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Saddle-point tec»iflne for helio~ in the elastic- and inelastic-scattering energy region
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The saddle-point technique is applied to the helium atom below the ionization threshold and for 'P and 'P
resonances in the elastic-, and inelastic-scattering energy region. The results generally support the assertion that the
method gives the best square-integrable approximation within the inner-shell vacancy picture for excited or
autoionizing states. For the resonance where the Feshbach shift is negative, the saddle-point method gives essentially
the same result as that of the QHQ approximation. However, for resonances with a large positive Feshbach shift, the
results of the new method are substantially better. For example, for the lowest 'P resonance in the'inelastic-
scattering region, we get 69.901 eV, the experimental result is 69.90 + 0.04 eV by Madden and Codling,
69.92 + 0.03 eV by Dhez and Ederer.

I. INTRODUCTION

The inner-shell vacancy states of a quantum
system have generated great interest in the past.
Experimentally, they correspond to the discrete
spectrum of the system embedded in the continu-
um. They exist in atomic, molecular, nuclear,
and solid systems. These states arise in colli-
sion, photoabsorption, nuclear decay, as well as
elementary-particle capture. Once formed, they
may decay through many different channels such
as autoionization, x-ray emission, Coster-Kronig
transition, etc. Many theoretical methods have
been developed to study these states, especially
for atomic systems with a few particles. For
example, the close-coupling method, ' the Feshbach
proj ection- operator method, the complex- rota-
tion method, and the quasi-proj ection- operator
method, etc. However, each method has its own
limitations in dealing with the highly excited
states of a complicated system.

Recently, a new variational method has been
developed to calculate the energy and wave func-
tion of an inner-shell vacancy system. This meth-
od is comparitively simple to use. There are no
restrictions as to the number of particles or the
number of vacancies within the system.

The basic assumption in this method is that a
vacancy in a many-electron system can be repre-
sented by a single-particle orbital Po(r). In a
variational calculation, one uses a multiconfigura-
tion trial wave function

where A is an antisymmetrization operator. If
electron j in the wave function iII) has the same sym-
metry as ft)0 and it is the only particle that may
fill the vacancy, then an n-electron wave function
containing a Po vacancy is

+'=&[I-PD(r~)]g(rq, r2, . . . , r~, . . . r„), (2a)

where

&o(r) =
I eo (r)) &&t 0(r) I . {2b)

If Eqs. (2) are used with the Rayleigh-Ritz varia-
tion method, the lowest eigenvalue will correspond
to the lowest state with that vacancy. The higher
eigenvalues approximate the higher excited states
in accordance with MacDonald's theorem.

The question is therefore how to make an intelli-
gent choice of Pq(r). In Ref. 7, a theorem is
proved which shows that if one parametrizes $0,
then the energy of the inner-shell vacancy state
corresponds to the saddle-point solution in the
Rayleigh-Ritz variation method. That is, it is a
minimum with respect to the parameters in g and
a maximum with respect to the parameters in ft)o.
It is also shown in this reference that the solution
so obtained should be the best possible square-
integrable solution to the problem of interest.

In this work, we test this theorem by using the
e+He system for three energy regions: below
the ionization threshold, in the elastic-scattering
region, and in the inelastic region. The reason
that this particular system is chosen is partly
because other accurate theoretical and experi-
mental data are available for comparison, thus
providing an unambiguous test of the saddle-point
technique. In Sec. II, the trial wave function is
given along with a description of the procedure
used. Section III specializes to single-particle
excitation. Since these energies can be accurately
calculated with MacDonald's theorem, the two re-
sults will be compared. Section IV deals with the
P and P doubly excited states of He in the n= &

to n=2 energy region. These results are com-
pared with the accurate Feshbach calculation and
with experiment. Section V gives the I' and I'
excited states in the n=2 to n=3 energy region.
Previously, disagreement existed between the ex-
perimental result ' and the Feshbach QHQ cal-
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culation. However, by using the saddle-point
technique the new theoretical result gives excel-
lent agreement with the experiment. Section VI
is a brief summary.

II. WAVE FUNCTION AND PROCEDURE

In atomic units the nonrelativistic Hamiltonian
for a two-electron atomic system is

H = 2vj -—2 v& —Z/rq —Z/r2 + I/rqq . (2)

To solve for the energy states of this Hamiltonian,
we use a variation method. A set of basis func-
tions is chosen for the expansion. The spacial
part of the basis function is given by the product
of

& and P, and maximized with respect to q.
It is well known that the Feshbach formalism

provides an exact formulation for two-electron
scattering systems. In this formulation the Hil-
bert space is divided into open and closed chan-
nels with the corresponding projection operators
P and Q. Hence the Schrodinger equation becomes

PHP —PHQ QHP —E iP4=0.(
1

QHQ- E

It is clear from this equation that resonances
arise when E approaches an eigenvalue of the QHQ

operator. It can be shown that if

(QHQ- &„}$„=0,

po(rg, r2) = ri~as (4a)
then the Feshbach resonance energy associated
with this ~„ is given by

(LMlil2} = g (lil2mim2 ~LM}Yi (ri)Y, (r&) .
1 2

(4b)

(r) =NR„, (r)Y, (8, P),
where

R'.l'=s'"'"I '" IL!'„"I '
I

r2 &'tl r2 ~l

(g j ""(e)

(6a)

(6b)

and N is a normalization constant, L„'„' is the
associated Laguerre polynomial, and q is a non-
linear parameter to be determined by optimization.
This form of tt p is chosen partly because of its
simplicity and partly because of its physical plau-
sibility.

If the two-electron system is in the elastic-scat-
tering energy region, a wave function containing
a 1s vacancy is given by

4 =A[1 —Pi,{ri}][1 Pi,{rq)]g(ri, rm—), (7a}

where

Pl@(r) =
I yi, (r)}(pi,(r) I ~ (7b}

In carrying out the Rayleigh-Ritz variation pro-
cedure, the energy E is minimized first with re-
spect to C to obtain the secular equation. The
eigenvalues are then minim~~ed with respect to

For the system of interest, the I-S coupling scheme
is used. Therefore the total wave function is given
by the simple product of the spacial part and the
spin part y(l, 2), which takes the form of either a
singlet or triplet. Thus the trial wave function
is given by

+=A g Ci„„,4„(ri, r2) ILMfif2&X(1, 2)
hjelgl2

=Alt(ri, rg) . (5)

To build vacancies into the total wave function, we
choose

Z, =~„+*(E,„}, (10)

III. SINGLY EXCITED BOUND STATES

From a mathematical point of view, the time-
independent Schrodinger equation is an eigenvalue
equation with discrete as well as continuous ei-
genvalues and eigenfunctions. On the other hand,
one visualizes the physical system as consisting
of individual particles each occupying a certain
orbit. One describes the system in terms of par-
ticle excitation and interprets the energy states in
terms of various configurations. It would be in-
teresting to know how accurate this description
actually is. The saddle-point technique provides
a means to make such an analysis. For example,
the 2nd-lowest eigenvalue of helium with singlet
spin is interpreted to be the (ls2s) S state. Using

where g is a shift due to the coupling of P„and
the rest of the Hilbert space through the total
Hamiltonian. It is shown by Hahn et al. that the
Q operator for the two-electron system in the elas.
tic scattering region is given by

Q@= [1—Pi,(ri)][1—Pi,(rm)]4'. (11)

This Q operator is identical to that of Eq. (7a) ex-
cept that it is strictly hydrogenic and contains no
parameters. This provides a particularly inter-
esting test of the present method. The saddle-
point technique maximizes the energy with respect
to the parameters in the vacancy orbitals, so in
general the saddle-point energy will be higher
than c„. If g in Eq. (10) is positive, the saddle-
point solution will probably provide a better re-
sult than ~„. However, it is known that in some
rare cases + is negative, so it appears that in
these instances the QHQ approximation, &„, may
give a better result. This will be studied in de-
tail in Sec. IV.
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the saddle-point technique we can build a 1s vacan-
cy in the He wave function and solve for the lowest
singlet energy state with this vacancy. The accu-
racy of the new result gives a measure of the ade-
quacy of the 1s2s interpretation. To make this
comparison, the eigenvalue of the Hamiltonian is
computed by searching for the minimum value of
the 2nd-lowest root in the Rayleigh-Ritz variation
method using an unprojected wavefunction.

For the (is2s) S state, L=O and M=O. Follow-
ing Eq. (4), the basis function can be written as

0«, (», r2) =p(«, ~2) Ioou) . (12)

The trial function takes the form

@=A g C«, g, o(r|, r2) .
sip

We begin by taking a l = 0, 15 term trial func-
tion. & is fixed at the hydrogenic value of 2.0 and

P is varied. The best energy is -2.144113a. u. at
P =0.80. This energy will be denoted by e where
the superscript gives the number of angular par-
tial waves l included. If an l =1, 10 term basis
is added, ~ becomes -2.145353 a.u. at P =0.86.
With another 6 term l=2 basis, &' =-2.145391
a. u. at P=0.86. The "exact" value of Perkeris
for this state is -2.145 974 a. u.

To search for the saddle-point energy, we as-
sume for the normalized vacancy orbital

yo(&) (1/v & )q3 I2e-ar (14)
where q is a parameter to be optimized. The
trial function takes the form

O'=A g C«&[1-PD(r2)]p„&(r|, r2) .

By using the same number of terms in the trial
functions as before we calculate the lowest eigen-
value &'", we find &' =-2.144095 a. u. at P =0.86,
& '=2.145366 a. u. , and & =-2.145406 a.u. at
P =0.90. All three saddle points occur at q =1.52.
Define the corresponding Rayleigh-Ritz energy
with the same P as the saddle point to be E ', E ',
and E ', we find @ =-2.144 089 a. u. , E '

=-2.145334 a.u. , and E ' =-2.145373 a.u. The
differences between & and 8, or & and E, all occur
at the sixth or seventh digit. A similar calcula-
tion is also done for I i' and Be" systems.

To see whether the same accuracy can be achiev-
ed for other angular orbitals, the He(lsSp) P state
is investigated by building a 2P vacancy in the
(isnP) P wave function in the calculation. These
results are given in Table I. For all systems
considered in this table, the disagreements all
appear at the sixth or seventh digit. In all cases
the saddle point is very easy to find. In Table II,
the energy around the saddle point of Li (is2s) S
is given. In this table, the highest energy for
each P and different q is underlined, the lowest
energy for each q and different P is indicated by a
check mark. The saddle point is where they meet.

It would be of interest to see whether the saddle
points for the higher states of this system occur
at the same q. The calculation for He(ls3s) S
again gives q =1.52, suggesting that

y, = (1/Wv)(1. 82)'"e-'""

is probably a good approximation to the vacant 1s
orbital for this system. In this calculation a 21
term l = 0 and 15 term l = 1 trial function is used.
Here &' '=-2.060712 a. u. , & =-2.060794 a.u. ,

TABI E I. Comparison of the saddle-point energy and the energy of an unprojected wave
function (in a.u.). For notation in the first column, see text. For He(ls3p) P, the trial func-
tion includes up to two angular partial waves, a 19 term s-p wave and a 10 term p-d wave.

State He(ls2s) iS He(ls3p) IP Li+ (1s2s) S Be++(1s2s) iS

gi
gi
Ei

pi Ei

A.
2

Q2

E2
A, -e
g2 E2

g3

+3

X3-E3

-2.144 095
-2.144 113
-2.144 089

1.8x10 5

-0.6x10 &

-2.145 366
-2.145 353
-2.145 334
-1.3 x 10 5

-3.2 x 10

-2.3.45 406
-2.145 391
-2.145 873
-1.5x10 5

-3.3 x 10

-2.057 731
-2.057 747
-2.057 747

1.6 x 10
1.6x10 5

-2.057 894
-2.057 911
-2.057 911

1.7x10 5

1.7x10 5

-5.037 560
-5.037 559
-5.037 553
-0.1x10 5

0.7x10 5

-5.039 90V
-5.039 889
-5.039 884

1.8 x10
-2.3 x 10

-5.040 020
-5.040 000
-5.039 99V
-2.0x10 &

-2.3x10 &

-9~ 180 608
-9.180 601
-9.180 601

0.7 x10
0.7x10 5

-9.183 645
-9.183630
-9.183624
-1.5 x 10
-2.1x10 '

-9.183 821
-9.183 804
-9.183 800
-1.7x10 5

-2.1x10 5
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TABLE II. Saddle-point energy technique for 2 $0 of Li+ (in a.u.). The numbers given here
are the last three digits from a seven significant figure energy. The first four digits are
identical. The underline gives the highest value for each nonlinear parameter P, the check
mark gives the lowest energy for each q. The saddle point is where they meet. N is the
number of terms in the trial function. For notations see text. 0.' is fixed at 3.00.

1.47 1.50 1.53 1.56 1.59 1.62 1.65 N Saddle-point energy

2.505 709
2.520 598
2.535 551
2.550 566
2.565 641

2.532
2.538
2.544
2.550
2.556

2.532
2.538
2.544
2.550
2.556

717 720 I
604 608 J
558 56O J
5V3 5V4/
64V 648 J

908
892
886
890
904

017
002
000
000
015

717 705
604 591
555 542
569 555
642 628

923 930 4

907 913J
9O1 9O7 J
9O5 91O J
918 924 Il

034 043 4

018 026 I
012 020 0

O16 O23 J
030 037 J

'927
910
903
906
919

041
024
017
020
033

15

911
894
886 25
889
901

027
010
002 31
005
018

-5.037 560

-5.039 907

-5.040 020

E' '=-2.060741 a. u. , and E '=-2.060824 a,.u.
Again differences occur at the sixth digit.

It is interesting to note that for the helium sys-
tem a q =1.52 implies the vacancy feels the pres-
ence of the other 1s electron. The vacancy orbital
is approximately half screened by this electron.

IV. 'PAND 3P RESONANCES IN TH& He+ n = 1 to

n = 2 ENERGY REGION

To test the effectiveness of the saddle-point!
technique, the P resonances of He are particular-
ly well suited for three reasons. First of all, the
Feshbach projection-operator calculation has been
carried out accurately for this system, providing
a meaningful comparison to the new method. Sec-
ond, accurate experimental results are available
for the higher members of the resonances. Third,
the Feshbach shift of the lowest P resonance is
known to be negative even for an Hylleraas-co-
ordinate wave function. Since the saddle-point
solution is always higher than or at least equal to
the eigenvalue of QHQ, it would be interesting to
find out if the solution for this resonance is in-
ferior to that of Q&Q. If true, it would contradict
the assertion that the saddle-point solution pro-
vides the best square-integrable wave function ap-
proximation to the autoionizing state.

The configurations of P resonances has been
analyzed by Cooper and Fano, the two principal
series are classified as the plus and minus series
with the configuration of 2snp + 2pns. This is used
to explain the experimental observations of Mad-

den and Codling. The third series which is main-

ly a mixture of the 2snp+ 2pnd configuration, cal-
led the Pd series, has also been found to contri-
bute to the observed spectrum. " To calculate the
energies with the saddle-point method, we use
Eqs. (4) and (5) for the trial function, Eq. (14)
for the ls vacancy, and Eq. (7) for the projected
triaI function. We fix &=1 which is the proper
hydrogenic value and search for a minimum of

energy for P and a maximum for q. For the lowest
I' resonance, 76 linear parameters and five angu-

lar partial waves are used. For higher reso-
nances, either 78 terms with three partial waves
or 77 terms with two partial waves are used, de-
pending on which choice gives a better energy.
These results are given in Table IQ.

In this table, the lowest eight '& resonances
from the saddle-point solution and the eigenvalues
~„of QHQ are compared. For the lowest reso-
nance, the difference between the two solutions
occurs at the seventh digit. This seeH18 to sug-
gest that when the Feshbach shift is negative, the
saddle-point solution will be essentially identical
to that of the QHQ solution. The Feshbach shift
of the second and third resonances is calculated

by Bhatia and Temkin to be positive and negative,
respectively, ' this also agrees with the saddle-
point solutions. For higher resonances, our cal-
culations show the saddle point occurring at q
=2.00, hence the saddle-point solution is identical
to the QHQ approximation. Except for the 2nd

resonance, the two methods give the same result.
The Feshbach shifts of some of the higher reso-
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TABI E III. P resonances of e+ He in the + =1 to & =2 energy region (in a.u.). &n is the
QHQ energy. E„ is the saddle-point energy. & is the Feshbach shift from Ref. 9. E~~ (from
Ref. 10) differs from the resonance position by width/(2 x line profile). The figure in the
parentheses gives the uncertainty quoted. The conversion factor used is E =455.696+ where
X is in A. For P and q, see Eqs. (4) and (6). +=1.00.

Series

pd

1.15 0.692 660 3
0.62 0.597 091
0.54 0.563 861
0.41 0.547 017
0.40 0.546 411
0.37 0.534 129
0.28 0.527 492
0.27 0.527 222

0.692 659 5
0.597 078
0.563 861
0.547 017
0.546 411
0.534 129
0.527 492
0.527 222

1.99
1.98
2.00
2.00
2.00
2.00
2.00
2.00

En- ~n

8 x10
1.3x10 '
0
0
0
0
0
0

-2.6x10 4

2 3x10
-7.4x10 &

-Em~(expt. )

0.693 86 (54)
0.59710 (35)
0.564 18 (24)

0.546 27 (61)

0.53438 (25)

0.526 97 (62)

nances are calculated by Burke and McVicar' and
are shown to be very small. It is well known that
this shift depends a great deal on the wave func-
tion used, so unless the unshifted energies of the
two calculations have comparable accuracy, an
absolute comparison of the shifts is meaningless.

Contrary to the I' calculation, the 'P resonance
calculation shows substantial diff erences between
the saddle-point solution and the QHQ approxima-
tion. This is especially true for the lower reso-
nances (see Table IV). The differences are less
than the full shifts calculated by Bhatia and Tem-
kin. This seems to suggest that the saddle-point
method does not "over correct" the Q&Q approxi-
mation. Four & resonances are observed by
Rudd, "the results of this work lie well within the
experimental error quoted for these four states.

One interesting feature in this table is that for
each resonant series, q approaches the hydrogenic
value 2.00 monotonically as the resonance energy
gets higher. The different ways in which q ap-
proaches its limit indicates that the intrinsic
structure, or the shielding of the nucleus might

be different for each series.

V. 'P AND 'P RESONANCES IN THE He+ n = 2 to
n = 3 ENERGY REGION

In this energy region, the 1s, 2s, 2p channels
of He become open. The trial wave function for
the Feshbach resonances takes the form

p()l= Q Q I(„,„(r)}((„,(r) I, (16b)

and (t)„,„is given by E(l. (6).
Theoretically the P resonances in this energy

region have been calculated by Oberoi" and by
Chung using the QHQ approximation of Feshbach,
by Burke and Taylor" using a close-coupling cal-
culation with three-state plus correlation, by Her-
rick and Sinanoglu'4 using a group-theoretical
method, and more recently by Ho" using a com-
plex-rotation method. Experimental results have
been given by Madden and Codling and by Dhez

~ =~(1- l~(1))&~(1)IZ1- l~(2))&~(»li~(r, r ),
t

(16a)

where

TABLE IV. P resonances of e+He+ in the =1 to.+=2 energy region (in a.u.). For nota-
tion see Table III. 1.a,.u. = 27.211 65 eV is used in the conversion (see Ref. 9). e = 1.00.

Series

pd

1.15
0.61
0.58
0.47
0.42
0.37
0.33
0.28
0.27

n

0.761457
0.584 888
0.579 006
0.548 763
0.542 851
0.539 494
0.528 489
0.525 666
0.523 862

0.760 842
0.584 822
0.579 006
0.548 758
0.542 842
0.539494
0.528 488
0.525665
0.523 862

1.92
1.97
2.00
2.01
1.99
2.00
2.01
1.99
2.00

En- &n

0.62 x10
0.66 x10
0
5x10 6

9x10 &

0
10 '
10-6
0

-E(expt. )

1 x 10 0.7598 (18)
2.7x10 4 0.5856 (18)

x/0 6

0.5437 (18)

0.5257 (18)

Reference 9.
b Reference 21.
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TABLE V. P resonances of e+ He+ in the g = 2 to g = 3 energy region (in a.u.). &„ is the
QHQ energy, E„ is the saddle-point energy. El,~ (from Ref. 10) is the position of maximum
absorption-line intensity which differs from the resonance position by width/(2 x line profile).
In the case of the lowest resonance this shifts the resonance position to -0.33468 (145) a.u.
(see Ref. 11). The figure in the parentheses gives the uncertainty in the last three digits
quoted c.'. $=is used.

Series

+
A
B

C
A
B

C
D

0.71
0.39
0.46
0.36
0.38
0.26
0.26
0.24
0.22
0.21

n

0.335 827
0.286 020
0.282 840
0.271 126
0.267 505
0.257 441
0.251 206
0.250 481
0.248 004
0.244 915

0.334 597
0.285 971
0.282 789
0.270 891
0.267499
0.257430
0.251 204
0.250 433
0.248 004
0.244 893

1.87
1.97
2.04
1.92
l.99
1.98
2.01
1.96
2.00
2.03

E„-&„

1.23x10 3

4.9xl0 &

5.1x10 5

2.35x10 4

6x10 6

1.1x10 5

2x10 6

4.8x10 5

0
2.2x10 5

-g~~(Expt. )

0.332 95 (145)

0.269 80 (46)

0.249 85 (46)

and Ederer. 11

By utilizing Kqs. (4), (6), and (16) in a Rayleigh-
Ritz variation method, the saddle-point energy is
sought. For the lowest I' resonance, 76 linear
parameters and five angular partial waves are
used. For higher members of the resonance
series a three partial wave, V5 linear parameter
wave function is used. The results are given in
Table. V.

In this table, we see that unlike the P states in
the elastic-scattering region, the saddle-point
solution gives a substantial improvement over the
Feshbach Q&Q energy. For example, the lowest
resonance was somewhat below the experimental
results. But the saddle-point solution, -0.334 597
a. u. , is 69.90'1 eV above the ground state of.heli-
um and agrees excellently with the 69.92+ 0.03 eV
result of Dhez and Ederer and the 69,90+ Q.04 eV
result of Madden and Codling. The latter result,
quoted from Ref. 11, is different from. that of
Table V, in which the position of maximum ab-
sorption-line intensity is given. Note that E,
= E —&/2g, s where I' is the width of the reso-
nance, and g is its line-profile parameter. Since
I' and g are not available for the higher reso-
nances, we only quote & in thi. s table. How-
ever, since the widths of the highet x'esonances
are substantially narrower, & ~ shou1d be.a bet-,
ter approximation to E&~ .

There are five I' resonance series in this ener-
gy region which come from linear combinations of
3snp, 3pns, 3pnd, 3dnp, and 3dnf. These series
are classified into (+), A, B, C, and D in accor-
dance with Ref. 12. The lowest ten resonance
states are given in Table V. The higher members
have not been calculated since the q values will be
very close to 2.00, and therefore the results will
be very close to those of Ref. 12. It is evident,

TABLE VI. &'resonances of e+ He+ in the g =2 to g
= 3 'energy region (in, z.u.). For notation, see Table V.
n='$. The principal settee is denoted as the (-) series
in the same sense as Table IV. .

r

Series P n -En En

A

~ ~

B

0!6g 0.351 790
0.62 0.310951
0.32 . 0.280094
0,.34 0.278 847
0;30 0.260 328

, 0.26 Q.258 022
., 0.2'8 . 0.255412
,0:28,0.253 502

' 0.23' 0.245 307

0.350 818
0.310721
0.279 908
0.278 802
0.260 233
0.257 908
0.255 412
0.253 494
0.245 292

1.90 9.72 x 10
1.93 2.30 x10
1 98 1.86x10
1.96 4.5x10 5

1.97 9.5xl0 5

2.03 1.14 x 10
2.00 0
1.99 8 x 10
2.02 1.5x10 5

from inspection of the table, that the value of q
approaches the hydrogenic value of 2.00 monotoni-
cally from the lowest resonance of each series.
The (+) series is the only series observed experi-
mentally. The saddle-point solutions for the
lowest three resonances of this series are sub-
stantially closer to the experimental results than
those of the Q&Q approximation.

Our calculated energies for the I' autoioniza-
tion states in this energy region are given in Table
VI. These results are compared with the QHQ ap-
proximation of Chung. Once again, the calcula-
tions in this energy region show a greater im-
py ovement in the energy as compared to the I'
calculations in the elastic-scattering region (see
Table IV).

For the higher I' and I' resonances in this en-
ergy region there are few theoretical results avail-
able with shifts included. Therefore we only make
comparison with the lowest member of each sym-
metry. -These are given in Table VII. From this
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TABLE VII. The lowest P and P autoionizing state of He in the inelastic-scattering region
(in eV). 1 a.u. =27.207 95 e V, He ground state =-2.903 724 a.u. is used in the conversion.

BT

Theory

Ho
Present

work MC
Exper iment

DEd

ip
3p

69.917
69.482

69.873 R 0.0014
69.471 + 0.0028

69 ~ 901
69.459

69.90 R 0.04 69.92 + 0.03

' Burke and Taylor, Ref. 23.
Reference 25.
Madden and Codling, Ref. 10.

d Dhez and Ederer, Ref. 11. References 12, 22, and 24 are not included in this table be-
cause the Feshbach shifts are not considered in these references.

table it is seen that for the P resonance the agree-
ment between accurate theoretical calculations and
experiments is satisfactory. For the P reso-
nance, similar agreement is obtained between
theoretical work, but no experimental result is
available for comparison.

VI. SUMMARY AND DISCUSSION

In this work, we have demonstrated the effective-
ness of the saddle-point technique by carrying out
calculations for He in the bound state, elastic- and
inelastic- scattering energy r egions. The helium
system was chosen partly because correlation
effects are important in this system, and also
since many theoretical and experimental results
are available for comparison. In the bound-state
calculation, it was shown that the method is
capable of generating accurate results within the
limits of the trial function used. In the elastic-
scattering region, we find that when the Feshbach
shift is large and positive, the saddle-point meth-
od improves the QHQ approximation by recovering
a large part of the Feshbach shift. For example,
for the lowest P resonance, it recovers 62%%uo of
the shift. For negative Feshbach shifts, the new

method gives results essentially identical to that
of the QHQ approximation. In the case of the in-
elastic-scattering energy region, the improve-
ment over the QHQ approximation becomes more
substantial; this is apparent from both P and
P calculations. It appears that the higher the

energy region, the more effective the saddle-point
technique becomes as compared with the QHQ ap-
proximation in comparing with experiment. Un-
like the QHQ approximation, the utility of the
saddle-point technique is more general, allowing
calculations to be made for many-electron sys-
tems.

Compared with the complex-rotation method,
the advantage of the present method is that maxi-
mizing and minimizing the eigenvalues of each
resonance is easily carried out. A suitable, flex-
ible trial function can be easily chosen. Hence
not only the low-lying resonance can be calculated,
but the higher resonances can also be calculated
with even greater accuracy. The disadvantage
of this method is that it does not yield the width
of a resonance without introducing the continuum.
It would be of great interest to combine the advan-
tages of both methods. This will be the direction
we will be pursuing in the near future.
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