNE's for the &

x P part of 4„;in general they are different for
each coupling [i)(P] in &i(„and from the SRNE's of
the full 4„. If, however, a appears coupled to
only one P, then the X,.'~', ~' and Xg', are the same.

(l)' iisXisea ~ (20)

Here 8 denotes the one-electron "bare nucleus"
operator in the Hamiltonian and Tr"' denotes the
trace with respect to electron 2. The X... (i and
i' have been deliberately transposed) are defined
by

'= X(') ~(')I,+2Tri i' i'aa SR sR r Xiota
12

(independent of a). (21)

The advantage of the SRNO basis is that ls"„' is
diagonal. " Note that the operators on the two
sides of Eq. (19) are Hermitian conjugates. Thus
the &;;. form Hermitian matrices" X .

B. Asymptotic form of SRNO's: X~'i, -k. I& ~-t»

Equation (20) resembles the noncanonical Har-
tree-Fock equation. The reasoning" used in the
Hartree-Fock case can be applied to find the
asymptotic form of the X;"',.

The operator 2Tr(2)[(I/ri2)I'8„'] onthe left-hand
side of Eq. (20) plays the role of the Coulomb and
exchange operators in Hartree-Pock theory.
The operator decomposes asymptotically into a
screening term and into r-dependent, symmetry-
coupling, scrambling terms via Laplace's expan-
sion for I/r».

2 Tr(2) —p(2) (l) - Z'(l)X(l)1 N-1
SR ila r SR ila

12 1

lm -,l l (l)+ ~gob, ' rl ~l &Ob
l=l mNb

asr -~
I

where

(22)

&j(g, ,;..=-2„1(x,",,'i »"'r,' i"(e„e,)*I'Sa'ix(.".)
(23}

With Eq. (22), and with Ii- 2d'/dr' —(1/r—)d/dr
-Z/r+ O(r '}, where Z is the total nuclear charge
of the atom or molecule, Eq. (20) at large r takes
the form

(
d 1 d Z -N+1

+ 0(r-2) +(&&X(&)
2 dr 2 r dr r

lm -l -l m (l) 0 + (l)+g ~ ~ jj)b,iaa ~t Xjj)b 2 Xii'Xi'aa
l=l mob i'

(24)

form of Eq. (5), yield'6'"

I»"'+»'"' —&"')x'"
12

1I"")b+2Tr"'I'~am —X;(, (19)
l
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We anticipate' "asymptotic solutions of Eq. (24)
with the form

Xiaa (kiaa++iaar (25}

where the k&~„A.,o„g;~, and g have values yet to
be found. [The k, , and A(, are functions of
angle; in atoms they would be proportional to Y~

(e, ()))).] There is a common exponential' "factor
e ~" because of the A terms in Eq. (24).

Because the X,"', for fixed &a are scrambled by
in Eq. (24), it is reasonable to assume that

q; is independent of i: q; =g . Examples of de-

pendence on i occur already at the Hartree-Pock
level, ' but these are really special cases where
the n&" and X have special values. Without
knowledge of the values of ~ and the n ~, one
cannot obtain i dependence from Eq. (24). (See
Sec. IV D for a few special cases. ) For the ground
state of helium, which is not a special case, no
i dependence seems to be found"' " for the q nu-
merically.

Towards evaluating f, k, „etc., we put into
Eq. (24) the asymptotic formula (25) (with )i for
)7, } to obtain the asymptotic equation

n (((1)=+2k;, +r '[(&)7 +4-Z+N-1)k;, 2i;2-A;, ]+O(r '))r e ~"

++Q A/~22;, Y)(e, p)[k/()2+O(r ')]r 2 ' 'e ~" =Q&,";.[k;. ,+r '4;. ,+O(r 2)]r Ne ~". (26)
i+1 sggSe

Focus first on the maximum g, say g-, taken on
for a = ei. (There can be more than one (2 with the
same maximum )i-.) Since the A terms are O
{r"s ' 'e ~") (l ~ 1), equality of the r e ~"—terms
in Eq. (26) yields generalized eigenvalue equations
that determine both 4 and the k, .—,:

()
~ ~ +ia kgcga ~ ~f f'kf'aN '

p
(27)

Equation (27} can be set as a simpler ordinary
eigenvalue problem by incorporating (n((-") ' into
the operator A. :

g& = ()2(1)) 1/2XN ()2(1)) 1/2

Q (((a [(~(1))l/2k )
1 /2[(~(1))1/2k ]

(28)

(29)

Thus the N- vectors

g()1,'k')"'k, aalu(~2cg') k2say ' l~e= ly2y'' )Na)

are (irreducibly transforming) eigenvectors of
with eigenvalue & g'.

Focus next on the r" e ~"—terms in Eq. (26).
Use the adjoint of Eq. (27) to evaluate the scalar
product of (k„-„k„-„.. .)*with Eq. (26) and obtain
two results. First,

)i- = (Z -N+ 1 —j)/6, (30)

an (irreducibly transforming} eigenvector of 8
with eigenvalue ~ &'. Unless there is accidental
degeneracy, the A;—,are necessarily proportional
to the k; —,.

We now determine in two steps the q that are
less than g-. The first step is to show that

)i =max[)I —l „(P,(2) —1], (31)

where l „(p, (2) is the smallest l for which some

A,'.z~ ~, is nonzero. The proof is to compare the
r"~ and r"(r) ' terms in Eq. (26). If )i &@2
-l „(P,u) —lforall P, thenthe A termsareignor-
able, and we are led as before to q =g-. If
r/ &rl2 —l „(p, n}—1 for some p, then the r"~
terms would be ignorable, and a sumof A terms
would have to vanish, which except in special
cases" seems unlikely. Thus q =max[@2
—l „(P,(2) —1].

Let q, be the next largest after q-. Equation
(31) implies

=)I;—l „(n,n, }—1.
1

Let q be the third largest. Then
2

)i, =max[)i- —l „(n, (22) —1, q —l „(n„(22)—1]
=max[)i- —l „(n, o.2) —1, q- —l „(()(,u, ) —l „(n„(22)—2],

(33)

(34)

and so forth. The second step is to estimate the
right-hand sides of Eqs. (31)—(34) by a group-
theoretical selection rule: A&. . .can be nonzero
only lf D(l) x D(0) contains D(e)

Let lar(P, (x) be the smallest nonzero such l
[nonzero, because l ~ 1 in Eq. (26)]. Note that

I

I r(p, (2) «l „(p,n), since A/)2. . .can still van-

ish, even though permitted not to. The crucial
simplification brought about by the l~~ comes from
the triangle inequality, ier(u, P) + ler(P, o()
~ ler((2, n), which is a consequence of G's being
a subgroup of the full three-dimensional rotation
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group. Accordingly, Eqs. (31)—(34) become

&), ~ &I- —lcr(o. , c&) —1 . (35)

For the ground state of helium, n refers to s
,orbitals, n to p, d, . . . . There is no difference
between lcr and l „, and (35) as an equality is
verified by numerical calculations. ' "

To recapitulate, solutions of the asymptotic
SRNO equation (24) have the formX,.'„"—(h, ,
+r '&, ,)r"~e ~", where —,'p is an eigenvalue of e
[Eqs. (28), (29), (19), and (20)], where (n,."-',)'"h,.—,
and (n,".~,)'~'4,.—,are the elements of irreducibly
transforming eigenvectors of S, where &I-=(Z
—N+1 —g)/f, and where the other &I are "keyed"
from &I- by Eq. (35). For each eigenvalue of each

there will be such a solution. All might be
present in each X,'.» at moderate x, but the asym-
ptotic solution with smallest g present will domin-
ate at large x.

C. Connection of ~i* g with the ionization potential

Morrell, Parr, and Levy' were the first to ob-
tain the general result, that for unrestricted NQs,
—,g2 is the ionization potential cglcul gted in the
basis of the (N-1) elect-ron unrestricted NEs,

&&j. Katriel and Davidson" obtained a consis-
tent, partially stronger result, that 2/2 should be
the exact ionization potential (implying that, for
the ionized state, the x,'""are complete). Both

results are subject to the criticism raised by
Ahlrichs regarding interchanging double-limit
processes. The derivation for the SHNQ case
given here borrows from these earlier treat-
ments """

5X(» —z X(» (36)

The detailed decomposition of the H- E matrix
element is lengthy. Use Eq. (15) for &I„. Put only
electron 1 (not electrons 2, . . . , N) in bx&&&, and
multiply the. matrix element by N. Separate from
H all the terms not involving electron 1:
[H'» "(2,3, . . . , N)]. Use the definition of rs&&& and
r~~z& [Eq. (2)] with terms from K involving electron
1. Use the invariance under G of FsR', I's"R, and
H'" "to eliminate symmetry-forbidden matrix-
element factors, and use the normal. ization (11)
of the d'Nb~ in the evaluating the remaining H'" "
contributions. Obtain accordingly [M „("36")rep-
resents the M„generated by Eq. (36)],

l. Shen 4, is the exact wuve function

The problem is how to connect e [Eq. (28)]
with the (N 1)-e-lectron Hamiltonian, H'" ". If
for the moment we assume that 4„is the exact
wave function, then (M„IH- E

I
&I„&=0 for any

5%„. The connection then follows from generating
M„by

0=—g(M„.("36")I(H E)
I
4„&—1

s
E

=—+Pc';„,gd;.", 'N &lip,",'.)x,',","
~
h&l&+Q —+H'" "—E) e.,)e jP ab

hr" &+2Tr"'—Z'"& ~ XI"Xiota SR SR iI Xi ea
a 12

+gg Nc,*.;g;-.,'&«x,".'.
I
x;" .&(x,'7o"

I
(H' "- E)

I x,'4~"&, (any u', »y b')
j j&IN itt

(37)

(38)

(39)

hrs"„'+Tr" &—rs"„& X&", + NN.9g'c*.,c,.„(X&f,'. &I. (K'» '& —E)
I

X&.,„'» (any u).
+12 jj'lb J

Then compare' Eq. (40) with Eqs. (19)—(21) and (28) to obtain

1/2 N 1/2

ii N . N' (1~ cialj~ ~j~b H E ~j ~b ci j~ (
0 jjSb c& i a (N ni,

(40)

(41)

g«, is beginning to look l.ike a matrix element of
H&» "—E. By defining somewhat contrived (N 1)--
electron functions 4,'~ ", which are of mixed sym-
metry even though they arise in a SR setting, the
resemblance can be made complete:

@
(N-1) —Nl/2N 1/2(~(1))-1/2 c N 1/ 2 ~ (E-1)

iO & iejl 8 ~Xj»jl b

(42)

I

e~ = (@&»-»
I

(H&» & E)
I
c &»-»

& (43)

For different n, n', the 4,.'""do not have to be
orthogonal. For the same n, they are related to
r,"„' and are orthonormal:

(4'»-' IC'" "&=NN-'( "' "')-"'P * (44)
j0

(45)
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The 4,'""here play the same role as the unre-
stricted NEs in Ref. 3. Clearly, the eigenvalues
of.d are ionization potentials, the accuracy of
which depend only on the ability of the 4,' "to
represent eigenfunctions of II'~ ".

A. /s 2p +B2s 3P .
The variation

(ls -1s+i e ~2s, 2s -2s+i
~
e

~

1s)

(47)

leads to complex s orbitals, which are usually
not permitted in a practical calculation. Another
way of viewing the same example is that
(1s2s)(A,2P' —B3p'} cannot mix directly with the
real-valued MCSCF function (44) at self-consis-
tency, but (ls2s)Q2P'+B3P') can. Thus the de-
rivation demonstrates equality of ao«, with K'" "
—E matrix elements only for certain, although
rather general, MCSCF wave functions, for which
complex variation is permitted.
'

Even for those MCSCF cases in which N„., is not
an explicit matrix element of H'" "—E, one can
regard 8+«. as an approximation to the correspond-
ing matrix element connected with the exact wave
function. In this looser sense, the eigenvalues of

may always be regarded as approximate ioniza-
tion potentials.

D. Special cases vvith stronger results

The specific nature of the MCSCF wave function
or of the symmetry (os) of the state 4„some-
times permits stronger conclusions than Eq. (35)
regarding the prefactors x". Three such examples
are given here.

2. When 4'„is not the exact wave function

The initial equations in the preceding derivation,
Eqs. (36}and (37), are not universally applicable
to SB,-MCSCF wave functions. At the least, Eq.
(36) must be supplemented by the reciprocal,
orthogonality-maintaining change in X,",, '„

(46)

If, however, Eq. (46) were superfluous, then the
derivation would hold.

Note that Eqs. (3V)-(40} are all proportional to
e*. Equation (46) introduces an analogous set of
terms proportional to g. If q can be complex, re-
placement of z by i& shows that the &* and & terms
must separately vanish, and the derivation leading
to Eq. (43}for s«, is valid. The usual Hartree-
Fock ' and the complete MCSCF generated by a
fixed number of orbitals are thus included.

There are, however, MCSCF wave functions for
which & is necessarily restricted to be real. A

simple example is the two-configuration wave
function,

1. Closed-shell Hartree-Fock

The canonical closed-shell Hartree-Fock equa-
tions have 8«, =X„,=g,. 5«,. The right-hand side
of Eq. (20}does not scramble canonical Ha, rtree-
Fock orbitals, and so orbitals of symmetry n can
have different g,.—. See Ref. 2 for the details.

A more specialized case'4 is an atomic Hartree-
Fock state involving only s orbitals: e.g. , 1s'2s'
Be. The "exchange" terms in Eq. (22) are expon-
entially small at large x, and each orbital has its
own f. See Ref. 1.

2. 1s~He

The 'S nature of the helium ground state makes
the generalized Carlson-Keller expansion reduce
to a special case of the unrestricted expansion.
The X,"', are just of the form R„(r)yp(8, Q) x (spin
function), and the (N 1)-el-ectron XI~ "constitute
the same set of SRNO's. The 4,'."can be rede-
fined to be the X,'",". See Refs. 5 and 6 for details,
and also Ref. 13 for related remarks.

3. "Accidentally degenerate" SRNO's

If two occupation numbers for the same symme-
try are identical, n,'."=n,", ', then it is possible to
have chosen" the X,"', and X,',",so that one, say i',
vanishes more strongly —that is, so that g,
The Hartree-Fock case is again a simple example. '

g =pc,((x,".'xI,"}}

+ pg 0) (48)

The dominant g should correspond to the ionized
state 1s He', which would have the smallest eigen-
value of ~. The 4"' are mixtures of s and d.
schematically,

Zc"x,".'+Z coax,',"i.

The lowest eigenfunction of K'~" is e ", so one
would expect the expansion on the 4,~ to yield
(where & is a proportionality constant),

(49)

E. On tQe eigenfunctions of the ionization potential
matrices g

If the 4,'" "were complete, then the eigenvalues
of 8 would be exactly ionization potentials. When
the 4,'.""are of mixed symmetry, the implication
is that the wrong- symmetry components would
have to drop out. Consider as an example the
1s2p'P state of helium, whose wave function has
the form,
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~e-2r-2-i/2 (n(1))1/ 2k 4) ())
jp $p jp (50)

exponent g. That is,
U~ =A. (n"-')' 'k (i=1 2 ) (54)

k(tci(X/ + kiiCi/X d
su (i)

I2j

Thus one predicts

(51) where & is a normalization constant. The U in-
duce a further decomposition of 0„from the form
of Eq. (15):

Qk. c'2=~(X",'~e '")

kIqC~],. =0.

(52)

(53)
/ ~ 1/2

X U(~) "&-I Vo~a se~X,.an
Jab )( g e

(55)

[only the unitarity of the U has been used in Eq.
(55)]. The functions,If the y,.~' are taken not as the SBNO's of the full

4, but as the SBÃQ's of the sp component, then
c'.2 would be diagonal, and k,. c "2' =/1(X,".,)

~
e '").

A similar prediction' for the 1s' 'S He was veri-
fied by Katriel and Davidson. " The interesting
difference here is the additional orthogonality re-
sult (53). (Cf. also Ref. 12.)

For finite MCSCF, the Eqs. (50)-(53) do not
necessarily hold exactly, only approximately. In
particular, it would appear that the lowest eigen-
function of finite 4~ will have some d character.

)1/2
,I, (E-1) rro ~o'ea (E-1)
&(i"Na) () ) ~ Ui'%C(~~/s 22X21('&2,i" j(&2 i "n

(56)

are approximate eigenfunctions of 8' " in the

sense that [cf. Eqs. (41)-(45)j,

q
(N-1& (ff(N 1& E)-q( »1 & (Uu'le+UN)

'i:I- eo3 t;&oa1

(O'I)

This decomposition is almost that of Katriel and
Davidson. The difference is that there the terms
with the same (N —1)-electron wave function are
grouped together. We cannot quite group such
terms here because )iI I"„,1)& and gI, ', ~1..., may be
nonidentical approximations to the same (N —1)-
electron state, arising from different u and 8

Now focus on the 8 that produces the dominant
The function holding electron 1 in Eq. (55) which

is the cofactor of gI», -', I is
(1&

(58)

We examine f,"-', asymptotically, via Eqs. (25) and
(54):

F. Connection with Katriel and Davidson's analysis
of the exact wave function

In a recent paper Katriel and Davidson" analyzed
the exact 4„in terms of products of exact (N 1)--
electron wave functions g/(» "(2,3, . . . , N) and their
cofactors f,.(1): )I/„=Z/f, g/(» ". We examine their
decomposition from the SH-MCSCF point of view.

We exploit the property that the eigenvectors of
approximate eigenfunctions of II'" ". Let U

be the unitary matrix whose columns are eigen-
vectors of 0 . Let the first column of U be the
eigenvector associated with the dominant orbital

(&(f) u a
f"-' =g (U~t)„,

~

* [k, , —+r 'A. —,+O(r 2) jr se t"
ft

(59)

Uo~ PP~f2 ~-~UO y+~-~g +0 ~-2

= 6 N'"4 '(1+r 'B)r se '"+O(r ~ e ") .

(60)

(61)

(8 is a proportionality factor. ) Thus the one-electron cofactor of the dominant (N —1)-electron state (i = I)
goes asymptotically like r"&e '"; all other cofactors with the same symmetry (x (2121) vanish more
strongly. This is essentially the result of Katriel and Davidson, ' carried over to SRNO' s.

V. SUMMARY

Two aspects of the structure of electronic wave
functions have been discussed. (i) The expansion
of an N-electron wave function on products of p-
electron and (N- p)-electron symmetry-restricted
natural eigenfunctions is not in general diagonal,
but each distinct symmetry. -coupled part can be

I

separately put in diagonal form (generalized Carl-
son-Keller expansion, Sec. III). (ii) The asymp-
totic behavior of symmetry-restricted natural
orbitals of finite MCSCF wave functions 4„ is

the eigenvalue of an "ionization-potential" matrix
For complex-variation stable MCSCF, g is

calculated from Ii(N» Evia (N 1)-el—ectron ba--
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sis functions extracted from 4„. For the key
symmetry a, the k,—,and &,—,are related to ei-
genvectors ofg", and q- is given by (Z -N+ 1 —g)/1.
The other q„satisfy t) ~q„-l or(o., a) -1,
where lor(u, n) is the smallest l for which 1'",

couple n to Z. The most general results apply
rigorously to finite MCSCF wave functions that
are stationary to unitary transformation of the
orbital shells. It is reasonable that they apply
also to the exact wave function, but then one would
have to justify interchanging the two limits:
r -, number of configurations - . For some
special cases, simpler, stronger results can be

obtained in @which the g, depend on i; the closed-
shell Hartree-Pock case is such an example.

The asymptotic properties of 88NO's are consis-
tent with the results of Katriel and Davidson" for
the cofactors of exact (N 1)--electron wave func-
tions imbedded in 4„.
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