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For all gauges of the Goppert-Mayer type, the two-body Schrodinger equation for charged particles in a plane-

wave electromagnetic field fails to separate into center-of-mass and relative-coordinate equations when the field is

sufficiently intense.

I. INTRODUCTION k„A" =0, (2)

It was shown recently' that, for both charged and
neutral two-body bound-state systems, "crossed"
vector potential terms occur in the electric-field
gauge which prevent separation of the Schrodinger
equation into center-of-mass and relative-coordi-
nate equations when the field intensity is high. This
difficulty does not arise in Coulomb gauge (radia-
tion gauge). The so-called electric-field gauge is
the simplest generalization to full space and time
dependence of the Goppert-Mayer gauge, which is
a long-wavelength approximation. It is the main
purpose of this paper to show that this conclusion
about intense-field difficulties in the electric-field
gauge is true of all gauges of Goppert-Mayer type.

The procedure used is first to show that the sep-
aration problem that arises in the electric-field
(EF) gauge exists as well in a quite different gen-
eralization of the Goppert-Mayer (GM) gauge. The
other GM-type gauge employed is the Fiutak (F)
gauge. EF gauge is the simplest generalization of
GM gauge to full space and time-coordinate depen-
dence, whereas F gauge is a generalization of GM
gauge which is more useful for dealing with multi-
pole expansions. The common features of EF and
F gauges are then used to extend the conclusions
to all gauges of GM type.

Section II gives a brief discussion of the poten-
tials and fields in GM, EF, and F gauges and Sec.
III contains a treatment of the separability prop-
erties of the two-body Schrodinger equation.

II. POTENTIALS AND FIELDS

The general conditions stated in Ref. 1 are
adopted here again. That is, the electromagnetic
fields are taken to be plane-wave, source-free
external fields describable by a four-vector poten-
tial A~. A gauge transformation of the four-poten-
tial is given by

4"-4" + & "X .
The Coulomb and EF gauges satisfy the transver-
sality condition

and the Lorentz condition6

(3)

so that the gauge-transformation function connect-
ing them satisfies the homogeneous wave equation

a„a"~=0. (4)

k x=-k„x"=~t-k r,
and from Eqs. (2) and (3),

k A=O, V.A=O.

(6)

(7)

Transformations to GM, EF, and F gauges are
defined by the generating functions

X~ =r ' A(t),

XzF ——r 'A(t, r) = -~ A(k x),

(Ba)

(Sb)
1

du r 'A(t, ur) .
0

(Bc)

A covariant form is shown only for gE~, since the
others are inherently noncovariant. The difference
between Eq. (Sa) and (Bb) or (Bc) is simply that the
long-wavelength approximation is used in Eq.
(Sa). In other words, the size of the bound system
is presumed to be so small as compared to a wave-
length that, in Eq. (6), one can take

When Eq. (9) is satisfied, Eqs. (Sb) and (Bc) both
reduce to Eq. (Ba). Therefore, EF and F gauges

In Eq. (2), k" is the propagation four vector of the
field. The relativistic notation is one with a time-
favoring real metric. That is, the metric tensor
signature is 1, -1, -1, -1. Units with 8 =c = 1
are used.

The starting gauge from which transformations
are considered is the Coulomb (or radiation) gauge,
in which the potentials are

A'=0, A =A(k ~ x) =A(t, r),
with
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can both be regarded as generalizations of the GM
gauge.

The potentials which follow from Eqs. (1), (5),
and (8) are

Ar = —r 'E(t), Ar = —~rxB(t) . (11c}
The F gauge long-wavelength vector potential can
also be written in terms of electric fields as

A oM ——r E(t), A Gu —0,
As'r ——r E(t, r), A~+ —- keg r ' E(t, r);,

(10a)

(10b)

Ar =-pk~u 'r 'E(t)+-,'E(t)(u ~k ' r,
when the plane-wave relation

(11d)

0
AF ——

4 p

t i ~i
du r 'E(timur) ~ AF = — duu rxB(t, ur) .

N
p

B =(g k&&E

(10c)

The salient feature of the GM gauge is its lack of
a vector potential. This is clearly a deficiency,
since a time-dependent electromagnetic field ob-
viously cannot be completely described by only a
single component; but it is a defect of consequence
only when multipolar corrections are required,
and/or the field is intense. The potentials of EF
gauge satsify Eqs. (2) and (3) exactly, but the F
gauge potentials do not. The fact that F gauge is
neither transverse nor a Lorentz gauge is of no
formal consequence, but it is an inconvenient loss
of properties useful in analytical manipulations.

The long-wavelength forms of Eqs. (10a)-(10c)
are

is used. The scalar potentials in Eqs. (1la)-(11c)
are all equal, but the vector potentials are not.
ln particular, the presence of a vector potential is
vitally important when field intensity is high, which
underlines the importance of not introducing the
long-wavelength approximation too early. Even
though the generating functions, Eqs. (8a)-(8c),
are all the same in the long-wavelength case, the
resulting vector potentials are not the same. The
operations of carrying out the gauge transforma-
tion and going to the long-wavelength limit are not
commutative.

The electric field is found from

(13)

AGu=-r 'E(t), AGu=0;

AKr = —r 'E(t), Asr = —k(o r 'E(t);
(11a)

(11b)

where from Eqs. (10a)-(10c),

-VA' =E(t), -BP =0; (14a)

-VA'r =E(t, r) —keg r ' B,E(t, r), Bp r ——-k&o r ' B,E(t, r); (14b)

-VAr' —
~

du E(t,ur) — duu k&g r ' B,E(t,ur),
p

t i
-BPr ——E(t, r) — du E(t, ur)

kp

pi
+ Jl duuk&o r ' B,E(t,ur) .

0
(14c)

The two terms in Eq. (13) are evaluated separately
in Eqs. (14a}-(14c)in order to show the presence
of components in the longitudinal (k} direction
arising from the scalar potential used by itself.
These longitudinal components are exactly can-
celed by vector potential contributions.

The magnetic field is found from

I

Yet, for a true plane wave, magnetic and electric
fields are of equal magnitude. This is not normal-
ly of consequence in the long-wavelength, nonrela-
tivistic situation appropriate to most problems in
atomic and molecular physics; but when the field
is, intense, the magnetic field (and hence the vector
potential) is vitally important.

GM

VxAsr =(o kxE(t, r),
V xAr =B(t, r) .

(15a)

(15b)

(15c)

The results of Eqs. (15b) and (15c) are, of course,
identical in view of Eq. (12). The great deficiency
of the GM gauge shows glaringly in Eq. (15a). With
no vector potential, there can be no magnetic field.

III. SEPARABILITY OF EQUATIONS OF MOTION

The essential conclusion of Sec. VI of Ref. 1 is
that the presence of a strongly position-coordi-
nate-dependent vector potential in the two-body
Schrodinger equation in EF gauge, makes it im-
possible to separate the equation into independent
center-of-mass and relative-coordinate equations
when the field intensity is high. Exactly the same
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conclusion holds true for F gauge. When the two-
body Schrodinger equation for particles of masses
m&, m2 and charges e~, e2 is expressed in F gauge,
and then written in terms of the center-of-mass
coordinate H and relative coordinate r, the result
is

i B,&(r, R) =[-e,E R -e„E r

+ (1/2m, )(-i%„+—,'e,R x B + pe„r x B)

+ (]/2m„)(-iV„+ —,'e„Rx B+ ze, r && B)

(16)

in exact analogy to Eq. (63) of Ref. 1. In Eq. (16),
the long-wavelength form of F gauge is used, as
in Eq. {11c),B means B{t), and the total mass and
charge (m„e,), reduced mass and charge (m„,e„),
and effective charge (e,) are defined in Eqs. (54},
(55), and (64) of Ref. 1. Equation (16) has the
crossed vector potential term —,'e„r && B which ap-
pears with the -i~~ operator, and the term
—,'e„H x B which accompanies the -i&„operator.
These crossed vector potential terms are com-
pletely negligible at ordinary field intensities,
but block the separation of variables in Eq. (16)
when field intensity is high. Since the separa-
tion-blocking terms are of exactly the same order
of magnitude as the corresponding EF gauge terms

explored in Ref. 1 (since ~E
~

= ~B~), the conse-
quences are the same. The conclusions in Eqs.
(67) and (69) of Ref. 1 are that z «1 for separa-
bility, where z is an intensity parameter which
may be written as'

z =e~(E )/2m (g =e (B )/2m(g (17}
for a plane wave in a nonrelativistic problem. The
angular brackets in Eq. (17) refer to a time aver-
age over a wave period.

The separability problem in EF and F gauges is
generic to all gauges of the GM type. The reason
is the multiplicative position vector that appears
in the potentials, as shown in Eqs. (10) and (11).
This is a consequence of its appearance in the
gauge-transformation functions of Eq. (8). The
two-body Schrodinger equation separates without
difficulty in Coulomb gauge because the only posi-
tion dependence is in the argument of the vector
potential, and not in a multiplicative factor. When
Eq. (9) is satisfied, separation in Coulomb gauge
is entirely unambiguous and multipole corrections
will always be small, regardless of field intensity.
However, no matter how large the wavelength as
compared to the size of the bound system, a suf-
ficiently high field intensity, as measured by z
makes any generalization of the GM gauge unus-
able.
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