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New approaches to the quantum-mechanical treatment of charge polarization in intermediate-
energy electron scattering
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Two new approaches to the inclusion of target charge-polarization effects in electron-scattering
calculations are presented and tested. The first approach is an energy-dependent polarization potential based

on an r ' nonadiabatic correction to the adiabatic polarization potential. The second approach is a matrix
effective potential which includes the nonadiabatic dynamics of the polarization effect at all r. The two

approaches are tested by comparing them to accurate phase shifts and differential cross sections for electron-
helium scattering for impact energies 12-400 eV,

'

I. INTRODUCTION

At high energies (impact energies at least an or-
der of magnitude greater thanthe kinetic energies of
the relevant bound electrons), electron scattering by
atoms or molecules can be described by the first
Born approximation. This assumes unpolarized
bound states for the target and undistorted-plane-
wave states for the scattering electron, which is
assumed distinguishable from the bound electrons.
At intermediate energies (impact energies 1-10
times the kinetic energies of the relevant bound
electrons) one must include the effects of polariza-
tion, distortion, and the pauli principle. Distor-
tion effects can be accounted for by computing the
scattering electron wave function numerically in
an effective-potential context or a coupled-radial-
equations formalism. The effects of the pauli
principle can be included by antisymmetrizing or
by using energy-dependent local exchange poten-
tials; in some cases orthogonality constraints on
the scattering electron wave function may also be
required. Charge polarization of the target is the
hardest effect to include realistically. There are
two categories of approaches: coupled equations
and eff ective potentials. The coupled- equations
methods are generally based on an expansion of
the system wave function in products of target
states (approximate eigenstates or pseudostates)
times scattering electron wave functions, with
the latter to be determined by numerical integra-
tion or a linear algebraic method. 7 In this kind
of approach the numerical solution is expected
to involve many target states at low energy but
only one target state at energies high enough for
the Born approximation to be valid. The target
states may be chosen either as (approximate)
target eigenstates~ or as a combination of eigen-
states arid pseudostates. ' The effective-poten-
tial approaches treat the scattering event as a
single- electron problem with all the many-elec-
tron aspects folded into the effecti've potential.

For the present discussion, "polarized-orbital"
methods may be grouped together with effective-
potential methods. ~'6'" If an effective potential is
to represent the decreasing importance of polar-
ization effects as the energy increases, it must
be energy dependent. Since polarization and ex-
change have different characteristics, the energy
dependence of the exchange potential alone is in-
sufficient. We will call the interaction of the
scatter ing elec tron w ith the unper turbed target the
static potential and the difference between the full
effective potential and the sum of the static and
exchange potentials the polarization potential. So
far there has been little work on energy-dependent
polar ization potentials.

Ln the present paper we propose two new methods
for including energy-dependent polarization ef-
fects in electron scattering, and we test them
both by applying them to electron-helium scat-
tering. The methods are designed to include the
dominant physical effects of energy-dependent
polarization but also to be simple enough to be
applied to electron-molecule scattering at inter-
mediate energy. We use electron-helium scat-
tering rather than electron-molecule scattering
as a test case because recent work has led to both
accurate values of the phase shifts at low energy
and accurate differential cross sections at inter-
mediate energy. 7'~ For no molecular system
have theory and experiment converged so con-
clusively on accurately known results that can
be used to test approximate theories.

The two new approaches proposed and tested
here are an energy-dependent polarization poten-
tial (EDpp) and a matrix effective potential (MEP).
These methods are presented in Sec. Q. Since
there are frequent reviews in this field, we do not
compare our methods and results here to all the
previous relevant work; rather we assume that
the reader is familiar with standard and recent
reviews and we defer to future reviews the task
of an overview including the newest methods.
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Throughout the article all equations are in
hartree atomic units (a.u. ), in which k= m, =ao
=e =1 and the impact energy of the electron is
kf/2 or v2/2 where k, is the initial wave number
and v the initial speed. The unit of energy is the
hartree (Eh).

II. THEORY

A. Energy-dependent polarization potential (EDPP)

The large-r form of the polarization potential is
dominated by the dipole interaction. The leading
term is given correctly by the adiabatic approxi-
mation which yields (for electron scattering by an
atom'8-")

Vva()n&(r) ~ ~/2r4

where V~~+"(r) is the adiabatic dipole polarization
potential, a is the static dipole polarizability, and
r is the distance of the scattering electron from
the atomic nucleus. The static dipole polarizabil. -
ity is given correctly by second-order perturba-
tion theory ass~

(2)

where p,„& is the transition dipole matrix element
connecting the ground state (n = 1) to excited state
n, and co„ is the excitation energy of state n. &n

this section we use the average-energy approxi-
mation in which

o) = 2S/Q7,

S=

and ~ is an average excitation energy. ln applying
this, one approximates the average excitation
energy on physical grounds and chooses S so that
Eq. (2) yields the correct static dipole polarizabil-
ity.

The r 6 term in. the expansion of the dipole
polarization potential comes from nonadiabatic
effects, and it has been derived by Steenman-
Clark and Drachman. Making the average-energy
approximation yields33 35

V'(r) = V"(r)/(1+6v'/~z '),
ll V (r)= V~'(r) exp(—Gv2/m~r~) .

(7)

Expanding Eqs. (7) and (8) yields the first and third
terms of (6). For He, at the energies considered
in this article and with co approximated by the
ionization potential, 6v2 exceeds 3m by factors of
2 to 65. Thus the third term dominates the second
term, and we used the simple expressions (7) and
(8) to examine the kinds of results that can be ob-
tained by including the dominant energy-dependent
term in the polarization potential.

Similar approximations were suggested in a
thesis36 by one of the authors but are tested for
the first time here. In the thesis a tierivation
based on the high-energy impact-parameter
method37 was presented; it suggested Eq. (7) but
with38 4v~/a)2 replacing 6v2/&u~. We used this to
motivate our original choice of or; i.e., we ap-
proximated 6v2/&u2 by 4v~/I2 where I is the ioniza-
tion potential. This yieMs ~ =30 ev (1.1018Eh).
Since this is somewhat arbitrary, we also tried
repeating the calculations with ~ twice as large.
We show below that the results are not very sensi-
tive to changing (d even by a factor of 2. Thus our
original choice of ~ is good enough to illustrate
the kind of results that can be obtained with this
form of polarization potential.

),pr )(„) ~ .))))(„)() 3GD + 6v
(0 j

Equation (6) provides a relation between the large-
r forms of the full polarization potential V~(r) and
its adiabatic approximation V (r) that is strictly
valid only in the dipole approximation. gut the
polarization effect is most important at large r,
where the dipole terms dominate. At small r the
static-exchange potential is more important than
the polarization potential. Thus it is interesting
to test whether the results are sensitive to the way
the polarization potential is continued to small r.
There are many possible ways to extend (6) to the
full polarization potential VI'(r) including all
multipole terms at large r and not making the
multipole expansion at small r. We seek a form
for V (r) that is as simple as possible but agrees
with (6) through the two leading terms in the dipole
approximation. Two such forms are

S 3S 6Sv
d'or (0 r (d r (5) B. Matrix effective potential (MEP)

where V~'~'(r) is the dipole polarization potential
including both adiabatic and nonadiabatic terms,
and v is the incident speed. (Note: in atomic units
the incident speed equals the incident wave num-
ber k, for electron scattering. ) Putting Eqs. (1},
(3), and (5) together yields

The most systematic practical way to mimic
charge-polarization effects is to represent the
target by a superposition of configurations that
allows for the possibility of charge polarization.
The coefficients of the various configurations can
then be determined as a function of r by a
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coupled-channels calculation for each impact en-
ergy of interest. This provides a full dynamical
treatment of polarization and the results will auto-
matically tend correctly to the limits of adiabatic
polarization at large x and low E and no polariza-
tion at small x and high E. This treatment can be
made to yield the exact results if the target basis
is large enough. gn practice the target basis must
be truncated and one often chooses target-. basis
functions that explicitly exhibit some particular
aspect of target charge p'olarization, e.g. , dipole
polarization3 5 or electron-target short-range
correlation. ~'" One particularly successful ap-
proach for electron-atom scattering has been the
use of pseudostates chosen to optimize the target
static dipole polarizability e. This ensures that
the effective interaction Potential is correct at
large x and low E. Such n-optimized pseudostates
lead to an effective potential that is arbitrary at
small distances. This arbitrariness is not im-
portant if the n-optimized pseudostates are
augmented by other target functions chosen to
represent the short- range interaction or if the
scattering results of interest are dominated by
the long-range forces. These conditions are not
always met. 'The present procedure is designed
to include the polarization effect by a coupled-
channels treatment, but to simplify the treatment
as well as to eliminate the arbitrariness of the
effective potential at small x. Whereas the pseudo-
state procedure can be justified on a variational
basis, the matrix effective potential introduced
here is justified by a perturbational argument.
Another important difference between the ap-
proaches relates to economy. For an atom with
an S ground state, a P pseudostate yields two
pseudochannels coupled to the ground state, but
includes only dipole-type polarization and in fact
only part of that (even if it is chosen to yield 100'%%uo

of the static dipole polarizability it does not yield
100% of even the dipole part of the adiabatic
polarization potential at any finite x). In contrast,
the present procedure involves only one pseudo-
channel but is designed so that in the adiabatic
limit it accounts for 100%%uo of the sum of all multi-

pole contributions to the adiabatic polarization
potential at every r. Just as the results of the
pseudostate method can be systematically im-
proved by including many pseudostates, the pres-
ent approach can be systematically improved by
increasing the number of pseudochannels. Al-
though a multipseudochannel model would still
yield 100% of the adiabatic polarization potential
in the adiabatic limit, the additional flexibility
could be used to try to improve the representation
of the spectrum of response times so that the non-
adiabatic effects would be more accurate.

Consider a set of N coupled channels with chan-
nel radial functions obeying the differential equa-
tions

—
d ) + ' 'q —k,. f,.(r) = —2 Q V,.y(x)f~(r).
d l,. (I, +1)

Vz&a(~) Q ~f9 ( (10)

Thus we choose X=2,

V„(r) = [ V"(r)~] '~',

kq~
—k~ —2~

In Eq. (11), V~'(~) is the correct adiabatic po-
larization potential as determined by a separate
calculation (see, e.g. , HefS. 9 and 15). The two-
channel problem with V„(r) and k~~ determined by

(11) and (12) implicitly includes the correct
adiabatic polarization potential at all r through
second order in perturbation theory in the adiabatic
limit. Having fixed V»(r), however, we abandon
second-order perturbation theory and the adiabatic
approximation. gn their stead we solve the coupled
equations (9) numerically, just as if the potential
matrix had been calculated from actual target
states or pseudostates. Since we have modeled
the 2 x 2 matrix effective potential V(x) rather
than the scalar effective potential ' V&(x) or the
pseudostate wave functionss ' p&(q), we call this
the matrix- effective-potential (MEP) method.

To complete the model we must specify V»(r),
&, and l~. Since the. model yields the correct
second- order adiabatic polarization potential for
any values of these quantities, we simply give
them reasonable values. For the diagonal poten-
tial in the pseudochannel we used the simple ap-
proximation

V«(w) is the sum of the static potential and the
effective exchange potential for the target ground
state. Thus V„(~) also includes static and ex-
change terms, but V&~(r) does not include ex-
change effects. Notice that we could actua11y cal-
culate V»(r) and V„(r) if we assumed a target
wave function in the pseudochannel instead of
modeling the matrix effective potential. But no

single x-independent target pseudostate yields the
full polarization effect at all x, even in the second-
order adiabatic approximation, as our model does.

(9)

Using second-order perturbation theory and the
adiabatic approximation, the polarization poten-
tial ib channel 1 is given by"



N E% APPROACHES TO THE Q UANTUM-MECHANICAL. . . 89

Thus such a calculation would not be consistent
with our model. If V;2(r) were calculated from a
pseudostate it would be possible to include ex-
change effects in it by using effective exchange
potentials. "

In the same spirit as (13), we assign f2=a,
This may be considered a centrifugral sudden
approximation4 for electronic response. Notice
that l2=l&+1 is required for dipole coupling, which
dominates at large r. Thus this centrifugal sudden
approximation might seriously affect the differen-
tial cross section. However, the model yields the
correct second-order adiabatic polarization poten-
tial for any value of l„and the adiabatic term
dominates at large x; thus the large-r scattering
is independent of l, through second order. The
use of an average value l, =l, is even more justi-
fied at smaller w, where many multipole terms
contribute importantly, and at very large r, where
the scattering comes from very large l (I »1). To
include two pseudochannels, for example, one with

l2 ——li —1 and one with l, =l, +1, would certainly
allow the model to be more accurate. However,
the first goal of the present study is to learn how

accurately we can treat the problem with a single
"average" pseudochannel.

A reasonable choice for ~ is the average excita-
tion energy. pf most of the polarization came
from a single state with excitation energy co, then
this choice would ensure a correct response time
for the system and make the treatment of non-
adiabatic effects realistic. Of course, real sys-
tems have a spectrum of excitation energies and
response times. The goal of the present work is
to see how accurately we can model the true po-
larization response of the system with a single
pseudochannel and hence a single &u. Thus we
set oo equal to an average excitation energy. For
most of the calculations we set the average ex-
citation energy equal to the ionization potential
24.481 erat' (v =0.8997IE„). For some phase shifts
we tried other values to test the sensitivity.

III. CALCULATIONS

=tan ' 7t O.A.
~

l~1
(2E+3)(2l+ I)(2l —1) ' (14)

por each energy, l «& and l &» were chosen large
enough so that the differential cross section was
well converged with respect to increasing either
of them. The values finally used are given in

Table I. e also calculated differential cross
sections in the static-exchange approximation for
comparison. For the static- exchange calculations
we set l&«

——l&»
——15 for all energies.

In the MEp method, the phase shifts are com-
plex; i.e. ,

in the hydrogenic orbitals was set equal to 1.5971
so that the static dipole polarizability comes out

equal to its accurate value4' 1.383 19 a.u. The use
of second- order perturbation theory is cons is tent
with the derivation of Eq. (11) and is accurate at
large r where Eq. (6) is applicable. Nevertheless,
a finite-field variational calculation'5 yields a more
accurate adiabatic polarization potential at small
x and might be preferred on those grounds.

The single-channel and two-channel Schrodinger
equations were solved by our variable-step-size
Numerov program. 46 The differential cross sec-
tions for elastic scattering were computed from
the phase shifts for the single-channel methods and

from the T-matrix elements for the MEp method.
To converge the differential cross sections, we
augmented the numerically calculated phase shifts
and T-matrix elements for small I (l (l&&&) by

asymptotic polarized Born phase shifts for large
l (l«& (I (l &»). The polarized Born approxima. —

tion4 is the first Born approximation applied to
potential scattering by an effective potential in-

cluding a polar ization term. Jn the asymptotic
polarized Born approximation, valid at high
enough l, the effective potential is replaced by
the asymptotic form (1). Using the partial-wave
Born approximation for a diagonal element of
the reactance matrix, one obtains for the phase
shift

The static potential and target electron density
are taken from the compilation of Strand and

Booham, 4' who presented analytic fits to the
Hartree- pock results of Hoothaan et al. The
exchange potential is evaluated using the semi-
classical exchange approximation. 4

The adiabatic polarization potential was cal-
culated from the expression derived by Dalgarno
and Lynn. 44 Their expression results from second-
order perturbation theory when the target is
treated in the Hartree- pock approximation with

hydrogenic orbitals. The effective nuclear charge

(16)

o„„=vk 2 Q (2l + 1)(1—
I

S&'&
I ), (17)

o„,=o„+o„„=2m' g (2l + 1)(1 —ReS&'& ),

(18)

The integral cross sections for elastic, inelastic,
and total (elastic plus inelastic) scattering are
then given by4~
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TABLE I. Angular-momentum limits for differential
cross sections.

Z (eV)

12-19
30—50
100
200
400

10
20
30
40
60

50
50
70

100
140

where

S&'&
—exp (2iq, ) .

IV. RESULTS

gn presenting the results we sometimes use the
following abbreviations. S: static approximation;

SE: static- exchange approximation; MEp: matrix-
effective-potential method; Ap B: asymptotic
polarized Born approximation; SEpa: static-
exchange-plus- adiabatic-polar ization approxima-
tion; SEpna: static- exchange- plus- nonadiabatic-
polarization approximation. Two kinds of non-
adiabatic polarization potential are considered.
Ep: extended polarization approximation" 3 '5

EDpP: energy-dependent polarization potential.
The calculated phase shifts for the s, P, and d

waves are given in Tables lI—J&. They are com-
pared to accurate phase shifts determined by
phase-shift analyses' '4 of experimental results
and by accurate calculations. ~'5 We also compare
the present results to previous ones obtained in
the static, 4~ static-plus- semiclassical- exchange, 43

static-plus- Hartree- Fock- exchange, 54'~ and ex-

TABLE II, s-wave phase shifts (rad).

SZ Accurate

12

30

50

54.4

100

200

400

1.437

1.406
1.405 g

1.324

1.214

1.210

1.095

1.076

0.942

0.799

0.668

1.913

1.857
1.856 ~

1.890
1.888 '

1.704

1.500

1.492
1.522
1.290

' 1.257
1.279

1.046

0.849

0.691

2.174

2.119

1.759

1.750

1.529

1.492

1.245

1.004

0.807

II ~

EP:

II ~

EP

1.956
1.940
1.994
1.896
l.880
l.933
1.955
1.735
1.720
1.769
1.521
1.611
1.512

EP:

EP:

EP:

EP.

1.302
1.391
1.268
1.259
1.287
1.051
1.112
0.851
0.868
0.692
0.687

2.223
2.263-

2.181
2.241

2.133
3.257

1.720+ i0.123
1.711+i0.134
1.712 +i0.123
1.702 +i0.135
1.478 +i0.136
1.454+ i0.142
1.435+ i0.136
1.410 + iO. 142

1.149+i0.117
1.131+i0.114
0.896+i0.078
0.888+iO OV2

0.712 + iO.047
0.708 +i0.042

1.985
1.968
1.989 f

1.936'
1.955 j

1.814
1.800
1.803'

Results are from the present calculations except where indicated otherwise. S denotes
only static potential, SE denotes only static and exchange potentials, SEPa denotes SE plus
adiabatic polarization potential, SKPna denotes SE plus full polarization potential including
nonadiabatic effects.

I: EDPP, Eq. (7), ~ equals 30 eV; II: EDPP, Eq. (8), ~ equals 30 eV; I': EDPP, Eq. (7),~ equals 60 eV; EP: extended polarization model.' Top entry: u equals ionization potential; bottom entry: ~ equals 2 P excitation energy.
Andrick and Bitsch, Bef. 18.
%illiams, Bef. 24.
Nesbet, Ref. V.

g Riley and Truhlar, Bef. 43.
Duxler, Poe, and LaBahn, Ref. 54.' Burke and Robb, Ref. 55.

' Sinfailam and Nesbet, Bef. 53.
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TABLE III. p-wave phase shifts (rad).

E (eV) SE APB SEPa SEPna MEP Accurate

0.053 0.193

13.6

19 0.086 0.239

30 0.130 0.278

30.6 0.133

50 0.187

0.280
0.284
0.311

54 4 0.196 0.315
0.327

100 0.256 0.336

200

400

0.298

0.308

0.340

0.328

' ' See Table II.

0.061 0.206
0.060 g 0.205 ~

0.183

0.250 0.374

0.282 0.395

0.384 0.446

0.568 0.493

0.578 0.494

0.817 0.517

0.859 0.518

1.132 0.513

1.340 0.483

1.563 0.438

I ~

II:
It ~

I ~

EP
I»

EP:
I ~

EP»
I~

'I ~

EP:
I ~

Ep
I ~

EP:

0.259
0.236
0.309
0.268
0.242
0.320
0.251
0.288
0.258
0.342
0.308
0.336
0.309

0.326
0.352
0.329
0.317
0.394
0.342
0.347
0.342
0.334
0.329
0.319

0.361
0.359

0.382
0.381

0.437
P 440

0.516+i0.020
0.518+i0.043
0.519+io.023
0.519+i0.046
0.526 + io.088
0.507 +io.105
0.519+io.096
0.498 + io.112

0.452 + io.108
0.433 + i0.109
0.390+i0.077
0.381+i0.071
0.350+i0.046
0.345+ io.042

0.259
0.242
O.243'
0.263
O.265 ~

0.325
0.311
O.316'

TABLE IV. d-wave phase shifts (rad). '

E (eV) SE APB SEPa SEPna MEP A'c curate

12 0.004 0.017

13.6

19 0.010 0.029

30 0.020 0.047

30.6 0.021

50 0.040

0.048
0.042
0.072

54.4 0.044 0.076
0.074

100

200

0.080

0.125

0.111

0 ~ 148

400 0.161 0.174

' ' See Table II.

0.005 0.020
0.005 ~ 0.020 ~

P P14 h&1

0.036

0.041

0.058

0.091

. 0.093

O.151

0.164

0.295

0.546

0.883

0.056

0.063

0.086

0.124

0.126

0.170

0.177

0.222

0.255

0.266

II:
Il ~

EP:

II:
Ii ~

EP:

0.041
0.038
0.050
0.045
0.041
0.046
0.042
0.054
0.046
0.071
0.068
0.083
0.068

I»

EP:

II:
Il ~

I~

EP:
I ~

EP:

EP»

0.086
0.111
0.089
0,078
0.110
0.117
0.141
0.150
0.159
0.175
0.172

0.052
0.051

0.059
0.058

0.081
0.081

0.126 + i0.003
0.128 + io.009
0.128 + io.004
0.130+io.pl 0
0.173+io.033
0.166+io.041
0.178 + io.038
0.169+io.046

O.191+iO.O64

0.180+i0.065
0.191+ i0,059
0.183+ io.054
0.195+io.040
0.191+i0.037

0.037
O.O36'

O.O41'
O.O39 j

0.058
O.O58'
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tended polar ization5 approximations. The main
reason for the comparison between present static-
plus-semiclassical-exchange results and the
static-plus-Hartree- Fock- exchange results is to
show how much of the error in the present cal-
culations might be due to our treatment of ex-
change. In general the different treatments of
exchange do not lead to large differences in the
phase shifts; therefore the discussion in Sec. V
will emphasize the differences in the treatment
of charge polarization rather than exchange.

The l dependence of the phase shifts for one
energy is illustrated in Table V.

Qne of the most serious assumptions in the MEP
model is that the response of the target can be
represented in terms of a single pseudochannel.
To test this we performed some calculations with
two pseudochannels. To do this we replace Eqs.
(11) and (12) by

(20)

(21)

(22)

(22)

The results for several choices of the pseudo-
channel parameters are shown in Table VI. Notice
that N=3 corresponds to two pseudochannels.

The differential cross sections for elastic scat-
tering are shown as functions of scattering angle
0 in Figs. 1—7. They are compared to the experi-
mental results of Bromberg, 56 Andrick and

Bitsch, ' Jansen et al. ,"Williams, '4 and Begister
et al. and the accurate calculated results of
Nesbet. ' In general, in the figures the calculated
results are shown as various kinds of curves and
are identified in the figure itself. The EDPP re-
sults are based on functional form I, Eq. (7), and
the average excitation energy is set equal to the
30 eV and the ionization potential for the EDPP and

TABLE V. Phase shifts (rad) for E =50 eV.

APB SEPa EDPP MEP

0
1 0,817
2 0,151
3 0.050 7
4 0.023 0
5 0.012 4
6 0.007 4
7 0.004 8

10 0.001 7
15 0.000 54
20 0.000 23

1.529
0.517
0.170
0.065 7
0.029 4
0.015 0
0.008 5
0.005 3
0.001 8
0.000 55
0.000 23

1.302
0.326
0.086
0.028 3
0.0121
0.006 5
0.004 1
0.002 9
0.001 2
0.000 45
0.000 21

1.478
0.526
0.173.
0.068 2

0 ~ 031 0
0.015 9
0.009 0
0.005 6
0.001 9
0.000 55
0.000 24

+i0.136
+i0.088
+i0.033
+i0.0116
+i0.004 0
+i0.001 4
+i0.000 5
+i0.000 2
+i0 ~ 000 01
+ i0.000 00
+i0.000 00

MEP models, respectively. In addition to the true
MEP results, which are shown as an ordinary
curve in Figs. 1 and 2 and a thin curve in Figs. 3-7,
Figs. 3-7 show what we obtain if we use the MEP
value of the real part of the phase shift but neglect the
imaginary part of the phase shift. These y, =0
results are shown as ordinary curves. The ex-
perimental results are identified in the captions
rather t;han the figures. Begister et al. used a
phase-shift analysis to extrapolate their results
to 0 and 180, and their results are shown as
short- dashed curves. The other experimental
results are shown as various kinds of symbols.

The integral cross sections 0„, o„, and 0„,
and the elastic momentum-transfer cross sec-
tions cr „are given in Tables VQ and VIII. In these
tables the present results are compared to the
experimental results of Andrick and Bitsch,
Milloy and Crompton, '9 Blaauw et al. , Kennerly
and Bonham, '3 and Begister et al."and to the
accurate calculated results of Nesbet. ~ fhese ex-
perimental and calculated results are generally
quite consistent and represent a reasonable con-
sensus of the true answers. We also compare to
the results of the extended polarization calcula-
tions of I aaahn and Callaway ' since this theory

TABLE VI. Phase shift (rad) for l =2, 6, and 10 at E =50 eV.

Method & (e2/e)
Pg, (d2

(eV)
fg u3
(ev)

SE
APB
SEPa
SEPna
MEP
MEP
MEP
MEP
MEP

1
1
1
1
2 1.00
3 0.50
3 0.35
3 0.50
2 1.00

29.983
24.481
24.481
21.215
24.481
24.481

l
24.481

l 26 240
l —1 24.481

l

1.0
1.0
1.0

l +1 1.0
2.0

0.0716
0.1509
0.1695
0.0855
0.1731+ i0.0327
0.1731+ i0.0327
0.1723+i0.0327
0.1255+i0.1126
0.1981+ i0.1523

0.000 32
0.007 44
0.008 51
0.004 11
0.008 99+i0 ~ 000 51
0.008 99+i0.000 51
0.008 97+i0.000 57
0.010 34+i0.002 47
0.009 23+i0.000 57

0.000 002
0.001 74
0.001 81
0.001 24
0.001 86+i0.000 01
0.001 86+i0.000 01
0.001 86+ i0.000 02
0.002 07+i0 ~ 000 09
0.001 86+ i0.000 01
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s-wave phase shifts at these energies. In contrast
the EDPP model is a considerable improvement
over the adiabatic one. It reduces the relative
errors in the phase shifts from about 0.2 rad to
0.02—0.08 rad. It is interesting that both the EDpp
results and the accurate results are much closer
to the no-polarization (SE) results than to the
adiabatic ones. The EDpp results are not very
sensitive to the form (I vs. 11) of the polarization
potential at small w or even to doubling the effec-
tive excitation energy. Sensitivity to more rea-
sonable variations in the effective excitation en-
ergy would be smaller.

At higher energies the MEP phase shift drops
below the adiabatic one, and both the MEP and the
EDpp tend to the SE result at high energy as ex-
pected. The EDpp phase shift is within 0.02 rad
of the SE one at all energies above 30 ev. In con-
trast the MEp phase shift is still halfway between
the 8E and SEPa ones at 100 ev and approaches
the SE phase shift within 0.02 rad only at 400 ev.
At 30-50 e7 the extended polarization results are
midway between the EDPP and the MEP but at 100
eV and higher they are closer to the MEp. The
MEP would seem to include the physics more fully
than the single-channel EDpp or EP models, but
since there are no accurate phase shifts available
at these energies, the success and failures of the
models at these energies will have to be judged on
the basis of the differential and integral cross
sections discussed below.

With one exception, the MEP model is not very
sensitive to average excitation energy. The ex-
ception occurs at 19 eg, which is very close to
the pseudothreshold at 21.215 eV. In general one
should avoid using pseudostate and pseudochannel
models too close to pseudothresholds. ~'~8

B. Higher phase shaAs

The s-wave phase is qualitatively different from
all the others in that there is no centrifugal poten-
tial. This means that the incident electron fully
probes the strong short-range potential. For the
higher partial waves the centrifugal potential keeps
the electron out and the long-range polarization
potential is relatively more important. The pres-
ent calculations illustrate this quantitatively. For
example, at 12 ev, the ratio of SEpa to SE phase
shifts is 1.14, 1.94, and 3.27 for the s, P, and d
waves, respectively. At 50 ev these ratios are
1.19, 1.66, and 2.37, respectively, and at 400 ev
they are 1.17, 1.34, and 1.53, respectively. Since
the polarization effect is easier to model at large
&, the present models should be more successful
for the higher partial waves.

Tables II and III show that the EDPP phase shifts
(models I and II) are again in remarkab1y good

agreement with the accurate phase shifts at 12—19
ev. For l & 0, the EDPP becomes more sensitive
to u, but even doubling co (which is an unphysically
large change) increases the phase shift by only
0.05 rad. For the p wave, the accurate and EDPP
phase shifts are closer to the SE results than to the
SEPa ones. For the d wave the accurate and EDpp
phase shifts are about halfway between the SE and

SEPa ones. The MEP phase shifts for 12-19 e&
are only a little less than the SFpa ones for both
the P wave and the d wave.

At higher energies (80—400 eV), the EDPP and

EP phase shifts are relatively close to the SE ones
but the MEp phase shifts are closer to the SEpa
ones up to 100 eg.

Next consider the convergence of the phase
shifts to the asymptotic polarized Born form as
l is increased at constant E. Table g7 shows that
the accurate d-wave phase shift is remarkably
close to the ApB result for l =2 at 12—19 ep.
Consideration of the wide range of variation of
the SEPa and SEPna results, however, shows that
the success of the APB is not due to the satisfac-
tion of the assumptions of its derivation. In other
words, when we perform actual calculations with
effective potentials that have the correct asymp-
totic form but we do not assume the asymptotic
form at all & and we do not assume free-particle
wave functions for the scattering electron, we do
not obtain the APB result for every realistic
short-range form of the potential. Thus the ApB
should not be assumed reliable for all l ~2 just
because it happens to be fairly accurate for l =2.

An example of the convergence of the various
phase shifts to the results predicted by the asymp-
totic form is shown in Table p. An interesting
point illustrated by this table is that EDpp
formalism converges most slowly to the asymp-
totic limit; this is found to be the case at other
energies too. Another interesting point is that
the real parts of the MEp phase shifts are not
necessarily less than the adiabatic ones.

C. Elastic cross sections at 12-19eV

The cross sections at 12—19 eV (Figs. 1 and 2
and Table Vll) confirm the trends seen above in
the comparison with the accurate phase shifts.
The static- exchange approximation predicts far
too littIe scattering for 8~30, but the EDPP is
in excellent agreement with experiment at all
scattering angles. The MEP and adiabatic models
are relatively poor approximations at 12 e& and
overestimate the forward scattering and the inte-
gral and momentum-transfer cross sections at
both 12 and 19 e&.
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TABLE VII. Integral and momentum-transfer cross sections (ao) at impact energies 12-50 eV.

E (eV)
0 el

12
m
el a el

m
el Oel spinel +tot

50
&m0 el ginel 0 tot

15.28 11.39 10.21
14.82

14.14
14.14 15.25

Experiment
Andrick and Bitsch 14.82
Milloy and Crompton
Blaauw et al. '
deHeer and Jansen
Kennerly and Bonham
Register et al.

7.98

7.54 5.38

0.81
8.52
8.79 4.95
8.43
8.36 4.51 2.51

6.20
1.52 6.47

6.00
6.04

Theory
Nesbet g

LaBahn and Callaway '

SE
SEPa
EDPP 'l
MEP (y=o) '
MEP"

14.49 15.04 11.31 10.15

14.23
15.61
15.18

14.81
16.37
15.40

10.39 9.69
13.04 11.31
11.09 9.87

14.55 15.28 11.62 11.14

7.79
7.02
9.85
7.42

10.28
8.97

5.99
5.66
6.80
5.69
6.76
5.49 0.99 9.96

4.81 2.99
4.21 2.77
6.55 3.38
4.38 2.77
6.64 3.22
5.52 2.25 2.13 7.65

' Reference 18.
Reference 19.
Reference 20.
Reference 21.

~ Reference 23.
Reference 25.

~ Reference 7.
"Reference 52.
' Equation (7).
' cu equal to 30 eV.
"~ equal to ionization potential.

TABLE VIII. Integral and momentum-transfer cross sections (a02) at impact energies 100—400 eV.

E(ev)
0'el &m

el

100
inel tot

200
&m

el in el +tot 0'el &m
el

400

inel +tot

Experiment
Blaauw et al.
deHeer and Jansen
Register et al.

2.18
2.00 0.75

3.99
1.89 4.07 0.98

3.89 0.88 0.22

2.59
1.65 2.63 0.44

2.53 0.41

1.65
1.16 1.61

1.57

Theory
LaBahn and Callaway
Dewangen and Walters
SE
SEPa
EDPI 'g
MEP (y=0) h

MEP

2.23
2.01
1.96
3.40
2.01
2,88
2.47

1.00 0.98 0.29 0.44
0.91 0.42

0.93 0.90 0.29 0.42
1.14 1.67 0.35 0.81
0.93 0.91 0.29 0.42
1.00 1.16 0.30 0.50
0.68 2.47 4.93 1.07 0.23 1.98 3.05 0.48

0.084

0.087
0.103
0.086
0.088
0.074 1.37 1.85

' Reference 20.
Reference 21.
Reference 25.
Reference 50.
Reference 58.
Equation (7).

g cu equal to 30 eV.
~ equal to ionization potential ~
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D. Elastic cross sections at 30-50 eV

Next consider the 30 and 50 eg cross sections in
Figs. 3 and 4 and Table &II. The MEp differential
cross section is still close to the adiabatic one for
small 8, and thus this model predicts too large a
forward peak. The EDpp result is most similar
to the Ep one, and both these methods underesti-
mate the forward scattering. At both energies,
the Ep model is closer to experiment than the
other three (MEp, SEpa, and EDpp) models.
The static approximation is worse than any of
them.

At large scattering angles the imaginary part of
the MEp phase shift has a much larger effect than
for small 8, and it greatly diminishes the MEp
differential cross section as expected. Unfortu-
nately, this makes the MEp differential cross
section too small at large 8. None of the models
is in excellent agreement with the large-angle
data at these energies. However, the MEp model
is in excellent agreement with the momentum-
transfer cross sections, which are most sensitive
to medium and large scattering angles.

E. Elastic cross sections at 100-400 eV

Now consider the cross sections in Figs. 5-7
and Table &III. At these energies neither the
SEpa nor the SE differential cross section agrees
with experiment within 50% at small 8. At 100
eV the MEP prediction at small angles has im-
proved considerably as compared to lower energies,
and it must be considered superior to the EDPP
model for small-angle scattering. The MEp
model gets even better at 200 and 400 eP. The
large-angle differential cross sections predicted
by the MEp are also more accurate at these en-
ergies than at lower energies; at 200 ep the large-
angle cross section predicted by the MEp is better
than any of the other models considered. At 100
and 200 eV the MEp model is in good agreement
with the momentum-transfer cross sections,
whereas the other calculations all lead to too high
a value. The good agreement of the MEp results
with the experimental momentum-transfer cross
sections at 30-200 e& can probably be attributed
to taking account of loss of flux into inelastic
channels. We shall see in subsection V F that the
MEp model does predict the flux loss reasonably
accurately.

At energies of 100 ev and higher the EDpp pre-
dicts a qualitatively incorrect shape for the small-
angle differential cross section, clearlyunderesti-
mating the polarization effect. Although we included
RDPP calculations at these energies for complete-
ness, the expansion assumed for the potential
breaks down when 6v'/&u'x'a 1. At 100eV, 6v'/&u'r'

f (r) = 1 —exp[ —(r/c)8] . (25)

The cutoff function f (r) is an arbitrary form de-
signed to compensate for the breakdown of their
model at small r and the resulting singularity at
the origin. For He they used c =0.57ao and found
that changing it by up to 50% made differences of
20% or less in the cross section for energies 100
erat' or more. ~~ The function F(v/v„r) accounts for
nonadiabatic effects as modeled by a target re-
sponse to a constant-velocity, straight-line-path
trajectory. ' For electron-helium scattering, this
function can be approximated by '

1 + 2.97x2
E(x) =

1 + 0 246+2 + 1 79+4 ~ (26)

The adiabatic limit in this model is achieved by
letting (v/r) -0. This yields

UPS(~) f(y) g l « I

n COny'

Combining Eqs. (24) and (27) and making the
average- energy approximation yields

U~(r) = Up'(r)F(v/(dr)

2,72v
'U (y')( 1 +

(27)

(28)

In contrast, model I yields

V2)' (.),—)'-(.)()—,g (30)

Thus the leading nonadiabatic effect in the Hayashi-
Kuchitsu model has the opposite sign to ours.
There are important differences in the way the
models have been applied. We propose to use a
reasonably accurate U~'(r), whereas they use Eq.
(27). We include exchange whereas they have
neglected it. e~ Finally, they do not use the

=36.3/r~ so that the model has become inap-
propriate over an appreciable range of r. The
present calculations confirm quantitatively the
extent of the inappropriateness of this model at
high energy. Actually the SE and EDpp do pre-
dict accurate integral elastic cross sections at
high energies but this results from a cancellation
of errors with the differential cross section being
underestimated at small 8 and overestimated at
large 8.

It is interesting to compare the present EDpp
treatment to Hayashi and Kuchitsu's quasiadiabatic
polarization potential, which is also a real-valued,
energy-dependent model. Their potential is

f(&) g I g«l' F
co„

where
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average- energy approximation. This requires
knowing the distribution of oscillator strength or
at least some moments of this distribution. ~hen
this information is available it couM be incorpo-
rated into our model as well. Hayashi and Kuchitsu
applied their model to electron-helium scattering
at 100—500 ev. Their differential cross sections
at 0 at 100, 200, and 400 ev are 4.31, 2.97, and
1.97ao, respectively. Comparison to Figs. 5-7
shows that these values are much larger than we
obtain in our EDPP approximation, as expected
from the comparison of Eqs. (29) and (30), and in

fact are close to what we obtain in our MEP model.
Apparently their model predicts too much polariza-
tion and our EDPP predicts too little at high en-
ergy.

F. Inelastic cross sections

Vfe have already described some of the pre-
dictions of the MEP model for integral inelastic
cross sections in a preliminary communication of
this work. In general, we do not expect as much
accuracy for these cross sections as for the
simpler and better studied elastic ones. In this
context, Tables VII and &III show that the MEP
model predicts reasonably accurate inelastic
cross sections at all energies.

VI. DISCUSSION OF MODELS

A. MEP model

From one point of view it appears that the most
serious approximation in the MEP model is the
representation of the dense (in fact, above the
ionization potential, continuous) level structure
of the helium atom by a single level. From another
point of view, however, this is an advantage since
a calculation with many pseudostates also has
many pseudostate thresholds, each associated
with an unreal resonance. Thus, to make cal-
culations at specific energies, the basis may have
to be altered to move these resonan. ces.6 In. actual
pseudostate calculations the total inelastic cross
section converges rapidly with increasing num-

bers of short-range pseudostates, e so it is not too
unrealistic to model the entire spectrum with a
single pseudochannel. If we take the model
literally and interpret the coupling to the pseudo-
channel in terms of some implicit pseudostate
wave function, it is clear (since no one pseudo-
state yields the entire polarization potential at all
r) that the pseudostate must be a function of r as
well as of target coordinates. In this case there

. would be derivative-coupling terms arising from
' the operation. of &2 on the pseudostate. These
derivative-coupling terms are not included in the
present model, and their absence illustrates the

I"yy(r) = &gg(r/&) ~ (32)

where a is a scale factor. To test the sensitivity
to V22(r), we made some calculations with a =2.
Table VI shows that there is some sensitivity to
a, but it is less than the sensitivity to l.

The MEP method is similar in some respects
to the pseudostate method and the complex-optical-
potential method. As compared to the pseudostate

nonrigorous character of the present model. These
considerations may explain in part why such a
simple model is reasonably successful at pre-
dicting the total inelastic cross section, and also
why the effective potential is too attractive for
elastic scattering.

The results in Table VI lead to some interesting
conclusions about the MEP model. For the first
%=3 calculation w'e replace the single pseudo-
channel of our standard model by two pseudo-
channels, with the same excitation. energy, such
that the second-order adiabatic polarization poten-
tial is unchanged. This has a negligible effect on

the results. In the second X=3 calculation we give
the two pseudochannels different excitation ener-
gies. The first one is given the 2 'I' excitation
energy, and, since the 2 ~P state contributes 35'%%up

of the static dipole polarizability, the first state
is assumed to contribute 35/q of the second-order
adiabatic polarization potential. Then the second
state contributes the remaining 65% and its ex-
citation energy is assigned so that the weighted
average excitation energy equals the ionization
potential, as in our standard model. Although this
two-pseudochannel model would seem to have a
much more realistic spectrum of response times,
the results are again very similar to the standard
model. These two checks are very encouraging.

The third M=3 model tests the assignment of

the orbital- angular- momen. turn quantum number
in the pseudochannel. In our standard model we
made the centrifugal sudden approximation /~

=l&. In a calculation with a single pseudostate, 4

one would have two pseudochannels with /&
——1 +1.

Table VI shows that introducing a spread of
orbital-angular- momentum indices does have a
non-negligible effect on the results. Thus the
centrifugal sudden approximation must be con-
sidered one of the most serious assumptions of
the MEP model as employed here. It would be
worthwhile to try to improve on this approxima-
tion in future work.

Another assumption that can be tested is Eq.
(25). In general, excited states are more diffuse
than the ground state, and one expects a longer-
range potential in the excited state. A simple
way to introduce this effect is through a scale
factor, i.e. , to assume
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method it has the advantage of including the full
target response in the adiabatic limit at all r with
only one pseudochannel, and it does not require
knowledge or use of excited state or pseudostate
wave functions. As compared to the method of
complex optical potentials, the MEp method has
the advantage of not assuming an oversimplified
functional form for the absorptive interaction.
Furthermore, the nonadiabatic aspects of charge
polarization are modeled dynamically by the in-
teraction of two channels in a scattering calcula-
tion rather than by an assumed velocity dependence
for the optical potential. Unfortunately, the MEW
model, at least in this initial trial, gives results
too close to the overly attractive fully adiabatic
model at low energy. It seems to do better for
the elastic scattering at high energy and for the
inelastic scattering at all energy.

B. EDPP model

method is successful for all the cases. '7 The
KDpp includes all multipoles and all ranges of
x and makes an honest attempt to treat nonadia-
batic effects. If a method like this is successful,
it can be extended to electron-molecule scattering
with more c~ nfidence than a method that relies on
cancellation of errors in the atomic case.

C. Summary

Both new models presented here, the energy-
dependent polarization potential and the matrix
effective potential, achieve notable success for
some features of the scattering but are not uni-
formly successful over the whole 12-400 eV
range studied. Since both models are quite dif-
ferent from the kinds of treatments that have been
widely studied and applied, it mould be useful to
study them further to test their ab initio predictive
capabilities and to refine them.

The KDpp model is much simpler but does
surprisingly well for the elastic scattering at low
energy. It was never intended for use at high
energy, and the present calculations confirm
that it does do poorly there. The success achieved
at low energy is, however, worthy of further
study. &any currently popular treatments of low-
energy scattering omit some combination of non-
dipole effects, small-r effects, and nonadiabatic
effects and succeed only when these different kinds
of effects fortuitously cancel. " Thus no single
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