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Scattering and spectroscopy: Relativistic multichannel quantum-defect theory
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A formulation of relativistic multichannel quantum-defect theory is presented. The relativistic random-phase
approximation is applied to calculate the eigenchannel parameters in the relativistic multichannel quantum-defect
theory. The resonances due to inner-shell (1s) excitations below the E threshold for ions of the Se isoelectronic
sequence are studied as illustrative examples.

L INIODUCTION

During the past decade there has been an in-
creasing interest in the spectroscopy of atoms and
ions of high nucleax charge. This interest arises
because of the importance of highly charged ions
in the physics of solar flares, ' tokamak plasmas, '
and laser-produced laboratory plasmas. ' Labora-
tory measurements of the spectra and transition
probabilities of highly stripped ions are made
using accelerator beam-foil spectroscopy, ' &phile

neutral atoms of high nuclear charge are studied
using synchrotron radiation. s

The theoretical methods that have been developed
to understand and correlate the atomic data for
highly charged atoms and ions have been based on
the Dirac equation, since relativistic effects are
important for systems in which aZ (Z being the
nuclear charge) is not small. For complex atoms
electron-electron correlation is also important,
and a proper, theoretical description of complex
high-Z atoms must include both relativity and
correlations.

Many of the features of complex atomic spectra
can be understood in terms of a fear important
dynamical parameters using formal scattering
theory. ' One modern approach to scattering theory
especially well suited to the description of single-
electron ionization is the multichannel quantum-de-
fect theory (MQDT). ' In the recent past MQDT has
been applied to investigate the complex spectra of
atoms ranging from He to Ba,' and to describe
photoelectron angular distributions9 and spin polar-
ization. '0 The MQDT has also been used to study
molecular photoabsorption" and to estimate dis-
sociative recombination cross sections between
electrons and molecular ions." In view of the
many successes of MQDT in correlating atomic
data for nonrelativistic systems, it is appropriate
to consider a relativistic generalization designed
to treat highly chaxged systems. The purpose of
the present paper is to introduce such a generali-

zation and to illustrate hoer the resulting theory is
applied by giving a practical example.

The MQDT provides a detailed description of
photoexcitation processes in terms of a relatively
small number of parameters. Although these para-
meters may be obtained empirically, in the present
paper we use MQDT in conjunction with a specific
dynamical theory to obtain ub initio values of the
MQDT parameters. In the present study we employ
the relativistic random-phase approximation"
(RRPA) to work out the dynamics. The RRPA has
been applied successfully to study photoexcitation
and photoionization of highly. charged atoms. Ap-
plications have been made to the excitation of lev-
els in closed-shell atoms of various isoelectronic
sequences. " Oscillator strengths for transitions
from the ground states to excited states of ions in
these sequences are in excellent agreement with
more sophisticated many-body calculations. "

Cross sections and angular-distribution para-
meters for photoionization of the closed-shell
atoms of He, Be (Ref. 16), Ne, Ar, Kr, and Xe
(Ref. 1V) have been determined using RRPA." For
the lighter elements the RRPA calculations are in
close agreement with nonrelativistic RPA calcula-
tions'9 and with other nonx'elativistic many-body
calculations. For the heavier elements Kr and
Xe, significant relativistic effects on angular dis-
tributions, "branching ratios, "and spin-polariza-
tion parameters" are found experimentally; these
relativistic effects are explained by HRPA calcula-
tions18 24. Such applications have been concerned
with the average behavior of photoionization cross
sections; resonances have been either treated
approximately'3 or completely neglected. The
practical d1ff1cult188 which the RRPA shares vglth

other many-body theories are often connected arith
techniques for extracting information concerning
highly excited bound states and resonances; the
MQDT provides the proper theoretical framework
for treating such questions.

In Sec. II we discuss in detail the relativistic
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version of MQDT in which the basic quantum-de-
fect parameters are defined and related to the
photoabsorption spectrum. The theory presented
in Sec. II is similar to the nonrelativistic MQDT,

so we concentrate our attention on those details
where the relativistic and nonrelativistic versions
differ.

Section III is devoted to a brief outline of the

RRPA. To extract the dynamical MQDT parame-
ters, it is particularly convenient to approach
RRPA from the time-dependent Hartree-Pock
(TDHF) point of view. We discuss the RRPA in

terms of TDHF equations for perturbed eleetronie
orbitals, and we show how to determine the MQDT

parameters from solutions to the TDHF equations.
A reader interested only in the relativistic MQDT,

and not in the dynamical model employed here,
may skip Sec. III without loss of continuity.

Vfe turn to an illustrative example in Sec. IV.
This example is a detailed study of the location and

shape of inner-shell 1s-np resonances along the

Be isoeleetronie sequence. In neutral Be and in

ions of low nuclear charge, the 4'=1 spectrum
consists of a series of (1s 2s'sp) 'P resonances;
the corresponding 'I' resonances do not show up
in the absorption spectrum because of spin selec-
tion rules. By contrast, for Be-like Mo"', where
relativistic effects are important, both the 'P and
'I' resonances are prominent. Since we use a
relativistic description throughout, we are able to
follow the appearance and development of the for-
bidden excitations as Z increases along the Be
isoelectronie sequence. To put Our work in per-
spective we make eompax isons with experimental
measurements of inner-shell absorption spectra
in the case of neutral Be. %e obtain fair agree-
ment between the theoretical and experimental
determination of the very narrow resonance lines.
For the higher-S ions considered in Sec. IV (Ne"
and Mo"'), no experimental values are available;
however, we expect that, since correlations are
less important for higher-S ions, the predicted
spectra of the highly charged ions are at least as
accurate as those for neutral Be.

In a subsequent payer26 these relativistic MQDT

techniques are applied to study Beutler-Fano auto-
ionization resonances in the rare gases Ar, Kr,
and Xe, and good agreement with recent experi-
mental determinations" of the line profiles is ob-
tained. An application of the relativistic MQDT to
the autoionisation resonances" in Ne near 575 A

has already appeared. "
H. RELATIVISTK MULTICHANNEL

QUANTUM-DEFECT THEORY

Let us consider an excited atomic system having

angular momentum 4and parity g with energy be-

low the double-ionization threshold. This excited
system consists of a probing (excited bound or
excited continuum) electron and a residual ion of

charge t;e; the ion itself may of course have vari-
ous degrees of excitation.

The character of interaction between the probing
electron and the ion varies over a range of dis-
tances. At large distances the interaction is gov-
erned by the static Coulomb potential -fe'/r. Sta-
tionary states are represented by linear combina-

tions of electron-ion states combined to give angu-

lar momentum J, parity g. Each combination iden-

tifies a possible mode of dissociation and is called
a dissociation channel, labeled by an index i. As-
ymptotically, the probing electron is described by
a single Dirac orbital in the relativistic theory,
viz&

for the radial Dirac functions.
At small distances the probing electron and the

atomic ion form a complex through which energy
and angular momentum can be exchanged. Com-

plicated interactions take place between the elec-
tron and ion, requiring an elaborate many-electron
theory; in Sec. III we apply RRPA to solve the
many-electron problem.

Outside the reaction zone, the radial wave func-
tion y of the excited electron orbital for a dissocia-
tion channel satisfies a radial Dirac equation

with

d
dr

af-m +
y

(2)

where g is the orbital energy, including rest ener-

gy m. We use natural units (t = c= 1) unless other-
wise noted. The radial wave function y is ex-
pressed as a linear combination of independent
relativistic Coulomb wave functions" (f,g),

y=sf+&gs

where s, and m, are angular-momentum quantum

numbers; s&=w(j&+z) for j&=l&+ ~ (g;=-1,1, -2, 2,
... , corresponds to the spectroscopic notation

s~, p~, ps, d~, . . . ). The symbol 0„, desig-g�p)
nates a spherical spinor, while 6, and E, are large
and small component radial functions. In the se-
quel we use the abbreviated notation

Pc

p
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where a and 5 are as yet undetermined constants.
These relativistic Coulomb wave functions have
the following properties:

(1) The pair (f,g) are continuous functions (C"
functions) of energy & -m across the threshold
E =PS ~

(2) At large distances (f,g) have the asymptotic
behavior:

(i) For c&m,

with

o„'=argI'(y —fager /p) ——,
'

w(y —I —I) + q —ws, (6)

where

-«+ ial'm/p
y+ ial'e/p

t'g +m't & ( egg m

&wpi i p
cos(pr+ ln2pr-2(i+I)+o„'

~

~g -m't'~ e&Z n
sin r+ ln2pr --(I+ 1)+e'„(gp ) P j

(4)

and l is the orbital angular momentum.
(ii) For g&m,

f e '"y —sinway',

g= e-'"'-'I"y + cosmay',

(7)

(3)

& +m&~ . ( ogg r»n(pr+»2pr- —(I+I)+e„'I] I, P 2 "j

(c -m~~ al'e w

( wp
cos pr+ ln2pr- —(I+ I}+o,'

P

(5)

with

a=y+s —v,

[I+ (a g}2/vm] 1/0

The parameter v in Eq. (10) is an "effective"
quantum number. Asymptotically,

(10)

(I l~ (v' —«} li+ v'm+e
~-"(2X] I'(v+ y+ 1)1'(v —y+ I)i Vm -« 2') "e "',

1 1 &I'(v+y+l)I'(v-y+1) l -v'm+&1
j i(2zr} "e"",'=w 2X ( (v' —«} ) &m-« i (12}

where

X=(m'-«')'~ and v'=afm/X

Each dissociation channel is described in terms
of a perturbed radial orbital function in the RRPA,
and the dynamics is given by a set of coupled radi-
al differential equations relating the various orbi-
tals. For an M-channel problem there are 2M

RRPA equations, as shown in Sec. III. The M
"negative-frequency" RRPA orbitals (which ac-
count for ground-state correlations) are exponenti-
ally damped at large distances, while the remain-
ing M "positive-frequency" orbitals (which de-
scribe the interchannel interaction including final-
state correlations) are required to satisfy station-
ary-wave asymptotic boundary conditions:

I

by the solution to the dynamical equations.
Let U,. be the orthogonal matrix of eigenvectora

of the matrix R,&,

R;~U) =X U), i=1, . .. ,M (14)

g) = U)~ cosgp, ogI
3

„U~,(f~ coswp, +g& sinwp ), j= 1, . .. ,M .

and introduce the eigen-quantum defects p by A.

=tangly. . The quantities zp are just the scatter-
ing phase shifts when all channels are open. We con-
struct eigenchannel orbitals as linear combinations
of the stationary solutions (13):

y
"& =„ mb), +gP(;, i,j = 1, . . . , M . (13) (15)

The index j labels the dissociation channels,
while the index i distinguishes between the inde-
pendent solutions to the coupled dynamical equa-
tions. The number of independent solutions is just
equal to the number of channels. The energy-de-
pendent R matrix is symmetric; it is determined

The eigenchannel solutions from Eqs. (15), the
matrix U, , and the eigen-quantum defects p, are
only weakly energy dependent. The final physical
boundary conditions are expressed in terms of
these eigenchannel orbitals.

Physically acceptable solutions to the dynamical
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equations are given by a superposition of eigen-
channel orbitals:

y(= gA z~(, j=1,. . . ,M (16)

with mixing coefficients A determined by- the
boundary conditions. These boundary conditions
differ for different ranges of the spectrum, name-
ly, the discrete spectrum, the autoionizing spec-
trum, and the continuum. The mixing coefficients
A are functions of the eigenchannel parameters
Uj and p. and of the energy of the excited system.
The transition amplitude in the eth eigenchannel is
represented by a reduced matrix element between
the initial-state orbitals and those of the ~th eigen-
channel. Here, since we focus our attention on
dipole excitations, we must consider the reduced
matrix elements of the dipole operator D as ad-
ditional eigenchannel parameters.

A. Discrete spectrum

The total energy of the excited atomic system is
defined with respect to the ground-state energy of
the ion by

E=Ej+g j-m

QF(Q =0, f =1,.. . ,M (18)

with

E( =U„sinn(a( —g ). (19)

The system of linear equations [Eq. (19)]has the
compatibility condition

F(((})= det ~&,.[
= 0 (20)

an/ the nontrival solutions

A. =C(.
~

gC'(. [, (21)
( a ]

where C, is the cofactor of the element Fj of the
determinant ~F( ~, and the choice of the index f is
arbitrary. Solutions to Eqs. (17) and (20), i.e. ,
discrete sets of the numbers f. (y(}, give discrete
energy levels of the perturbed Rydberg series.
Forthe nthstate f(y(}, the oscillator strength is
expressed as

states of the atomic ion. Equations (17) represent
a set of K-1 independent equations of K unknowns
Vj ~

In the discrete spectrum, all dissociation chan-
nels are closed, and the boundary conditions that
y~ 0 as y - ~ for all j= 1, . .. ,M lead to the follow-
ing set of M equations:

where E, is the excitation energy of the ion in the
fthdissociation channeL For ai;«1, Eq. (1V) re-
duces to the familiar Rydberg formula. Each E
corresponds to a set of numbers e j; the number of
different vj equals the number K of nondegenerate

f„=3(d( QA+ 2
ny (22)

where w is the photon energy in atomic units and
D is the reduced dipole matrix element. The
normalization factor (in atomic units) is

N'„=Z f dsy ,y,(s(1'
j 0

(af)' d I i t'Z dU I- ZU„siss(s, —s,(d,
I (

ZU„cess(s, —s,(d",)dE ( j SM„

~~g~2»(=g"' 1+( [ I U„cosw(s, —p )A"
[

Z('dsd, l (dg ZZZI, "„",-,I U,...&s.-s. (da", .dp
(23)

B. Autoionszation spectrum

In the autoionization spectrum, some dissocia-
tion channels are closed and other channels are
open. Let us denote Q as the set of the closed
dissociation channels and P as the set of the open
dissociation channels. Further, let us define P,
as the set of the open dissociation channels per-
taining to the 4th state of the residual atomic ion.
The union of the sets P, equals the set of P. The

I

number of members of the set P is the number of
the open dissociation channels N~, and the number
of members at Q is the number of the closed dis-
sociation channels Nq(N~+Nq= N), where N is the
total number of relevant dissociation channels.

The asymptotic boundary conditions describing
stationary-wave functions for autoionizing states
are that the components of the wave function, Eq.
(16), in the closed channels f e Q vanish exponenti-
ally as r ~, and that the components in the open
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channel ie P consist of relativistic Coulomb
standing waves with a common phase shift ~.
Such conditions lead to

Existence of nontrival solutions of the system of
linear equations, Eq. (24) requires

QF(+, =0, Vi (24)
F((v( ,i ~'Q},T)=det~F(I[=0. (26)

with

U , sin(((a( —p }, isQ
Fj

U, sing(& —p ), (:eP.
(25)

At each energy in the autoionization spectrum, Eq.
(26) has roots T denoted by (TD; p=1, . . . ,Np. The
index p identifies a collisional eigenchannel, and
the mixing coefficients A are given by an equation
similar to Eq. (21), viz. ,

xjh

A~ = C(~((('„i e Qfs T,)
~ Q [C(~((( (1 i e Q}s T,)]'
k a

The resulting stationary orbitals behave asymptotically as

(2'f)

y', = QA's, „„=C'((r),
a

where

(28)

C'((T) =(

gj+m Ofgjoos fr,r+ ' (nn(, r ——(1+((r rr, r sr,)+
. To Pj pj 2

s'n frr+ ' Inn(r- —(f, sf(rrrr sr)gj-m ' . 0'g&j m

- 7lPj Pj

QU„oos (, —n, )A',)1,. for 1nQ,
a

a ~ a Pa
tII

~

j

forieP

(29)

with

TD(= gU( cos(((T, —i( )A'. (30)

The normalization for the collisonal channel p is
given by

which satisfies the "incoming-wave" boundary con-
dition at infinity that the amplitude of the outgoing-
wave vanish in all open channels it j. The de-
sired coefficients E', ' are

(36)0 i

y', = y', /N, ,

with

(31)
Thus, the oscillator strength density of the photo-
electron group pertaining to the kth state of the
residual atomic ion is

Np= T~
jEP

The normalized matrix

T, = TE/ND

(32)

(33)

„'=-', (o Q Qx," '3,
i'~ p

= -'. (0 Q Q Q Ttf"( cos(((TD TD.)D+D, .
i'& O p'

(37)

is an NP x NP orthogonal matrix. The reduced di-
pole matrix elements D, in the collisional eigen-
channels p are

D, (QA:D.)=(
(34}

~ (y-) ~p (y-) (35)

In order to obtain the probability of ejection of a
photoelectron into any specific open dissociation
channel, we then construct a traveling wave func-
tion as a superposition of the collisional eigen-
channel functions

The total oscillator strength density is then ex-
pressed as

df g~df 2 g —, gdf' (38)

with

= —',rs(QA', D,) (39)

For applications to electron-atomic ion collisions
in the resonance region, we may construct a trav-
eling wave function as a superposition of the col-
l isional eigenchannel wave functions
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y(f+) yp (f+) (4o)

g(f+) yp HAFT

p f P ~ (41)

Thus, the short-range scattering matrix element
S,f, for total angular momentum J and parity z, is

~ Z P~42FTpyP

P

The full scattering matrix for J' symmetry is

(42}

which satisfies the "outgoing-wave" boundary con-
ditions at r=~ that the amplitude of the incoming-
wave vanish in all open channels it j. The desired
coefficients are

relativistic many-body theory used to study photo-
excitation and photoionization of highly charged
atoms and ions.

For our present purposes it is convenient to
formulate the RRPA in terms of perturbed single-
particle orbitals from the TDHF theory. " The
TDHF equations describe the response of a closed-
shell atom to a time-dependent external field,
which we take to be the field of photon incident
on the atom. Let us suppose that the external
time-dependent perturbation is given by the one-
electron operator

V=+v, (t)..

S(t = exp(i o() g T';e(" 'oT', ~exp(io', ) .
P

g(f-) P -4Wa
~a fa (44}

The oscillator strength density of the photoelectron
group pertaining to the kth state of the atomic ion
is

-ff(=-(d Q QA(t 'D
dE 3 0 a

~&~a.

=-(o g gg U, U«cost((tt, —tt', )DQ'.
KP~ a a'

(4s)

The total oscillator strength density is then

df ~ ~df

dE q dE

=- (o PD~ .
a

(45)

In the context of electron-ion collision proces'ses,
the full scattering matrix for J' symmetry can be
written as

C. Continuous spectrum

In this energy range, all dissociation channels
are open. In order to obtain the probability of
ejection of a photoelectron into any specific chan-
nel j, the mixing coefficients in Eq. (16) are de-
termined by requiring that the amplitude of the
outgoing wave vanish in all channels i tj, namely,

For a photon field of frequency & and multipolarity
J, M, X (J and M are the photon angular-moment-
um quantum numbers and X=o or 1 for magnetic
or electric multipoles, respectively), we may
write

v(t) v e ttut+v elect

with

v, =e ~ a~„, v =v, ,

(49)

(so)

where a~~„ is the photon multipole vector potential
and o is the usual Dirac matrix.

The TDHF equations for a closed-shell atom can
be written in terms of single-particle orbitals (t&t

as

i '=[ho+ v(t)]Qt+ V&(r(I&t, j=1, . . . ,N. (51)

Here, V» is the Hartree-Fock potential

v„t I v'f"z" ((tft, &t (t(tvt, &, (5v&

h, =(M p+Pm —, e'Z/r (ss)

is a one-electron Dirac Hamiltonian (o.'and p are
Dirac matrices). The RRPA equations are ob-
tained from the TDHF approximation by linearizing
in powers of the external field.

We let u, (r), i =1, . . . ,N be stationary orbitals
for the Dirac-Fock (DF) ground state of an N-
electron closed-shell atom. To carry out the lin-
earization we set

Stt =exp(io't) QU( et~"oUt, ~exp(iot).

III. RELATIVISTIC RANDOM-PHASE
APPROXIMATION

(47) t(r, (t&) =ut(r)e "('
+ ()

rr-e( tetra t&

(r)e-t(tt-ta&t (s4)

The problem outlined in the Introduction requires
a solution to the many-body problem to determine
the quantum-defect parameters. In this section
we describe the RRPA which is an approximate

In Eq. (54) c( is the DF eigenvalue for the orbital
u, (r), and the functions tou(r) describe the re-
sponse of the orbital u, (r) to the perturbation
v, (t). Substituting Eq. (54) into the TDHF equation
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(51) and carrying out the linearization procedure,
we obtain the inhomogeneous equations

(k 0+ ((((r + f ( 6 (0)w (~ + V~ '((( = ((~u ( q i = 1
q ~ ~ ~ q N ~

G„(r)'

.F„(r).
To describe the radial functions, we introduce

(60)

Here,

(55)
d Fm+V (r)

dy r
d3 I

V,"'u =pe' "
([(uJw„) + (u J,u()']u

f
—(u(ju)(w„—(w J,u)'u, } (56)

describes the correlations due to the distortion
of the DF potential.

A standard method for solving inhomogeneous
equations such as those given in Eqs. (55) is to
expand in terms of the complete set of solutions
to the corresponding homogeneous system. Let us
therefore consider the homogeneous equations

(ko+ Var +c( + ((()wu+ V(('u(-0,

along with the orthonormality constraint

(57)

de soq~uf + q sof =0. (56)

1 'iG, (r)ft.„.-(r)
" .&,(r)&=„-(r).

(59)

%e write, following the notation of the previous
section,

The solutions of interest to Eqs. (57) are those
which have the angular symmetry dictated by the
external field e,.

Let us specialize to the case of an applied elec-
tric dipole field with 4=1 and X=1. Bearing in
mind that the index i of the orbital u, (r) refers to
a set of central-field quantum numbers i = (r(, ((, m),
one readily establishes that the perturbed orbitals
m~ have angular quantum numbers R'=-K K+1.
Thus, for example, an unperturbed d, /, orbital
with K =2 will be excited to states with angular-
momentum quantum numbers 7=1, -2, and 3, cor-
responding to P,&„p,&„and f,&, angular symme-
tries by the applied dipole field. In our example
in Sec. IV the sz/g orbitals of Be-like ions which

have K =-1 are excited to py f 2 and p3/2 orbitals
with K=1 and -2, respectively.

Using the standard methods of Racah algebra,
we may reduce Eqs. (57) to a set of coupled radial
differential equations suitable for computer solu-
tion. We let w~ be the perturbed orbital (of fre-
quency +(e) associated with the excitation k:
(((, ((, m) - (a, '(f, m). In the notation of the previous
section, k corresponds to a dissociation channel
in which the ion remains in the state (((, ((, -m),
while the electron is excited to a continuum state
(t, (f, m). The electron orbital w„can be written

d m+ V,(r). dy r
(61)

where V, (r) is the ion potential. We may then re-
write Eq. (57) as a set of coupled radial equations

(H-„—c,+ (o)y„=o„, (62)

f'&6'(+gP-a( ( "=». . . M

Oy leak 1y ~ ~ ~ yMy

(63)

(64)

Each value of the index i defines a stationary-
wave solution to Eqs. (62), and the symmetric
reaction matrix R,~ is determined as a function of
energy from the solution. The normalization con-
stant for the solutions to Eqs. (62) is given by

where 0~, is the coupling due to the correlation
potential V,"'. The radial equations (62) are writ-
ten out in detail in Ref. 16.

Solutions to Eqs. (62) are either oscillatory or
exponential at large r, depending on whether
&~+ & is larger or smaller than the electron mass
m. The radial function y~ represents the excited
electron orbital, and at large distances (where

V~ takes on its asymptotic behavior as an ionic
Coulomb potential) the orbital y~ is just a linear
combination of the Coulomb wave functions given
in Eq. (3). The negative-frequency perturbations

y~ describe the effects of correlation on the atomic
ground state; these negative-frequency perturbed
orbitals are always exponentially damped at large
f 0

The index k ranges over the various possible
values of n, k, F corresponding to the dipole ex-
citation of an electron to state R', leaving an ion
with a hole in the state n, K. This is just the set
of M dissociation channels of the atom discussed
in Sec. D.

The number of equations in the system (62) is
2M, twice the number of dissociation channels.
For the M-negative-frequency orbitals y~ (r), the
physically relevant boundary conditions are that
the solutions be regular at the origin and exponen-
tially damped at large r [see Eq. (64) below]. The
remaining freedom in the solutions to Eqs. (62)
is resolved by requiring that the solutions y~, (r)
be regular at r = 0 and satisfy the boundary condi-
tions for perturbed orbitals given in Eq. (13).
Thus,
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N2 — dy y~ y2 (65)

D(4) (k) +R($)
k

(66)

as discussed, for example, in Ref. 16. Given a
normalized solution to Eqs. (62) one finds the re-
duced dipole matrix element between a state de-
scribed by y~' and the atomic ground state as

where the radial integrals R»" are given by

R«~ C=(kk) ,fdrr(G, G«& F+F~ ~). (67)

In Eq. (67) the symbols G~, FR describes the ground-
state DF orbitals, while Gk" and +»" are the large
and small components of the perturbed-orbital
solution to Eqs. (62). The angular-momentum fac-
tor C(k, K) in Eq. (67) is

(-I)'&"~'[(2j,+1)(2j,+1)]"' '

C(k, k) =

0, lk+Ek even

lk+lk odd

(66)

where the large round bracket designates a 3-j
symbol. The RRPA equations give dipole matrix
elements which are identical in length and velocity
forms. In the velocity form Eq. (67) is replaced by

V =k C(k, k) fdr((r R)(F G ~r-G F «)

+ (F t«(i) Gp(i))] (6g)

Dipole matrix elements D employed in Sec. II
are obtained from Eq. (66) by forming the combin-
ations of D"' implied by Eq. (15), viz. ,

D =gD("U, cosvii
i

(70)

IV. APPLICATIONS

As specific examples of the methods developed
in the previous sections we consider the 1s -np
autoionization resonances for neutral beryllium and
for several ions of the beryllium isoelectronic
sequence. In these examples we ignore channels
such as 1s f(2s2p) "'Pj(„";)associated with two elec-
tron excitations, since consideration of these chan-
nels requires a dynamical scheme beyond the
RPA 32

In Table I we compare the calculated resonance
positions below the K-shell threshold with the ex-
perimental data of Mehlman and Esteva. 25 These
experimental data, which were based on synchro-
nous-arc plasma-absorption measurements con-
tain complicated structures due to mixtures of Be

The solution to the problem posed in the Intro-
duction is now completely specified. We first solve
Eqs. (62) subject to boundary conditions (63) and

(64). The R matrix is then diagonalized to give the
quantum-defect parameters p and U, , which are
used together with the dipole matrix elements D
to describe bound states, resonances, and the con-
tinuum, according to the method outlined in Sec.
II.

TABLE I. Beryllium autoioniaing states [is(ss)tkdp](P.

Expt. energy~ (cm ~) b
&expt +theag

1~(2~)2 y
1s(2g)2 3P
ls(2g)2 +

931300
979200
988 200

1.31
2.6
4

1.27
2.40
3.42

Mehlman and Esteva, Ref. 25.
Based on an experimental threshold of 994 900 cm

I

atoms, metastable Be atoms, and Be' ions. Meh-
lman and Esteva were able to determine the posi-
tions of the inner-shell excited states with high
accuracy (+25 meV, i.e., +0.02 A). For the first
resonance the width can be determined theoretical-
ly as (Av)r =4. 0X 10 ', while the experimental
measurement is limited by the spectral resolution
(+0.02 A). Part of the disagreement between the
experimental and theoretical values shown in Table
I is due to the omission of two electron excitations
in the theory; another part, we believe, is due
to the difficulty in determining the experimental
threshold and the consequent loss of significance
in determining the different between resonance
positions and threshold. The theoretically pre-
dicted location of the autoionizing resonances is
in agreement with a previous nonrelativistic TDHF
calculation by Stewart et al. , ' as is to be expected,
since relativistic effects are insignificant for neu-
tral beryllium.

The Be autoionizing sequence is illustrated in
Fig. 1, where the predicted oscillator strength
distribution is plotted against wavelength. In this
figure we use the experimental value of the K
threshold given by Mehlman and Esteva, instead
of the theoretical RRPA value. The locations of
the first three experimental lines are marked on
Fig. 1 for comparison.

The evolution of the resonance profiles as 2 in-
creases along the isoelectronic sequence is shown
in Fig. 2, whereweplot theoreticalabsorption cross
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FIG. 1. Theoretical oscillator strength distribution for Be including 1s-np autoionization resonances. The vertical
dashed lines mark the location of experimental resonances (Mehlman and Esteva, Ref. 25). ~ The experimental threshold
at 994900 cm is used.
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FIG. 2. Absorption cross sections (Mb) and open-
channel phases parameters v (phase =7I v') are given in
terms of the effective quantum number v near the
1s 2p autoionizing resonances in the 4-electron ions
Be, Ne~, and Mo '. The broken lines in the lower
panels correspond to SP states, while the solid lines
are for 1P states.

sections along with the short-range electron-ion
scattering phase shift mv. For neutral beryllium,
the phase shUts corresponding to the two open
channels show resonances [ls{2s)'2p]'P and
[1s(2s)'2P]'P, v-l. l5 and v-1.27, respectively.
The character of the resonant states, i.e., 'P and
'P, is identified by the character of the eigen-
channels which represent the dynamics at short
range. Because of electron-electron interaction,
the 'P resonance occurs at lower energy than the
'P resonance. As a consequence of electric dipole
selection rules, the photoionization cross section
shows only one resonance for neutral Be at the
'P position.

For the Be-like neon ion Ne~, the character
of the eigenchannels is no longer described by a
pure LS coupling scheme. The smaller resonance

near v =1.78 is dominated by a 'P state with a
small admixture of 'P character, while the larger
resonance near v =1.81 is dominantly 'P with a
small mar. ture of 'P.

As Z increases the coupling scheme changes
from an almost pure LS scheme at neutral Be
to a jj scheme for high Z. Indeed, for Be-like
Mo'~ the eigenchannels are characterized by al-
most pure jj coupling. The positions of the first
two Mo'~ resonances differ by &v-0.03, which
is principally due to the spin-orbit difference
Av„= —,'(oIZ)'-0. 02. Furthermore, the strengths
of the two resonances are comparable, as a result
of jj coupling.

In plotting the open-channel phases in Fig. 2, we
have connected the individual phases smoothly
through crossing points in the cases of Be and

Ne; however, our numerical analysis shows that
the points of intersection in the figures are actually
"anticrossings, " as illustrated in the diagram for
the Mo' phase shift.

Finally, we wish to stress that the eigenchannel
parameters p, , U~, and D in the relativistic
MQDT can be obtained, as in the nonrelativistic
MQDTI either from ab initio calculations to treat
many-electron dynamics, or from a semiempirical
analysis to fit available spectroscopic data. The
two approaches complement each other; they may
be pursued individually or by a judicious combina-
tion of the two approaches, which may prove to be
a more satisfactory alternative. To treat open-
shell atoms the RRPA dynamics outlined in the
previous section is not adequate, and a more soph-
isticated dynamical scheme is required for the
ab initio determination of the relativistic MQDT
parameters.
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