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Simplified hydrodynamic theory of nonlocal stationary state fluctuations
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In the realsitic approximation that the expansion coefficient of a fluid vanishes, the hydrodynamic
fluctuations around a steady state characterized by a small temperature gradient are determined entirely by
the variations of the strength of the random forces from point to point. The assumption of local

hydrodynamic equilibrium for the random forces leads to a long-range static density momentum correlation,

as well as to a significant odd-in-frequency correction to the Brillouin light scattering, whose integrated

intensity agrees with other work of Ronis et al. and Kirkpatrik et al. Consequences of the long-range

correlations for 1/f noise 'He and local equilibrium postulates are discussed,

where we assuine longitudinal motion and pn is
the appropriate sum of shear and bulk viscosities
and 7 is the diagonal component of the fluctuating
stress tensor whose equilibrium correlation is

(r(r, t)r(r', t')) =2u, T p~V(r- r')S(t - t'), (2)

where the subscript eq denotes the constant equil-
ibrium value. In general, p=p(p, T) which has the
effect of coupling in the thermal diffusion and con-
vection, complicating the calculation, especially
off equilibriuin. However, if one imposes the
realistic approximation that the expansion coeffi-
cient vanishes, then p=p(p), the speed of sound is
constant, and

The theory of low-frequency fluctuations in a
state of global equilibrium as described by a
linearized fluctuating hydrodynamics is well es-
tablished. ' A problem of slightly greater gen-
erality would involve a description of fluctuations
about a near-equilibrium steady state such as is
realized in a system with a small constant temp-
erature gradient, no convection, and constant
pressure (or, respectively, VT, =constant, V=O,
p = constant) . However, linearizing about such a
state to first power in 7'To already involves con-
siderable complications. ' In this paper we pre-
sent a discussion of such fluctuations in terms of
a physically realistic yet mathematically simpli-
fied choice of the equations of state.

In the approximation where all mode coupling
and therefore all terms quadratic in the fluctua-
tions are neglected, the mass density p and mo-
mentum density conservation laws are easily com-
bined to yield

82
, —V'p+V'{pnV ~ V)=V'7,

8p
V V=-

p 8t

so that (I) becomes

8 D 2 2 2 8p 2-2

—gVp —V n =VT
8t 8t

(4)

yields from (5)

(&(k, (u) T*(k',(u')) = 2)'2sp~5((u —v')To(k- k'), (7)

95(k —k')
To(k —k') =T 5(k —k) —VTO si(k —k')

The light scattering is immediately determined
from (4) and (7) as

which is one equation for the variable p valid even
in the presence of an imposed steady-state temp-
erature gradient.

If one further assumes that the kinematic sound-
attenuation coefficient n is independent of temp-
erature, we find that the dynamic response function
of the system with VTO& 0 is identical withthat in

global equilibrium and the only manner in which
the imposed temperature gradient can enter the
description is through the variation of the random
force from point to point. It is natural and con-
sistent with the idea of hydrodynamic local equil-
ibrium to assume that in the presence of a small
VTO the random forces maintain the form (2) with
T replaced by

To(r) =T +r. VTo. (5)

Introducing the Fourier transform
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2k2)po!To(k —k')5((d —&u')k k'
(p(kp(d)p (k, (o'))=( 2 2k2+. k2)( 2 2kr2 .

& kr2) (9)

(p(r tr)p(r', tp'))= * 0 (r —r', rdii(tr —p')+f s„,(k tp)r""''drks(tr —p'), (10)

1+—,'(r + r') ~ sd'Tp
T )S~(r —r', (u) n((u —(u') . (13)

For the remainder of the paper we ignore the
temperatur'e dependence of c and n. The static
or equal-time averages are obtained by integrating
over frequency so that

(J(kp)p (k D)) f,',(p(k=, tp)p (k', p'))dpdp'

(k VT )k5(k- k'),
2m~k

(14)

(p(k 0)p"(k', 0))=f (p(k, pdp (k', p'))dtpdp'

=(k,p/2~c') T,(k- k') .
In coordinate space the density autocorrelation
function is exactly what one would expect from lo-
cal equilibrium.

(P(r, 0)p(r', 0))= [k PTo(r)/'c'1&(r —r')

whereas the density momentum correlation shows
a, nonlocal long-ranged decay going as

~

r —r'
~

'.' '
Generating the dynamics from the statics through
application of the equilibrium propagators to (14)
and (15) yields (9).

Although the temperature gradient is essential
for the long-range static J, p correlation, the

where the nonlocal correction to equilibrium light
scattering is given by '

2w k ~ VlnTO
s((kp(d) Dr((k) (d) r 2 2 2k 2 + 2 2 4 ~ (11)

t, (d —C k J +Ct (d )t!

In order to obtain (10) one must integrate the 5-
function derivative by parts, holding k+ k' con-
stant. The light scattering has two physically dis-
tinct contributions. The term even in the fre-
quency shift co is the equilibrium effect adjusted
to the local value of the temperature. The term
odd in frequency is due to the nonlocal correla-
tions which result from the imposed temperature
gradient. It leads to a percentage change in in-
tensity of each Brillouin peak given by

-c k ~ V InTo/ink'
p (12)

which agrees with Ref. 2.
When the temperature dependence of ~ and c are

included one finds no change in the nonlocal cor-
rection (11), whereas the contribution to light scat-
tering even in (d becomes

thermal conductivity K does not appear in the re-
sult. Thus in the limit where K goes to zero so
that the entropy production vanishes, one is led
to ask whether it should be possible to understand
(14) as an equilibrium property due to the appear-
ance of long-ranged effects in the free energy.
Also the static long-range correlations bring into
question the basic assumptions of local equili-
brium and local momentum conservation from
which these results were derived. The possible
breaking of these symmetries may be accompanied
by new collective modes.

The long-range correlations are accompanied by
a corresponding two-dimensional 1/f noise as can
be seen from the integral

VTO J k, (ro p+ k', (d
' d k d t4r

'
dEk)t)

' =~
A connection between experiment and this mathe-
matical 1/f noise is at present unclear.

A, system in which the thermal conductivity is
very small is realized for superfluid He con-
tained in the pores formed by very fine powder,
a so-called superleak. For such a system the
chemical potential p. and not the pressure is con-
stant in the steady state, so that the quantity which
we approximate as zero in analogy with the expan-
sion coefficient is

Bp, Bp

p BT BP

where s and p, are the entropy per gram and su-
perfluid density, respectively. In this case the
dynamic equation corresponding to (4) Ref. 9 and
the random force and momentum-density correla-
tions are

2BO 2 2 2Bp—C4Vp —p $3V =p VH,s

(If(r, f)a(r', f')) = 2k, Tf,(r —r')~(f —f'),

( y (k 0) r)r(kr 0))
ks(k ' ~To)k5(k —k')

Pg, s ) P 0 2 g p4

where $3 is the third bulk viscosity. The percen-
tage change in intensity of the Brillouin peaks is
then given by

-c4k sk' lnTp/(dp rpk,
where c4=p,(stu/sp)„. In the superfluid state the
phase of the macroscopic wave function, or velo-
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city potential, becomes observable and its corre-
lation with the density depends logarithmically
upon the spatial separation in the presence of a
temperature gradient.

Although the scattered intensity (12) agrees with
Ref. 2, a comparison with the results of Ref. 3 is
difficult to make. However, in a recent paper
Kirkpatrick et al. also obtain an intensity in agree-
ment with Eq. (12) by use of an approach which is
partly hydrodynamical and partly mode coupling. '
As is the case here, they obtain a detailed peak
structure which is a square of I.orentzian, whereas
Ref. 2 derived a I orentzian peak. Thus a ques-
tion arises as to whether or not the line shape is
measurable. %e feel that the answer is no on two
grounds. First, for practical reasons, one needs
to determine the frequency as well as the scatter-
ing vector to better than 1 part in 10' in order to
resolve the line shape. Note that in the example
given in Ref. 2 the peak shift is 58.4&10 sec ' and-

the width is 1100 sec '. This all must be sorted
out at a scattering angle of 0.4', which is rather
difficult. Secondly, the requirement that the non-
local light-scattering effects be observable neces-
sitates using a beam of sufficient collimation so
that the variations in ordinary light scattering due
to scattering from points of different temperature
do not wash out a given peak. This collimation
will, in general, lead to an uncertainty in the
momentum transfer that averages out the peak
structure. Taking a beam diameter of about 0.1
cm so as to be small compared with the length
characterizing the temperature gradient yields
for the spread in incident wave vector

&k&5 cm

For conditions of interest the momentum transfer
is 10 cm and thus the uncertainty in momentum
transfer is 5 parts in 10, more than enough to
average out the line shape.

Considerable interest has been generated about
this difference in peak structure due to the fact
that it cannot obviously be accounted for by the
Navier-Stokes vs Burnett approximations. In the
remainder of this paper we present an alternate
analysis of the statistical-mechanical expression
given in Ref. 2 which yields line shapes consis-
tent with those obtained here. In Ref. 2 [(cf. Eq.
(3.1)] the main quantity of interest was

I

&()a,a) =f aa(A (a)A I, (-a)), (16)

where the notation is the same as in Ref. 2. Spec-
ifically, A2(&2) represents the set of conserved
variables and I, r(-7') the random flux (6 is the
energy or momentum). Note the identity

ILt i (1-P&Lt(1 p) +p iLt

PBf= (Bg—„-)(A„-A „-) 'At. (is)

Thus P is just Mori's projection operator. " Using
Eq. (17) in (16) yields

A(k, o) = G „(o) ~
Jt &fr(A„-A „-I5 r(-2))

ty ~ g+ dt(G „(&r—tt) ( dT(A-„(t1)A pIt r(-T)),
0 00

(19)

where

G„(g) —= (A„-(g)A „-)(A„-A „-)

and

(20)

(21)

(2i')

A„-(t) =—e' '(1 —P)iLA„

=—$k JR(t) .
Equations (21) define Mori's random flux. Note
that

I, r( T) =lim J5-„-(-T).
g-0

The first term on the right-hand side (RHS) of
Eq. (19) has been analyzed in Ref. 2, yielding a
I orentzian line shape. However, more care
must be used in treating the second-term. De-
noting the second term on the RHS of Eq. (19) as
g(k, o), we find

0 OO

+(k,o) = dt&G &-,(o' —t1) ' d2'(te A (f&)]A:(r)Io, r) .
0 mOO

(22)

Using the identity

t
+ dt e'" ' " "'(1-P)iIPe& " (17)

0

where I is the Liouville operator and where I' is
defined, for any B-„, as

T

&Lt i &1 P)&Lt((1 P)tf-i (1-P)L &t(av)(1 P)t I, + df2 &L (a t2)PtLet &1-P&L &t2 t1 (1 P)2I,
0

(23)

Eq. (22) gives
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CO 'r

l(k td = ckgG (8 g)(AV'
~

( l '

( (g)A- (T)l ) I A4(A (4 + l()A- )' (A A- ) (A~(T —l )A (T)l )j
0 «oo

(24)

The assumption that random flux correlations decay quickly allows us to neglect the first term in Eq.
(24}. The remaining term may be approximated by

a
4'(k, o) =- dt, G»(o tg-) ~ dr dt, (A(t 2+ t,) A~) ~ (A~A») ~ (A;(a+t, )A t(T)I() r) . (25)

(25)

For convenience, take o&0 (the o&0 behavior follows using the time-reversal properties of g. Using the
~ fassumed rapid decay properties of A~(t) allows us to rewrite Eq. (25) as

fy oo

%(k,o) =- dt)G„((r-tt) ~ dT dt2(A„-(t2)A-)(A-„A») '(A-(r+t()A»(7')I» r).
0 oo «CO

Recognizing

dt2(A-(t2)A»)+~A „-) '=2M» D, (27)

where M~ ~ is the Green-Kubo form" for the dissi-
pative part of. the hydrodynamic equations [i.e.,
A»(t} = reversible terms+M» DA»(t}' and using Eq.
(17) shows that

fy

4'(k, z) =2 dt, dr G»(o - t,)M» DG„-(t) 7)
0

x (A -„A „-I, ,)G „( ~) +.-. .-,
(29)

where the ellipses represents less important terms.
The superscript "j'" denotes a Hermitian conju-
gate.

For hydrodynamics M„- D is O(k ). Nonetheless,
4'(k, o) is not negligible since all integrands decay
on O(k ) time scales. In fact, making the hydro-
dynamic approximation for G»(t) and M.„~, and
using the small-k form for (A „-A»I, r) (cf. Sec.
IV of Ref. 2) yields an expression which, when
Fourier transformed, is a square of Lorentzian.
Combining this with the I orentzian term in &

gives a correction to the light scattering equivalent
to that found here. Physically, the source of the
new term lies in the fact that the integrand in the
second term on the RHS of Eq. (19}has a small
part O(k ) which is long lived in time. In Ref.
2 a different definition of the random force is
used and a I orentzian result is obtained. " It can
be shown that the difference in forces is O(k') and

long lived in time. Depending upon which defini-
tion of the random force rapidly decays, a time
correlation which is either I orentzian or I orent-
zian squared can be obtained. Within the context
of the assumptions of the various theories one
cannot decide which peak structure is correct.
Also experiments on light scattering will not be
useful in this regard. Perhaps a density expan-
sion' or an investigation of mode coupling will
yield additional insight.
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