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We have ~~~ined the distorted-wave Born approximation for inelastic collisions. We find that the distortion in

the rehLtive motion of the collision partners cannot be neglected even for high-energy ion-atom collisions.

Furthermore, if the distortion in the relative motion is not treated exactly, post-prior discrepancies will occur. We

have applied the distorted-eave Born approx'~tion, with distortion included through first order, to ground-state-

to-ground-state electron capture by positrons from hydrogen atoms. The results are presented in this paper. We

have also ex~rrIined the nonrelativistic asymptotic behavior of the cross section for electron capture from hydrogen

by positrons incident with a speed v —oo. We find that, for e /% Q 1, capture occurs primarily to states of

positronium that have an odd orbital-angular-momentum quantum number. It follows that the cusp signifying

charge transfer to the continuum wi11, for positron-impact, be symmetric when e'/Au & 1.

I. INTRODUCTfON

Let M~ be the mass of a projectile P impinging
on a one-electron ion or atom (e+ T), where 8 is
the electron of mass m and T is the target nucleus
of mass M~. Neglecting a correction of order
m/Mr, the interaction V» between P and T de-
pends only on the coordinate connecting P to the

center of mass of the atom (e+ T). To this extent,
therefore, V» alone cannot induce a transition
in the internal state of the atom. In other words,
if the primary interaction V~,—the interaction
between P and e—were turned off, the internal
state of the target atom would remain essentially
unchanged throughout the collision. V» does in-
directly influence the probability of a transition
since the effect of V~, depends on the trajectory
of P and V» influences this trajectory. If m/M~

«1, however, P is (for all but very low projectile
velocities) barely scattered and V» plays almost
no role. In this ease it follows that in the calcula-
tion of the transition cross section, integmted
over all scattering angles, the inclusion of V»
introduces only small corrections of orders m/

Mr and m/Mv. This well-known result' is some-
times thought to imply that in the Born expansion
of the full. y quantum-mechanical scattering ampli-
tude, those Born terms involving V» should sum

to zero, or rather to a small quantity of the order
of the larger of m/MT and m/Mp. In general this
is incorrect, but for electron capture at high pro-
jectile velocities the first- and second-order Born
terms involving V» do very nearly cancel' if
~/Mr, and m/M~« I. The reason for this pecu-
liar cancellation is given in Appendix A.

For electron capture by ions the first Born
matrix element of V» gives a spuriously large

contribution to the integrated cross section, and

higher Born terms must be added to ensure a net
contribution from V» of the order of the larger of

m/Mr and m/M~. As first recognized by Bassel
and Gerjuay, ' this can be achieved by using the
distorted-wave Born approximation. 'They chose
the distortion potential in the initial channel to be
the average, with respect to the initial internal,
state of (e+T), of the actual perturbation in the

initial channel. . Analogously, the final channel
distortion potential was chosen to be the average,
with respect to the final internal state of (e+ P),
of the final channel per5xrbation. Then V» almost
disappears from the effective perturbation, which

is the difference of the actual perturbation and the

distortion potential. However, in their numerical
calculation of the scattering amplitude for P
+ H(is) -H(ls) + p 8assel and Ge rj uoy neglected
the distortion of the relative motion of the colli-
sion partners, approximating the distorted waves

by plane waves. Later Grant and Shapiro4 included
the corrections to the plane-wave relative motion
through first order in the distortion potentials.
They should have obtained (but did not) essentially
the same numerical results as Bassel and Ger-
juoy, for, as we show bel.ow, if a reaction is
symmetric and if m «M~, and m «MT, as in
p+ H(is) -H(ls)+ g, the net effect of including the
first-order corrections to the plane-wave relative
motion in both the initial and final channels is
zero. In general, however, the net effect of in-
cluding these first-order corrections is nonzero.
Furthermore, the distortion in the relative motion
of the eoDision partners must be treated exactly if
post-prior discrepancies are to be avoided.

Note that the distortion potentials need not be of

the Bassel-Gerjuoy forrri. Indeed, Geltman, '
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II. SOME NOTATION

As stated above, the masses of the electron e,
target nucleus T, and projectile P are denoted by
m, M~, and Mp. We define the mass ratios

a -=Mr/(m+ Mr ), P =—Mp/(m + Mp), (2.1)

and the reduced masses

p.~ = am, p.p = pm, (2.2a)

Kleber and Nagarajan, ' and Halpern' have taken
the distortion potentials to be pure Coulomb po-
tentials in their application of the distorted-wave
Born approximation to electron capture by iona.
This has the advantage that the distorted waves
are readily calculated, being simply the known
Coulomb wave functions.

We have applied the distorted-wave Born ap-
proximation to electron capture by a positron
from a hydrogen atom. We used the Bassel-Ger-
juoy form of the distortion potentials and included
these potentials consistently through first order.
The results are presented below. Note that since,
in our application, m/Mr = „,', « I, Vpr alone
cannot induce transitions —its role is to scatter P
and thereby modify the effect of Vp, . This modifi-
cation is substantial since, with m/Mp = 1, P
undergoes appreciable scattering.

In Sec. II we introduce some notation. In Sec.
III we outline the distorted-wave Born approxi-
mation, with distortion included consistently
through first order. We do this for an arbitrary
inelastic collision, but our application is to
ground- state-to-ground-state electron capture
from hydrogen by positrons. 7n Sec. IV we pre-
sent some results. We also comment in Sec. V
on the asymptotic behavior of the cross section
for electron capture from hydrogen by positrons
incident with a very high speed.

(I - a)rg

-T

FIG. 1. Coordinate system.

state i and let ef be the internal energy of (e+ P) in
the final state f. The characteristic radii of (e+ T)
and (e+ P) are ar and ap, respectively, where

ar = I'/(Zr pre'), ap = I'/(Zp ape') . (2.4)

E=(I'/2v, )K', +e, =( I'I/ 2v}fKifef, (2.5)

where IK, is the initial momentum of P and IK& is
the final momentum of (e+ P) with K, = lK, l and
Kf = lKf l. If v is the incident velocity of P relative
to the center of mass of (e+ T), we have }IK,= v,v.
We define the "average" momentum-transfer
vectors

(2.6)K=PKy- K], J= aK)- Ky.

Here SK is the momentum transferred to P, aver-
aged over the internal motion of (e+ P) in state f,
and SJ is the momentum transferred to T, aver-
aged over the internal motion of (e+ T) in state i.

Let P,(r )rrepresent the initial internal state of
(e+ T) and let pf(rp) represent the final internal
state of (e+ P). The initial and final wave func-
tions of the compl. ete system are

g, = exp(iK, Rr)$, (rr), (2.7a)

Unless stated otherwise, we work in the center-of-
mass frame of all three particles. In this frame
the total energy E of the system is

v
&

——Mp (m + Mr }/(m + Mr+ Mp),

vf ——Mr (m + Mp)/(m+ Mr+ Mp) .
(2.2b)

(2.2c) lJ)f exp(ikf Rp )Qf (rp) (2.7b)

Let r~ and rp be the coordinates of the electron
relative to T and to P, respectively. Let R~ be
the coordinate of P relative to the center of mass
of (e+ T) and let -Rp be the coordinate of T rela-
tive to the center of mass of (e+ P}. Let R be
the coordinate of P relative to T. The coordinate
system is shown in Fig. 1. We have

rp = -Rr + &rr, Rp = PRr + (1 —aP}rr,
R=Rr+(1 —a}rr.

(2.3)

Let -e denote the electron charge, and let Z~e
and Zpe be the charges of T and P, respectivel. y.
Let &, be the internal energy of (e+ T} in the initial

+ Z,z, e'/&,

Vf = V, (r )+ V (R) -=-Z e'/r

+ ZpZr e'/It .

(2.8a)

(2.8b}

The scattering amplitude for the transition i -f is

T =(kf I vf le&) (2.9a)

=(g; IV, le p, (2.9b)

where ~ and +& are the exact wave functions of the

respectively. The perturbations in the initial and
final channels are, respectively,

Vg —= Vp & (rp }+ Vpr(R ) =— Zp e'/rp
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complete system satisfying incoming and outgoing
boundary conditions, . respectively. 'The total cross
section is

(p ) t
max

—, , I~ IJ2~P+'~' E~, ] ~

where K „=PK&+K, and K „=IPK&-K, I. The
differential cross section is

(2.10)

(1
f(k) =

I
— Pr exp(-ik r)f(r) . (2.12)

IH. ANALYSIS

Bassel and Gerjuoy' defined the distortion po-
tentials

U, (R,)= J
d'r, ly, (r, )l'v„

,(R.) =J +~. ((,( .)(
(3.1a)

(S.lb}

where the integrations are carried out with Rr
fixed in Eq. (S.la) and Rv fixed in Eq. (3.1b}. The
distorted waves )(', and )(~ are defined by the equa-
tions

(2.11)
dfl (2v)'h 4 K,

The Fourier transform f (k) of any function f(r)
is defined as T=&x I(v -U)le'&

= &)1(~ I (v, —U () I xP .
(3.3a)

(3.3b}

In the distorted-wave Born approximation we ap-
proximate+', . by p and+f by Zf, and obtain

& xy I (vy —Uy) I xg&

=(x;l(v, —U, )lxp.

(3.4a)

(3..4b)

We will, in fact, derive Eqs. (3.4) below.
Writing

g = p, (r~)[e'"r r+g, (R,)],
x;= ~,(-;}[."'".g;(R, )l,

(3.5a)

(3.5b)

and taking the Fourier transform of Eq. (3.2a) we
find that the Fourier transform g',.(k) of g', (Rr} is
given by the equation

[-()I'/2v, }V/ —(II'/2i(, ~)&f + U, + Vr,]g
= (E+in))p, , (3.2a)

[-()I'/2v, )V), —(g'/2V, )&f +U, + V„]X,
= (E —ivi)Xg, (8.2b)

where p is an infinitesimally small but positive
quantity. The effective perturbations in the initial
and final channels are, respectively, V, —U,. and
Vf Uf. With some manipulation it can be shown'

(noting that U, and Uz alone cannot induce transi-
tions) that

t'1 &'~'
«*/2vi}(f' Kl i-n}g('-(k}+

I,,„,I —d'fU((lk - 1'1)g( (»+ U, (lk- K, I) = 0 (8.6)

(3.'Ia)

The solution of this equation in first-order per-
turbation theory (with perturbation U, ) is

2v )) U, (lk-K, I)

We have used the prior-collision interaction
V, —U, in obtaining Eqs. (3.9)-(3.11). If we were
to use the post-collision interaction Vf —Uf, these
equations would be replaced by

Similarly, in first-order perturbation theory, we
have

Ti = &()'y I (vt( —Uf) I))'(& s

T;=&q, l(v, U, }

(3.12)

(3.13}
2vq'() U~(lk —K~ I }I' Jl o' —K'+in

With g;(Rr) and g&(Rv) calculated from Eqs. (3.7)
we use Eq. (3.4b) to obtain

(3.'Ib)

T —T, +T~++T2,

where

(3.8)

(V, U

T2=&g~(f)) I(v( —Uq) I())q& i

(3 9)

(3.10)

(3.11)

we have neglected the cross term containing gfg,',
this term being of the order of (V, —U, )UfU, .

T2 =&gq(f)~ I (V~ —U~) I g, & . (3.14}

&e, l(v, U, }le,&~4, I(v, U, )l|t,&; (3.15}

There is, in general, a "post-prior discrepancy",
that is, Eqs. (8.9}-(3.11}yield a different estimate
of T from Eqs. (3.12)-(3.14). In our application to
positronium formation by electron capture from
hydrogen we used the post form, which is espe-
cially simple since (see below) Uz

=—0. The post-
prior discrepancy is removed when terms of all
orders in U, and Uf are included, as indicated by
Eqs. (3.4). It should be noted that, except in
special circumstances, the "post" and "prior"
forms of T, are different, that is,
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for while we always have g- = (fs /g)e'x& ap (3.19b)

we usually have

&4, (U, (4,}«t) IU 14,).

Using Eqs. (3.10) and (3.11), we obtain

T;+T.- = (f/g)(4, ((V, -U,.) (~4,),
where

(3.20)

(2 gg}2 [ l+ 2T1 Re{TI+TI)j.dQ m
(s.16)

Note that the right-hand side of Eq. (3.16) and
hence our estimate of do/dG is not necessarily
positive. Ifm«~~, andMp, and if U, =U~ we have
Re(T;+T;)=0. To see this, note that if U, =Uz —-U
the problem of the relative motion of P and T re-
duces essentially to the problem of potential
scattering with a potential U. If m «M~, and Mp,
the eikonal approximation' may be used and we
have, neglecting corrections of order m/Mr and
m/u„

+ ~ A&.%&+~S+

/k'. hp fs /h

(3.1Va)

(3.17b)

~here S, and 8 are the eikonal phases, defined by

f' 2
s, = -J~ U{R)dz,

V
(3.18a)

(S.lsb)

where v=
( v( with v=8'K, /v, ~S'Q/v~, and where

in a coordinate system (X, F, Z) with the Z axis
chosen to be parallel to v we have 8' = (X'+ Y'
+ Z"P~'. Expanding the exponentials in Eqs.
(3.1V) we have, through first order in U,

g+ (IS /ff)e fit ( "ky {3.19a}

For example, for positron impact on hydrogen we
have U, x0, hut (see below) U~=-0. An exception
arises when m «M~, and Mp, and the reaction is
highly symmetric so that U, = U&, as in the reac-
tion p+ H(ls) -H(ls)+ p. There would, however,
be post-prior discrepancies for the reactions
P+ H(ls) - H(ae)+P and He-+ H(ls) -He*(le)+P.

In calculating the differential cross section do/
dQ we prefer to work consistently through first
order in U, and U& and discard corrections of
higher order, but this is somewhat a matter of
taste. Let fbe theparityof tpp(r~)p, {r~). We may have
4'=+1, but for definiteness we assume 4 =1. With-
out loss in generality we may assume p, and pz
are real. Then T, is real and we have through
first order in U, and U&

(3.21)

Now, under an inversion of coordinates, i.e.,Rr--%, rr--rr, the expression ($~(V, (S&,}
transforms to its complex conj ugate multipliedby 4
(=1}'and hence{/~ ( V, (Sgp is purely real so that T;
+ T, is purely imaginary, as we set out to prove.
(However, T; and T, each have nonsero real parts. )
Itfollows from Eq. (3.16) that in this case

P)Vg E~
dQ {awk')' ff (s.aa)

and the inclusion of distortion in the relative mo-
tion of P and T introduces no correction to the
differential cross section through first order in
the distortion potential. U.

Equation (3.22) should be compared to the ex-
pression used by Grant and Shapiro' to study the
reaction p+ H(1s) —H(ls) +p:

do' v) pg—
(2 g, ), (T, +4T, ReT, ) .

This egression follows from the incorrect state-
ment T;=T,. (That T~+T, follnws from above; we
have also verified this computationally. }

In Appendix 8 we express T„T;, and T; in Eqs.
(3.9)-(3.11) as integrals over momentum space.
In Appendix C we describe the evaluation of these
integrals for the case when Z~ = Zr = 1 and i and f
are ground states. For i and f both ground states
we have

U, (Rr}= (Zvz~ —Zp}—+ Z~e'I —+ exp, ( 1 1 I'-2R~
o.a,

, 1-ZrZ, e* —+ (exp(ya, ) ( ya~ ] ' (s.as)

where y= 1 —a. The expression for Uz{RJ has a
similar form but. with Sp and S~ interchanged, and
R~ a, y, and c~ replacedbyRp, P, 1 —P, and ep,
respectively, in the right-hand side of Eq. (3.23).
Note that when P is a positron we have Uz(R~) = 0.
This can be easily understood by noting that be-
cause the positron and electron have the same
mass and equal but opposite charges there is no
preferred sign of U&.

In units in which S=e=1 the Fourier transform
of U, {ftr) is given by
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T„=&x;l(v,—U, ) Ixp

=&xy I (8 E——iv1 I x'(&

=&x;I«v, —U, ) Ixp.

(3.34}

(s.ss)

(3.24)

e = -&N ~ I(P —E i» I
N—",) . (3.2'f)

Since the error term & is of second order in the

errors in the trial wave functions, T„ is a varia-
tional estimate of T. We choose 4 « = g and 4'f-,

Note that

(0-E) IP(&= vglkp

(ff —E) I tg& = vg I ky&,

(ff E in)IX)-=(v-, —U, )Ix;&,

(ff —E+ iq) I x;) = (v, —Up) I x;) .
Combining Eqs. (3.26) and (3.30}we have

(3.28}

(3.29)

(3.30)

(s.sl)

T„=&a, I v, I x",& —&e, I (v, —U, ) Ix;&

+&XIII(v, -Ug) Ixp ~ (3.32)

Using E(ls. (3.29} and (3.30) we have

&e, I v, Ix,) =&a, l(ff -E)Ixp
=&0 I(v, —U, )IX'p; (3.33)

we have used the Hermiticity of B, which follows
from the fact that surface terms vanish since g
has only an elastic scattering component —recall
that U, (R ) cannot induce transitions. Therefore
the first two terms on the right-hand side of Eq.
(3.32) cancel and we obtain

The Fourier transform of UI(Rv) has a similar
form but with S~ and Z~ interchanged and M~ re-
placed by Mp in the right-hand side of E(l. (3.24).

We now demonstrate that the distorted-wave
Born amplitude is a emotional estimate of the
exact amplitude. Let 0 denote the Hamiltonian of
all three particles, 4 «and 4f, the trial. approxi-
mations to 4'j and 4f-, respectively, and let 64'j
= 4 j -4«and &Of-=4f--4'f-, denote the errors in
the trial wave functions. The exact (on-shell)
amplitude T satisfies the Kohn-type variational
principle"

(3.25)

where

T.=&6 Iv. I~;,&+&~;,-6I(ff -E - i» I~«&,

(3.26}

Hence the distorted-wave Born amplitude is a
variational estimate.

Halpern" has examined the variational correction
to a variety of approximate amplitudes. For a
specific choice of trial wave functions 4 «and 4 ff,
Halpern determines whether the asymptotic form

of, e.g. , 4'«generates an amplitude correct to
second order in the errors of the trial. wave func-

tions. If not, he shows how to obtain a second-
order accurate estimate by either adding a cor-
rection term or finding a more suitable trial wave

function.
Finally, we would like to comment briefly on an

approximation introduced by Band" and referred
to by him as the "full first-order perturbation-
theory" approximation. Recurrent attention is
paid to this approximation and yet we believe it
has no firm foundation. In the derivation of his
approximate scattering amplitude using time-
dependent perturbation theory Band overlooked the

fact that this amplitude was obtained by projection
onto a final, -state wave function that is not ortho-

gonal to the initial-state wave function even in the

limit t-~ (where i is the time), since the coordi-
nates H~ and R~ are treated as time independent.

IV. RESULTS AND DISCUSSION

Ne have applied the distorted-wave Born ap-
proximation in the post form, with distortion in-
cluded in the relative motion through first order,
to the reaction

e'+If(ls) —Ps(ls)+P .
Recall that Uz =—0 so that E(ls. (3.8) and (3.12)-
(3.14) simplify to

T TJs +&~y I vj Iggg&

where TJs =&gzIYzIg, & is the Jackson-Schiff ampli-
tude. Thus, for the above reaction, the present
estimate and the Jackson-Schiff estimate differ
only by the inclusion through first order of the
distortion in relative motion. Note that, for the
above reaction, TJS is identical to the post form
of 1',.

Very recently Mandal et al."calculated the dif-
ferential cross section for the above reaction us-
ing the distorted-wave Born approximation with U'j

taken into account through all orders. This in-
volved the solution of a coupled set (infinite in

number, in principle) of one-dimensional integral
e(luations. Our results (Sw) for the differential
cxoss section, at impact energies of 20, 100, and
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0
5

10
15
20
25
30
35
40

3.2(1)
2.9{1)
2.1(1)
1.2{1)
5.5
1.9
3.5{-l)
1.2(-3)
1.1(-1)

4.2(1)
3.8(1)
2.8(1)
1.8{1)
9.3
&.0
1.3
5.3(-2)

-3.8{-l)

4.o{1)
3.6(1)
2.v(l)
l.v(1)
8.8
3.8
1.4
3.v{-1)
5.8(-2)

4.1{1)
3.v{1)
2.s(1)
l.v(1)
9.2
4.1
1.5
4.5{-1)
s.o(-2)

TABLE I. Differential cross section, in units of go, as
a function of scattering angle, for the reaction e++ H(ls)

Ps{18)+p, at an impact energy of 20 eV. The symbols
JS, FiV, and MGS refer to "post-form" versions of the
distorted-@rave Born approximation in which the distor-
tion in the relative motion is included through Eeroth,
first, and infinite order, respective1y. '

The symbol MG
refers to an approximation applied to this reaction by
Mandal and Guha (Ref. 17). The notation gg) means
fz x lO-'.

Angle (deg)

CV~

too

O

CP
Ol
(0

io-&
4)

Ch

TABLE II. Same as Table I but for an impact energy
of 200 eV.

Angle (deg) JS MGS

0
5

10
15
20
25

l.o{-1)
v.l(-2)
2.6(-2)
5.1(-3)
3.6(-4)
2.v(-5)

1.2(-1)
8.9(-2)
3.6(-2)
e.2{-3)
1.4(-3)

-2.1{-4)

1.3(-1)
9.8(-2)
4.2{-2)
1.3(-2)
3.2(-3)
s.o(-4)

1.4(-1)
l.o(-1)
4.3(-2)
1.3(-2)
3.1(-3)
v.3(-4)

200 eV, are compared to those of Mandal et al.
(MGS) in Tables I and II and Fig. 2. Also shown
are results we have obtained using the Jackson-
Schiff (ZS) approximation, in which the differential
cross section is computed from t~isl ~ and the ap-
proximation (MG) in which the differential cross
section is computed from

~
T,

~

s with the prior form
of T,. The latter approximation was applied by
Mandal and Quha. ' Note that the JS, 8%, and
MGS approximations are "post-form" approxima-
tions in which the distortion in the relative motion
of the collision partners is included through zeroth,
first, and infinite order, respectively. At small
scattering angles our results for the differential
cross sections are in rather good agreement with
the MGS results, and are consistently an improve-
ment over the JS results. However, the agree-
ment worsens as the angle increases and our re-
sults become negative and stay negative. This is
because the distortion in the relative motion of the
positron and hydrogen atom, in the initial channel,
increases with increasing scattering angle, of
course, so that terms quadratic and higher order
in the distortion potential become increasingly
important. The MG results are in very good agree-

5.0 IO.O l5.0
Scattering Angle (deg)

20.0

FIG. 2. Differential cross section as a function of
scattering angle for the reaction e'+ H{ls}—Ps{is)+P
at an impact energy of 100 eV. The symbols have the
same meaning as in Tab1e I.

ment with the MGS results at small angles.
The integrated cross sections versus impact

energy are shown in Table III. Our results always
lie below the MGS results, well below at low ener-
gies. The reason for this is that in our approxi-
mation the contribution to the integrated cross sec-
tion from large angles is negative. The contribu-
tion from large angles becomes increasingly im-
portant as the energy decreases. For energies
above about 70 eV our results for the integrated
cross section are an improvement over the JS re-
sults. %e are a little surprised that at 200 eV
the agreement between our results and the MGS
results is not better than shown —the disagree-
ment is about 21%.

%e conclude from the comparison of the JS, 8%',
and MGS results that the inclusion of distortion in
the relative motion is essential even at small
scattering angles. The inclusion of distortion
through first order seems to be adequate at small
angles, but at large angles, specifically at angles
larger than the angle at which the JS differential
cross section is zero, higher-order terms in the
distortion potential must be taken into account.
%'e expect these remarks to apply to electron
capture by ions, not just by positrons.
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TABLE III. Integrated cross section, in units of (vao},
as a function of impact energy, for the reaction e++H(ls)

Ps(ls) +p. The symbols have the same meaning as in
Tables I and II.

Energy (eV) MGS MG

13.6
20.0
50.0

100.0
200.0

4.8
3.3
4.6(-1)
4.5(-2)
2.4(-3)

2.0
2.2
4.3(-1)
4.8(-2)
3.0(-3)

4 5
3.3
S.l(-1)
5.7(-2)

' 3.8(-3)

4 5
3.4
5.5(-1)
6.1(-2)
3.8(-3)

U. SOME COMMENTS ON Ps FORMATION
AT HIGH SPEEDS
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FIG. 3. Two mechanisms for positronium formation at
high-impact speeds. The thick and thin lines, respec-
tively, describe the paths of the positron and electron.
The vertical dashed line is the position vector of the
electron relative to the positron immediately after the
second collision.

Despite the fact that MGS take into account the
distortion potential to aQ orders, their approxi-
mation is inadequate at high speeds (e'/8'v« I) be-
cause important terms of order Veg Vp and VpyV~
are omitted. These terms represent the following
two mechanisms, which have been analyzed both
classically" and quantum mechanically"" and
are illustrated in Fig. 2: (a) The positron, inci-
dent with a high speed v (velocity v) strikes the
electron and knocks it toward the target proton
with a speed v/W2 and in a direction making an
angle of 45 with v. In this collision the positron
is deflected through an angle of 45' and also
emerges with a speed v/v 2. The electron then
scatters elastically from the heavy proton, is de-
flected through an angle of 90', and emerges from
this second collision with a velocity roughly equal
to that of the positron. Capture may then occur
easily. (b) The positron strikes the electron and
knocks the electron out of the atom with a speed
v/v 2 and in a direction making an angle of 45'
with v. The positron is deflected, through 45',
toward the proton from which it scatters elasti-

cally with a speed v/W2, is deflected through 90',
and emerges with a velocity roughly equal to that
of the electron so that capture may again easily
occur. Mechanisms (a) and (b) are represented
by the second Born matrix elements of V~GOVp,
and V»G, V~, respectively, where G, is the
Green's function for three noninteracting parti-
cles. The two matrix elements interfere. To
leading order in e'/Rv the interference is totally
destructive or totally constructive according to
whether the orbital-angular-momentum quantum
number / of the final state is even or odd. This
can be understood as follows". The two mecha-
nisms differ only in the nature of the second col-
lision. The (first Born} amplitude for the second
collision has the same magnitude but a different
sign in the two mechanisms. The position vector
of the electron relative to the positron, imme-
diately after the second collision, also has the
same magnitude but different sign (i.e., it is in-
verted} in the two mechanisms. Hence the matrix
elements of Vrp GOVp and VprgG{)Vp differ only by(-I)"to leading order in e'/Ifv. The, consequence
of this is that capture occurs primarily to states
of positronium having odd I when k'/hv « l. In
fact, the asymptotic v dependence of the cross sec-
tion for Ps formation is (e*/Ifv)" if I is even and
(s*/Iv)" if I is odd.

There is currently much interest in the process
of charge transfer to the continuum since it is a
primary source of ionization. " The qua~ntity being
measured is the singly differential cross section
dkldv, for the electron to be ejected by a projec-
tile ion with a lab speed v, (velocity v, ) into a
narrow forward cone whose axis is parallel to v.
When v, = v, Ck/dv, exhibits a cusp, which is the
signature of charge transfer to the continuum.
Strong asymmetries in this cusp have been ob-
served" for electron capture to the continuum by
fast-moving ions. These asymmetries have been
attributed" to the fact that the electron is cap-
tured by the ion into many different partial-wave
components of the electron-projectile continuum,
not just the l =0 component; this fact implies that
the amplitude for capture to the continuum depends
on the vector difference v, —v, not on ~v, —v~, so
that this amplitude is not invariant under the trans-
formation (v, —v}-—(v, —v) and hence dk/dv, is
asymmetric about v, = v even when e'/IIv « l. The
situation is different for electron capture to the
continuum by positrons. Since the electron is cap-
tured primarily to states of Ps with odd l, that is,
states with the same (odd) parity, the net ampli-
tude for electron capture to the continuum of Ps
will be invariant under (v, —v) - -(v, v}. Hence
the cusp in dk/dv, (where now the electrons are
ejected into a narrow cone whose axis makes an
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o -cZ'(e'/kv)"(vg), (5.1)
where Z is the atomic number of the target and

c= f(y.) -f(y, )

= 1.02 x10'

angle of 45' with v} is symmetric about n, = v when
e'/kv «1. However, we may require e'/he to be
so small for this result to be true that dc/dv„and
hence the cusp, are too small to be observed.

%'e have calculated the asymptotic contribution
from the sum of the first- and second-order Born
terms to the cross section for the reaction

e'+ H(ls) -Ps(ls) +p,
where H(18) is any member of the H(ls) isoelec-
tronic sequence. Vfe find the asymptotic form of
the cross section to be

and by the National Science Foundation under
Grant No. PHYV9-09954.

APPENDIX A: EFFECT OF Vp& VfHEN m(&N~,
AND Np

If m/Mr, and m/M~« I, the impact-parameter
approximation is valid so that P and T can be
treated as classical particles that move with con-
stant relative velocity v, and we have R=b+frt
where b is the impact parameter and t is the time. '
Let A(b) and A'(b} be the amplitudes for the
transition i-f when XV» is included and ex-
cluded, respectively, from the electron Hamil-
tonian. (We have introduced an arbitrary "strength
parameter" X.} Wick" pointed out that

A(b) =A'(b)e", (ZI)
where

with

2 8 16 16&if(y)=8 ~ ——,+, + —+ —(,

V~ v(R)dt

Vv, (ft}ds,
X

Sej (A2)

y, = —,'(3 2~2,
y, = —,'(3+2~2.

The first and second Born terms involving V» do
not cancel, of course.

At an impact energy of 200 eV the right-hand
side of Eq. (5.1) is about 1.0 X IO ' (va', ), which is
considerably larger than the MGS result shown in
Table GI. However, the asymptotic form of the
cross section givenby Eq. (5.1)is probably inac-
curate at200eV. Togainacrude ideaof whenthe
asymptotic formula is valid, we have evaluated the
Brinkman-Kramers cross section (computed from
the matrix element {Q&~V~ ~&,})both exactly and
asymptotically. At 200 eV the asymptotic estimate
is too large by a factor of about 3.5. At 2000 eV
the discrepancy is about 15%.

There have been no measurements of the cross
section for positronium formation at high impact
speeds. Such measurements would be extremely
difficult since the positronium would be destroyed
by coQisions very quickly after its formation.
However, it is possible (but highly speculative}
that one could study positronium formation in-
directly by studying charge transfer to the con-
tinuum. In charge transfer to the continuum, the
positron leaves its mark long after its death. This
mark, the cusp in de/dv„contains a wealth of in-
formation about positronium formation.
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where u= vf. (Note that $ decreases as I/s as s
increases. ) Since A(b) and A'(b) differ only by a
phase factor, the cross section integrated over b
is the same whether or not V» is included in the
electron Hamiltonian.

We can expand the phase factor in Eq. (A I) in
powers of X, which is equivalent to expanding in
powers of t'. Since X is arbitrary and since A'(b)
is independent of X, it follows that in the Born
expansion of A(b) all those Born terms involving
XV~~ linearly must sum to i)A'(b). Let A„„be the
sum of those nth-order terms involving XV» li-
nearly in the Born expansion of A(b), and let A„'
be the sum of all nth-order terms in the Born ex-
pansion of A '(b). We have

(A„,+ A„,+A„,+ ~ ~ ~ ) =i((A,' A,'+A,'+~ ~+~ ).
For direct excitation processes it can be shown
that

A»=0, A„„=i(A„',, n& I.
For capture processes A» 4 0. However, without
loss in generality we can choose @, and qb& so that
A» has the same phase as A,'. In fact, we can
assume that A)ty and A,' are both real. It fol lows
from Eq. {A3) that

A»+ He(A +A + ~ ~ }= —g Im(A'+A '+ ~ ~ ~ ) (A4a)

Im(A„, +A~, + ~ ~ ~ ) = $A,'+ t'Re(A,'+A,'+ ~ ~ ~ ). (A4b)

Since $A,' is of third order in the potentials (note
$ is of first order) we see from Eq. (A4a) that A»
is canceled through at least second order by higher
terms in the Born expansion of A(b). Therefore,
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it is not meaningful to retain A» in the Born ex-
pansion of A(b) unless higher terms are kept.

We now suppose that v» e'/8; The Born terms

Ai. A» and A' are appreciable o»y «» =-lbl

4 g/mv. (For b»K/ mvthese terms are exponen-
tially small. ") If b & Ilmv the terms A», A„„... ,
and A,', A,', .. . are much smaller (by one or more
powers of e'/8'v} than A» and A», provided, as is
the case here, that the potentials VpT Vp and

V~ are of the same kind. " Noting that $ decz eases
as 1/v with increasing v it follows from Eq. (A4a)
that A» and ReA» cancel through at least one

power of e'/ffv if b s ff/mv. In fact, since from
E(I. (A4b) we see that ImA» is smaller than A,' by

one power of e'/Rv for b & ff/mv, and since A„, and

A,' are of the same order in this range, we can say
that A„, and A„, cancel through at least one power
of e'/av.

Neglecting corrections of order m/M T and m/Mv
the scattering amplitude T(K) in the full wave

treatment is'

T'(K)=86 Id') e'R'SA(b).

Let T~ be the sum of those nth-order Born terms
involving XV» linearly in the Born expansion of
T(K). To obtain T»+ T» we simply replace A(b)
by A»+A» in E(I. (A5). If we make this replace-
ment then for e'/gv « I the main contribution to
the integral over b comes from the region b & g/me.
But we have seen that in this range of 5 the terms
A» and A» cancel through at least one power of
e'/Rv. Hence T„, and T„, cancel through the same
order, which is the result that Drisko and Dett-
mann and Leibfried' obtained by explicitly evaluat-
ing T» and T» in the small e'/gv limit.

APPENDIX 8 EXPRESSIONS FOR AMPLITUDES AS INTEGRALS OVER MOMENTUM SPACE

In this Appendix we express T„T;, and T, , where these amplitudes are defined by Eqs. (3.9) (3.11),
as integrals over momentum space. We have

T~ =A~+HI +N3,

(((»)",I=&*)i,"(K i)&„(n)i,( (-i)--
N, =-(3.)'[(-'/i, )ff'-.,]j;(K)i,(-J),

(Bra)

(B3b)

N, = -(Rv)'I'J (f'p(f)&(p+K)U, (p)4),(ap- J). (B2c}

N~ is the Brinkman-Kramers amplitude, which can be expressed in closed form. We also have

T2=L, +L2+Ls,

where

d p d qQ~+ PK~-p-q VpT p g', q ] K~-p- eq,

(,=-(2w)'"j a ([(lloyd(()((, i')' ~ )i (((((,—i)() (i)j (((,—~-i), ' (B4b}

I.,= d'p d'qf& PK&-p-q U, p g', q @,K&-o.p-eq, (84c)

T2 =M ~+M2+M3,

where

(B5)

M, = (f'p ~ d'(fgp(p)/zan(pp+q-K, )V»((f)(f),(p+(I-aK,), (86a)

j(.=-(2 )"'f &'t((l/~, )()(i-(()' —«,]z)"(i)i;(((i-((,)i,(i —~((,),

M.=- J~~ (f &'s())'(i)i';(((i*t(-K,)()(q)i,(i+~i-a«, ).

(B6b}

(B6c)
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APPENDIX C: EVALUATION OF INTEGRALS

(c2}

For i and f ground states (and Z~ = ZT= 1) we have to evaluate the following three types of basic integrals:

d ~ [(p-A)'+a'][(p-B)'+b'](p'+z') '

~ (p —A)'+a' (p —B)'+b' (p —C)'+c' p* —C' —iq '

~ (p+q-A)z+oP (p+q-B)z+bz p'+c' (q D)-'+d* 4t' D'--ip ' (CS)

Higher powers of any of the factors in the denomi-
nators can be obtained by differentiation. In the
above equations g is positive and infinitesimal,
a, b, c, d, and the components of A, 8, C, and

D, are real, z maybe complex, and C=lCl,
D= ~Dl. The integrals N, and N, of Eqs. (B2a} and

(B2c}are of the type of I,. If we write d'p=p'dpdA
in Eq. (C1), the integral over dA can be done sim-
ply with the use of the Feynman identity

aP J, [nz+ P(l - x)]' '
' =l'd

the integration over p can then be done simply by
contour integration if z is real. For z real, we
have

(c4)

where

2
1 1

E[F~+ (E+z)'] (cs)

E' = x(1-z)(A- B}z+zn'+ (1-z)b',

F = z A+ (1 —z)B,

(C6a)

(C6b)

yI, = w'~ dz dy SIT, I 2
+S —&C (, (cv)

where E and z are the positive square roots of E'
and z', respectively, and where F=lF~. Now the
integral I, exists for all values of z' except those
on the negative real axis. In fact, I, is an analytic
function of z' in the complex z' plane cut along the
negative real axis. Since the right-hand side of
Eq. (C5) is also an analytic function of z' in this
cut plane, we have by analytic continuation that
Eq. (C5) is valid for all z' in the cut plane, pro-
vided that z is that branch of the square root of
z' which is positive when z' is real and positive.
For example, if z'=-(C'+ jq), we insert z= iC-
in Eq. (C5). The one-dimensional integral of Eq.
(C5) can, in fact, be evaluated in closed form. "
We chose to evaluate this integral and its deriva-
tives numerically, since the algebra is much less
cumbersome and numerical integration using Simp-
son's rule is rapid.

By a repeated use of the Feynman identity and
use of Eq. (C5) we have

I

where E and F are defined in Eqs. (C6) and where

S' =y(1 —y)(F —C)'+yE'+ (1-y)c',

T = -C' —2iCS+ y(E'+ F')+ (1 y)(c'+ C'},

(Csa)

(Csb)

with C and ~ the positive square roots of C and
S', respectively. The integrals L, and M, of Eqs.
(B4b) and (B6b) are of the type of I,.

The integral L, of Eq. (B4c) is of the type of I,
but the integrals L„M„and I, of Eqs. (B4a),
(36a), and (B6c), as they stand, are not of this
type. This would be of this type if p and q always
occurred in the combination p+ q in the arguments
of p, and P&. To a good approximation p and q do
occur in the required combination. For example,
consider L, of Eq. (B4a). The main contribution
to the integral over q in Eq. (B4a) comes from the
region lq —K, lsK, J. Thus, provided (1 —a)J
«1/aT, which is true in the angular range of in-
terest, we can approximate the argument K —p
—aq of P, by -J+K, —p —q, so that p snd q occur
in the required combination. Similarly, provided
that (1-IP)K«1/a~ we can approximate the
argument Pp+q —K, of g~ in Eqs. (B6a) and (86c)
by p+q+K-K . We also approximate the argu-
ment p+ aq - &K of P, in Eq. (B6c) by p+ q —J —K
for (1 —&)J «1/a T. Note, however, that for
positron impact the inequality (1-P)«&1/az, is
certainly not satisfied for all angles of interest
since P =&. Fortunately, in this case the integrals
M„M2, and M, are zero since the distortion po-
tential U& vanishes.

By a repeated use of the Feynman identity, and
by use of Eq. (C5), we have

T=yF+ (1-y)D,
(C10a)

(C10b)

with c and S the positive square roots of c' and S'

"='
J~ ""~ "ySS[r+(S;D)]

where E and F are defined in Eqs (C6) and .where
now

S*=y(1-y)(F—D)z+y(E+c)2+ (1 -y)d,
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md wtth r =
[ T~.

The integrals I2 and I3 can be reduced to one-di-
mensional integrals, but we chose to evaluate the

two-dimensional integrals and their derivatives,
numerically since the algebra is then less cumber-
some.
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